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Abstract. Similarity search is an important problem in information retrieval. 
This similarity is based on a distance. Symbolic representation of time series 
has attracted many researchers recently, since it reduces the dimensionality of 
these high dimensional data objects.  We propose a new distance metric that is 
applied to symbolic data objects and we test it on time series data bases in a 
classification task. We compare it to other distances that are well known in the 
literature for symbolic data objects. We also prove, mathematically, that our 
distance is metric.  
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1   Introduction 

The problem of similarity search and information retrieval in large databases has 
received an increasing deal of attention recently, because of its vast number of 
applications. This problem, because of its nature, is not a trivial one, since in most 
cases the databases in question are very large. So using sequential scanning to search 
data can take a long time and can become ineffective, especially when the data objects 
stored in modern databases are complex. For all these reasons, there is always a need 
to introduce new methods to deal with this problem.  
 
Research in this area has focused on different characteristics. One of them is the 
distance metric that is used to support the similarity search mechanism. 
 
Many distance metrics have been suggested. But the Euclidean distance is still the 
most widely used, even though it has many drawbacks.   
 
Another characteristic of the search problem is data representation. In multimedia 
search the main problem we encounter is the so called “dimensionality curse”. The 
main technique used to deal with this dimensionality curse, which is, in fact, the 
essence of data representation, is data compression. 
 
In time series, for example, there have been different suggestions to represent them. 
To mention a few; DFT [1] and [2], DWT [3], SVD [11],APCA [10],PAA [9] and 
[16], PLA [12], SAX [7], …etc. 
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Among data compression techniques, symbolic representation is an idea that seemed 
to have potentially interesting pros, in that by using it we can benefit from the wealth 
of text-retrieval algorithms and techniques. However, the first papers presented were 
mainly ad hoc. In addition, they didn’t present a technique to support Euclidean 
queries. There were also other questions concerning the discretization and the size of 
the alphabet [10]. 
 
But symbolic representation is receiving more and more attention. New distance 
measures mainly adapted to this kind of representation have been proposed. Also 
there have been many papers that suggest methods to discretize the data. For all these 
reasons, symbolic representation seems very promising.  

2   Motivations 

2.1   The Edit Distance 

The edit distance (ED) is defined as the minimum number of delete, insert, and 
substitute operations needed to transform string S into string T. This distance is the  
main distance measure used to compare two strings is the edit distance (ED). This 

distance uses three operations: insert, delete, and change [15]. Different variations of 

this distance were proposed later like the edit distance on real sequence (EDR) [4], 

and the edit distance with real penalty (EDRP) [4] 
 
The edit distance has a main drawback, in that it penalizes all change operations in the 
same way, without taking into account the character that is used in the change 
operation. This drawback is due to the fact that the edit distance is based on local 
procedures, both in the way it’s defined and in the algorithms used to compute it. This 
poses questions on the accuracy of the similarities obtained by applying this distance. 
We will give herewith two examples to show this; 

Example 1:  

The edit distance was presented mainly to apply on spelling errors. But because of the 
conventional keyboard arrangement, the probability that an “A” be mistyped as “S” is 
not the same as mistyping “A” as “P”, for instance (on an English keyboard), but yet, 
the edit distance doesn’t take these different possibilities into consideration. 

Example 2:  

In the In time series databases, some methods of dimensionality reduction, like the 

one presented by Keogh [7], use symbolic representation. These methods are based 
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on converting the time series into an alphabet of discrete symbols. Then the textual 
processing techniques can be used to manage these strings. These symbolic 
representation methods, as much as we know, don’t take into consideration which 
character was changed by which character. 
 
One of the ways that can be considered to deal with this problem is to use a 
predefined table that shows the cost of change between any two characters of that 
alphabet. This method, although worth considering, has a few cons; first, it’s specific 
to each database. Second, the number of change costs to be defined beforehand (this 

number is nC
2

, 2 should be above n where n is the size of the alphabet) can be 

somehow large. Third, if we try to use multiresolution techniques on the symbolic 
representation, then we will have to define a table for each resolution. Another serious 
problem arises in this case; merging two characters in text processing is not intuitional 
at all. So there’s no clear way on how the “new” characters (those of a different 
resolution) can be related to the old ones. 
 
In this paper, we present a new distance metric for symbolically represented data. It 
has a few advantages; one of them is dealing with the above problems in a natural 
way (no need to define a cost function for the change operation, no need to redefine it 
for different resolutions) 

3   Background 

Comparing strings of characters has several applications in computer science. These 
applications were in the beginning restricted to data structures whose representation is 
mainly symbolic (DNA and proteins sequences, textual data…etc). But later these 
applications were extended to other data structures that can be expressed 
symbolically.  
 
There are a few distance metrics that deal with symbolically represented data. In this 
section, however, we will list the most common ones  

3.1   The Longest Common Subsequence 

Given two strings ],...,,[ 21 msssS = and ],...,,[ 21 nrrrR = . Their longest common 

subsequence (abbreviated as LCSS) is the longest common subsequence to both of 
them. This subsequence doesn’t have to be consecutive, but it has to have the same 
order in both strings. 

 
It’s important to notice that the LCSS uses the same operations that the ED uses, 
that’s why many researchers consider the LCSS to be a special case of the ED  
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3.2   The Theory of Genome Rearrangements 

Different species of organisms undergo a transformation process called evolution. An 
important problem in biology is to construct trees, called the phylogenetic trees, 
which help show how species are related to each other [14]. Different species are 
compared by comparing the sequences of their genomes.       
 
Organisms evolve as a result of different evolutionary operations. An important 
operation is when a piece of the genome is reversed. During the long history of 
evolution this operation can happen several times. As a result to this, new species 
arise. 
 
Genome sequences, because of their nature, are a data structure that can naturally be 
represented symbolically. There are many distance metrics used to compare two 
sequences of genomes (The exemplar distance, the breakpoint distance, signed 
reversal distance…etc). In general, these rearrangement distances measure the number 
of elementary operations necessary to transform one linear order on the genes into 
another [13] 

4   The Proposed Distance 

4.1   Introduction 

We start by giving the following example; 
 
Given the following string;  
 
 

marwanS =1  

 
By performing two change operations on 1S  in the first and fifth positions we obtain; 

aarwinS =2  

 
By calculating their edit distance we get; 2),( 21 =SSED  

 
Let NC  be the number of distinct characters that two (or more) strings contain, i.e. 
   

)}({)}({ 21 SchSchNC ∪=  

 
In our example we have; 
 

6),( 21 =SSNC  

 



 5 

Now if we change the same positions in 1S  with different characters we obtain, for 

instance, the string 
 

barwenS =3  

 
By calculating the edit distance between 1S  and 3S  we get; 2),( 31 =SSED (which is 

the same as ),( 21 SSED ) 

 
But we notice that  
 

7),( 31 =SSNC 7.  

 
This means that one change operation used a character that is more “familiar” to the 
two strings in the first case than in the second case, in other words, 2S  is closer to 1S  

than 3S . However, the edit distance couldn’t recognize this, since the edit distance 

was the same in both cases.   
    
We will see later that this concept of “familiarity” can be extended to consider not 
only NC but the frequency of sequences too.  
 
N.B. We chose an example of strings of identical lengths since we were only 
discussing the change operation  
 

4.2   Definition-The Extended Edit Distance  

Let A  be a finite alphabet, and let )(S
if be the frequency of the character i  in S , and 

)(T
if be the frequency of the character i in T , and where S ,T  are two strings on A .  

The extended edit distance (EED) is defined as; 
 







∑−++= ),(min2),(),( )()( T

i
S

i
i

ffTSTSEDTSEED λ    

Where X  is the length of the string X , and where 0≥λ  ( R∈λ ). We call λ  the 

frequency factor, and where i  is the number of elements of NC  
 
Remark : Notice that when ),(),(0 TSEDTSEED =⇒=λ , and this is the minimum 

value for EED, so ED is actually a lower bound of EED 

4.3   Theorem 
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The EED is a distance metric  

Proof:  

Before proving this theorem we notice that; 

TSffTS
T

i
S

i
i

,0),(min2 )()(
∀≥





∑−+λ  

(1) 

 
(Obvious) 
 
Now we start with the proof that EED is a distance metric. 
 
i- TSTSEED =⇔= 0),(  

 
a) TSTSEED =⇒= 0),(  

 
Proof: 
 
If 0),( =TSEED , and taking into account (1), then both (2) and (3) are valid; 

0),(min2 )()(
=∑−+

T
i

S
i

i

ffTS  (2) 

 

0),( =TSED  (3) 

  
From (3), and since ED is a distance, we get; 

TS =  
 
b) 0),( =⇒= TSEEDTS  

Proof: 
Obvious 
  
From (a) and (b) we have; 
 

TSTSEED =⇔= 0),(  

ii- ),(),( STEEDTSEED =  

 
Proof: 
Obvious 
 
iii- ),(),(),( TREEDRSEEDTSEED +≤  
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Proof: 
  

RTS ,,∀  We have; 

 

),(),(),( TREDRSEDTSED +≤     (4) 

    (Valid since ED is a distance metric) 
 
We also have ; 
 

)],(min2[)],(min2[

)],(min2[

)()()()(

)()(

T
i

R
i

i

R
i

S
i

i

T
i

S
i

i

ffTRffRS

ffTS

∑−++∑−+

≤∑−+

λλ

λ

 

 

(5) 

 
 
(See Appendix A for the proof of  (5)) 
 
Adding (4), (5) side to side we get; 
 

),(),(),( TREEDRSEEDTSEED +≤  

 
 From i,ii,iii, we conclude that theorem 4-3 holds 

Example 3  

(Revisiting the example presented in section 4.1) 
 
We define the form of a string is a vector as follows: 
 

],...,,[)( 21 nfffSForm =   ( n is the size of the alphabet, in our example it’s 26, the 

English alphabet) 
 

..]0,1,0,...0,1,0,..,0,1,1,0,.....,0,2[)( 1
WRNMA

SForm =   

...]0,1,0,...,0,1,0,..,0,1,0,..0,1,0,.....,0,2[)( 2
wRNIA

SForm =   

....]0,1,0,...,0,1,0,..,0,1,0,...,0,1,0,...,0,1,1[)( 3
WRNEBA

SForm =   

 
( In this example, λ =1) 

4),( 21 =SSEED  

6),( 31 =SSEED  
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Which is what we’re expecting, since, according to the concept of similarity we 
presented in section 4-1, 2S is more similar to 1S  than 3S  is. 

 

N.B. (in the example above we have 321 SSS == , but the EED can be applied to 

strings of different lengths, we chose this example because it was the example used in 
section 4-1) 

Example 4  

Given; marwanS =1 , aarwinS =2 (The same 1S , 2S as in the first example) 

3S  is obtained by changing 1S  in the same positions, but with different characters; 

 
rarwenS =3  

In this interesting example we have a particular case where ; 
6),(),( 3121 == SSNCSSNC  

But we still have 
 

4),( 21 =SSEED  

6),( 31 =SSEED  

Which means that our proposed distance kept considering 2S closer to 1S than 3S  is, 

and this is what we expect since  
 

2)}({}({ 21 =∩ ScharSchar aa  , 1)}({}({ 31 =∩ ScharSchar aa  (you change the 

meaning of your notation sec. 4.1 
 
So it’s logical to consider 2S closer to 1S than 3S is. 

 
(For all other characters we have  

1)}({}({ 21 =∩ ScharSchar xx  , 1)}({}({ 31 =∩ ScharSchar xx ) 

 Example 5  

We will give another example that will help show the properties of our EED; 
 
Let  

narwanS =1  

aarwnnS =2  

aarwxnS =3  

xarwnnS =4  

xarwxnS =5  



 9 

The ED between 1S and each of the other four strings is the same (which is 2). 

However, we will show that the EED is not the same, and that it differs according to 
how much each any two strings differ.  
 
i- 2),( 21 =SSEED , which is the same as their ED. The two strings 21, SS have the 

same length, the same characters, and the same frequency for each character (in fact, 
one string results from the other by rearranging it). These two strings have the highest 
hidden similarity of all the other pairs ( 1S and one of 52 ...SS ) so their ED is their 

EED. This is the case that we mentioned in the remark in section 4-2 
 
ii- 4),(),( 4131 == SSEDDSSEED , each of  43 , SS results from 2S by replacing one of 

the characters in 2S by another character x (in position 5 for 3S and position 1 for 

4S ) . 

x is a character that doesn’t exist in 1S , so adding this “unfamiliar” character makes 

each of these strings less similar to 1S than 2S is. We also see from this case that the 

position at which this unfamiliar character was changed didn’t affect the EED.  
 
iii- If we continue this process and change the characters in position 4 in 4S or in 

position  1 in 3S  with that same unfamiliar character x  (in both cases we obtain 5S ). 

In both of these cases we substitute a familiar character ( a in the first case and n in 
the second case) with an unfamiliar character x so there should be loss of similarity 

compared with 3S and 4S .  

 
By calculating the EED we see that: 
 

6),( 51 =SSEED , which is what we expected.  

 
We see that the EED was not the same in the above cases, while the ED was always 
the same. 
 

Example 6  

This example concerns strings of different lengths; let 
abcaS =1 , aabbccS =2 , adbecfS =3 , we say that 3),(),( 3121 == SSEDSSED  

However, by calculating their EED we find that 5),( 21 =SSEED while 

7),( 31 =SSEED  
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5   Complexity Analysis 

The time complexity of EED is )( nmO × , where m is the length of the first time 

series and n is the length of the second time series, or )( 2nO if the two time series are 
of the same lengths. The complexity is high. However, we have to take into 
consideration that EED is a universal distance that can be applied to all symbolic 
represented data objects, where other distance measures are not applicable. 
 
In order to make EED scale well when applied to time series, we can find a symbolic 
representation method that can allow high compression of the time series, with 
acceptable accuracy.   

6   Experiments 

We conducted two main experiments of times series classification task. As mentioned 
earlier, this new distance metric is applied to data structures which are represented 
symbolically, whether naturally or by using a certain technique of symbolic 
representation. We believe that bioinformatics or textual data bases are the ideal data 
structures to apply the EED to. However, and since our field of research is time series, 
we had to test EED on time series data bases. 
 
Time series are not naturally represented symbolically. But more and more 
researchers are interested in symbolic representation of time series. A few methods 
have been proposed (see the introduction). Some of these methods are ad hoc, others 
are more sophisticated. 
 

One of the most famous methods in the literature is SAX [7]. SAX, in simple words, 
consists of three steps; 
 
1-Reducing the dimensionality of the time series by using PAA (After normalizing the 
times series) 
 
2-Discretization the PAA to get a discrete representation of the times series(Using 
breakpoints)  
 
3-Using a distance measure defined by the authors  
 
To test EED we proceeded in the same way for steps 1 and 2 above to get a symbolic 
representation of time series, then in step 3 we compared EED with ED and the 
distance measure defined in SAX. On the resulting strings 
 
In our experiments we tested our method on all the databases available at UCR Time 
Series Data Mining Archive [19] (except Plane and Car, since these two databases 
were not available). 
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The tests were aimed at comparing three main methods; the edit distance (ED) (we 
tested it for comparison reasons), our method; the extended edit distance (EED), and 
SAX . It’s very important to point out that ED is mainly a method that is applied to 
textual data, what we did to test it on time series was to use the symbolic 
representation suggested in SAX, then we applied the ED to these symbolic 
representation obtained (the same thing we did to test EED).  Anyway, SAX is a 
method that is designed directly to be used on time series, so it’s a very competitive 
method. 
 

The First Experiment  

In order to make a fair comparison, we used the same compression ratio that was used 
to test SAX (i.e. 1:4) We also used the same range of alphabet size (3-10) 
 
Both ED and SAX have one parameter which is the alphabet size, EED has one extra 
parameter, which is the frequency factor λ (of course the three methods have another 
parameter which is the compression ratio) 
 
For each dataset we test the parameters on the training set to get the optimal values of 
these parameters; the values that minimize the error. Then we use these optimal 
values on the testing set.  
 
As for parameter λ  , for simplicity, we optimized it in the interval [ ]1,0 only, except in 
the cases where there was strong evidence that the error was decreasing monotonously 
as λ  increased 
 
When comparing a method with another one there are two statistical parameters to be 
used, one of them is the mean error. The smaller the mean error is the better the 
method is. Another 
statistical parameter is the standard deviation (STD). The importance of this latter is 
to show how universal the method is (i.e. can be applied to as many databases as 
possible). Here also, the smaller the STD is the better the method is.  
 
After testing the parameters on the training sets of all the databases we got the 
following results (Table. 1) (There’s no training for the Euclidean distance). The best 
method is highlighted 
 

Table 1 

 
 The Edit Distance 

(ED) 
The Extended Edit 

Distance (EED) 
 

SAX 

Synthetic Control 0.0367 0.0367 0.0267 

Gun-Point 
 

0.02 0.02 0.08 
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CBF 0.033 0 0.167 

Face (all) 0.157 0.157 0.118 

OSULeaf 0.2 0.195 0.365 

SwedishLeaf 0.34 0.316 0.486 

50words 0.253 0.253 0.349 

Trace 0.05 0.01 0.31 

Two_Patterns 0.011 0.011 0.075 

Wafer  0.002 0.002 0.005 

Face (four) 0 0 0.208 

Lighting-2 0.15 0.117 0.267 

Lighting-7 0.4 0.371 0.371 

ECG200 0.15 0.13 0.14 

Adiac 0.687 0.674 0.918 

Yoga 0.193 0.193 0.24 

Fish 0.194 0.194 0.509 

Beef 0.533 0.433 0.467 

Coffee 0 0 0.5 

OliveOil 0.333 0.333 0.833 

MEAN 0.195 0.181 0.322 

STD 0.193 0.183 0.248 

 
 

Then we used the optimal parameters for each dataset and for each method to apply 
them to the testing set and we got the following results (Table. 2);    
 

Table 2 

 

 1-NN 
Euclidean 
Distance 

The Edit 
Distance 

(ED) 

The Extended 
Edit Distance 

(EED) 

 
SAX 

 
Synthetic 
Control 

 
0.12 

 
0.037 
α* =7 

 
0.037 

α =7, λ=0 

 
0.033 
α =10 
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Gun-Point 

 

 
0.087 

 
0.073 
α =4 

 
0.06 

α =4, λ =0.25 

 
0.233 
α =10 

 
CBF 

 
0.148 

 
0.029 
α =10 

 
0.026 

α =3, λ =0.75 

 
0.104 
α =10 

 
Face (all) 

 
0.286 

 
0.324 
α =7 

 
0.324 

α 7=, λ =0 

 
0.319 
α =10 

 
OSULeaf 

 
0.483 

 
0.318 
α =5 

 
0.293 

α =5, λ =0.75 

 
0.475 
α =9 

 
SwedishLeaf 

 
0.213 

 
0.344 
α =7 

 
0.365 

α =7, λ =0.25 

 
0.490 
α =10 

 
50words 

 
0.369 

 
0.266 
α =7 

 
0.266 

α =7, λ =0 

 
0.327 
α =9 

 
Trace 

 
0.24 

 
0.11 
α =10 

 
0.07 

α =6, λ ≥1.25 

 
0.42 
α =10 

 
Two_Patterns 

 
0.09 

 
0.015 
α =3 

 
0.015 

α =3, λ =0 

 
0.081 
α =10 

 
Wafer 

 
0.005 

 
0.008 
α =4 

 
0.008 

α =4, λ =0 

 
0.004 
α =6, 9 

 
Face (four) 

 
0.216 

 
0.045 
α =5 

 
0.045 

α =5, λ =0, 

 
0.239 
α =3 

 
Lighting-2 

 
0.246 

 
0.230 
α =10 

 
0.230 

α =7, λ = 1.75 

 
0.213 
α =6 

 
Lighting-7 

 
0.425 

 
0.247 
α =10 

 
0.26 

α =4, λ =0.75 

 
0.493 
α =7 

 
ECG200 

 
0.12 

 
0.16 
α =6 

 
0.19 

α =5, λ =0.25 

 
0.09 
α =10 

 
Adiac 

 
0.389 

 
0.701 
α =7 

 
0.642 

α =9, λ =0.5 

 
0.903 
α =10 

 
Yoga 

 
0.170 

 
0.155 
α =7 

 
0.155 

α =7, λ =0 

 
0.199 
α =10 
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Fish 

 
0.217 

 
0.149 
α =10 

 
0.149 

α =10, λ =0 

 
0.514 
α =10 

 
Beef 

 
0.467 

 
0.467 
α =4 

 
0.4 

α =4, λ =0.75 

 
0.533 
α =10 

 
Coffee 

 
0.25 

 
0.107 
α =8 

 
0.107 

α =8, λ =0 

 
0.464 

for all α 
 

OliveOil 
 

0.133 
 

0.467 
α =9 

 
0.4 

α =9, λ ≥ 0.75 

 
0.833 

for all α 
 

MEAN 
 

0.234 
 

0.213 
 

0.202 
 

0.348 

 
STD 

 
0.134 

 
0.183 

 
0.168 

 
0.247 

 
*: α is the alphabet size 
 
The results obtained show that the average error is the smallest for EED, it’s even 
smaller than that of the Euclidean distance. They also show that of all the three tested 
methods (ED,EED, and SAX) EED has the minimum standard deviation, which 
means that EED is the most universal one of the three tested methods. 
 
It’s worth mentioning for the Euclidian distance, there is no compression of 
information and in average it gives better results than symbolic compressed distances.  

The Second Experiment: 

In order to study the impact of using a different range of alphabet size, we chose, of 
the above datasets, those with a relatively large error. Our criterion was to choose the 
datasets were the error was large for at least two methods (this way we wouldn’t be 
biasing any of the three methods). Our reference was the error of the Euclidean 
distance of that dataset. So, in order to see if the error will decrease when choosing a 
different alphabet range, we chose the datasets were the error was greater or equal to 
the error of the Euclidean distance for at least two of the three methods. So the 
datasets chosen are; FaceAll, SwedishLeaf, wafer, ECG200, Adiac, Beef, OliveOil (7 
datasets) 
 
It’s important to mention here that even though the optimization process on the 
training set is actually a generalization of the optimization process of the first 
experiment (where the alphabet size was between 3 and 10), this second experiment is 
completely independent on the first one, since the parameters that optimize the 
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training set of a certain dataset don’t necessarily give the smallest error for the testing 
set. In fact, the error may even increase when using a wider range of alphabet size. 
 
In order to study the impact of using a wider range of alphabet size, we calculate, on 
the train data, the mean and standard deviation of the error for the datasets in 
question, for an alphabet size varying in [3, 10 ] (Table. 3)  

 
Table 3 

 
 1-NN 

Euclidean 
Distance 

The Edit 
Distance 

(ED) 

The Extended 
Edit Distance 

(EED) 

 
SAX 

 
Face (all) 

 
0.286 

 
0.324 
α =7 

 
0.324 

α 7=, λ =0 

 
0.319 
α =10 

 
SwedishLeaf 

 
0.213 

 
0.344 
α =7 

 
0.365 

α =7, λ =0.25 

 
0.490 
α =10 

 
Wafer 

 
0.005 

 
0.008 
α =4 

 
0.008 

α =4, λ =0 

 
0.004 
α =6, 9 

 
ECG200 

 
0.12 

 
0.16 
α =6 

 
0.19 

α =5, λ =0.25 

 
0.09 
α =10 

 
Adiac 

 
0.389 

 
0.701 
α =7 

 
0.642 

α =9, λ =0.5 

 
0.903 
α =10 

 
Beef 

 
0.467 

 
0.467 
α =4 

 
0.4 

α =4, λ =0.75 

 
0.533 
α =10 

 
OliveOil 

 
0.133 

 
0.467 
α =9 

 
0.4 

α =9, λ ≥ 0.75 

 
0.833 

for all α 
 

MEAN 
 

0.230 
 

0.353 
 

0.333 
 

0.453 

 
STD 

 
0.162 

 
0.225 

 
0.197 

 
0.343 

 
Now, in order to study the error for the new range, we proceed in the same way we 
did for the first experiment, that is; we optimize the parameters on the training sets for 
the datasets in question, but this time for alphabet size that varies between 3 and 20, 
then we use these parameters on the testing sets of these databases, we get the 
following results (Table. 4)  
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Table 4 

 
 1-NN 

Euclidean 
Distance 

The Edit 
Distance 

(ED) 

The Extended 
Edit Distance 

(EED) 

 
SAX 

 
Face (all) 

 
0.286 

 
0.324 
α =7 

 
0.324 

α =7, λ =0 

 
0.305 
α =19 

 
SwedishLeaf 

 
0.213 

 
0.344 
α =7 

 
0.365 

α =7, λ =0.25 

 
0.253 
α =20 

 
Wafer 

 
0.005 

 
0.008 
α =4 

 
0.008 

α =4, λ =0 

 
0.004 
α =19 

 
ECG200 

 
0.12 

 
0.23 
α =13 

 
0.19 

α =5, λ =0.25 

 
0.13 
α =16 

 
Adiac 

 
0.389 

 
0.555 
α =18 

 
0.524 

α =19, λ =1 

 
0.867 
α =18 

 
Beef 

 
0.467 

 
0.467 
α =17 

 
0.4 

α =4, λ =0.75 

 
0.433 
α =20 

 
OliveOil 

 
0.133 

 
0.333 
α =16 

 
0.333 

α =16, λ=0, 

 
0.833 

for all α 
 

MEAN 
 

0.230 
 

0.323 
 

0.306 
 

0.404 

 
STD 

 
0.162 

 
0.175 

 
0.165 

 
0.333 

 
 

 
This table shows that the average error has decreased when using an alphabet size 
between 3 and 20, so has the standard deviation, and for all the three methods. We 
also see that EED gave the smallest average error and standard deviation.  
 
We got similar results when we tested some other datasets randomly. For example, 
when we tested Coffee on an alphabet size of [3, 20] we got error rate 0.071 for ED 
(alphabet size=12,13) , error rate 0 for EED (alphabet size=14, λ=0.25), and error rate 
0.143 for SAX   (alphabet size=20)  
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We also tested other compression ratios on randomly chosen data sets (on alphabet 
size  
[3, 10]) , and we got similar results. Nevertheless, we didn’t report these results, 
because  these latter tests were not extensive. 

7   Discussion 

1- In the experiments we conducted we had to use time series of equal lengths for 
comparison reasons only, since SAX can be applied only to strings of equal lengths. 
But EED (and ED, too) can be applied to strings of different lengths. 
 
2- It’s worth mentioning that we didn’t test alphabet size=2 because SAX is not 
applicable in this case (we can show that when alphabet size =2 then the distance 
between any two time series will be zero, and for any). Yet, we think it could be 
important for a method to be applicable for an alphabet size= 2, since this particular 
number is of interest in many applications. 
 
3-We didn’t report timing results, since the codes we used were not optimized for 
speed. But while testing the datasets, we noticed that SAX was faster than the other 
two methods. 
 
4-Our method is not restricted to time series, and can be applied to other data types.  
 
5- Our method, unlike SAX, is metric. However, the complexity of our method is  

)( 2nO while that of SAX is )(nO  

 
6-The main property of the EED over ED is that it is more precise, since it considers a 
global level of similarity by using the additional term: 
 

),(min2 )()( T
i

S
i

i

ffTS ∑−+  

This term decreases as the two strings have more and more general common features. 
This is very similar to the methods that use a similarity measure that takes into 
account not only the original data, but also different resolutions of it, all together 
represented by one vector. 
7-With some datasets, SAX gave the very same error whatever the alphabet size was. 
Actually, that error was the same even when we tried a different compression ratio. 
 
8-In order to represent the time series symbolically, we had to use a technique 
prepared for SAX, since this is the most famous symbolic representation technique of 
time series known in the literature. Nevertheless, a representation technique prepared 
mainly for EED may even give better results.  
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8   Future Work 

The main advantage of the EED over the two other methods is that it can be extended 
to take into account not only the frequency of characters, but also the frequency of 
segments, so it can be applied to different resolutions, which is something we’re 
working on.  
 
Another possible future work is using the EED in anomaly detection in time series 
data mining, by representing the motif symbolically and applying the EED by taking 
the frequency of the motif rather than the frequency of characters 

9  Conclusion 

In this paper we presented a new distance metric applied to strings. The main feature 
of this distance is that it considers the frequency of characters, which is something 
other distance measures don’t consider.  
 
We tested this distance metric on a time series classification task, and we compared it 
to two other distances , and we showed that our distance gave better results, even 
when compared to a method (SAX) that is designed mainly for symbolically 
represented time series..    
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Appendix A 

 

Let A  be a finite alphabet, and let )(S
if be the frequency of the character i  in S , 

where S  is a strings represented by A.  
 
 
Let  
 

∑−+=
i

T
i

S
i ffTSTSD ),min(2),( )()(

 
Then 321 ,, SSS∀  we have;  

 

),(),(),( 233121 SSDSSDSSD +≤  (1) 

 
 
for all n , where n is the number of characters used to represent the strings 
 
N.B. In the case when a character does not exist in one or more of the strings, we can 
assume that this (these) string(s) has (have) 0 frequency of the missing character.   
 
Proof 

 
The will prove the above lemma by induction.  
 
i-  1=n  
 
This is a trivial case. Given three strings; 321 ,, SSS∀  represented by the same 

character a   

Let aaa
SSS 321 ,,  be the frequency of a  in 321 ,, SSS∀ , respectively. 

 
We have six configurations of this case; 
 

1- aaa
SSS 321 ≤≤  

2- aaa
SSS 231 ≤≤  

3- aaa
SSS 312 ≤≤  

4- aaa
SSS 132 ≤≤  

5- aaa
SSS 213 ≤≤  

6- aaa
SSS 123 ≤≤  
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We will prove that relation (1) holds in these six configurations. 
 

1- aaa
SSS 321 ≤≤  

 
In this case we have; 
 

aaa
SSS 121 ),min( =  

aaa
SSS 131 ),min( =  

aaa
SSS 232 ),min( =  

 

),(),(),( 2331

?

21 SSDSSDSSD +≤        
 
By substituting the above values in this last relation we get; 
 

aaaaaaaaa
SSSSSSSSS 223131

?

121 222 −++−+≤−+  

aa
SS 23

?
220 −≤  

 
This is valid according to the stipulation of this configuration.  
 

2- aaa
SSS 231 ≤≤  

 
In this case we have; 
 

aaa
SSS 121 ),min( =  

aaa
SSS 131 ),min( =  

aaa
SSS 332 ),min( =  

 

),(),(),( 2331

?

21 SSDSSDSSD +≤        
 
By substituting the above values in this last relation we get; 
 

aaaaaaaaa
SSSSSSSSS 323131

?

121 222 −++−+≤−+  

00
?
≤  

 
valid 
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3- aaa
SSS 312 ≤≤  

 
In this case we have; 
 

aaa
SSS 221 ),min( =  

aaa
SSS 131 ),min( =  

aaa
SSS 232 ),min( =  

),(),(),( 2331

?

21 SSDSSDSSD +≤        
 
By substituting the above values in this last relation we get; 
 

aaaaaaaaa
SSSSSSSSS 223131

?

221 222 −++−+≤−+  
 

aa
SS 13

?
220 −≤  

 
valid 
 

4- aaa
SSS 132 ≤≤  

 
In this case we have; 
 

aaa
SSS 221 ),min( =  

aaa
SSS 331 ),min( =  

aaa
SSS 232 ),min( =  

),(),(),( 2331

?

21 SSDSSDSSD +≤        
 
By substituting the above values in this last relation we get; 
 

aaaaaaaaa
SSSSSSSSS 223331

?

221 222 −++−+≤−+  
 

00
?
≤  

 
valid 
 

5- aaa
SSS 213 ≤≤  

In this case we have; 
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aaa

SSS 121 ),min( =  
aaa

SSS 331 ),min( =  
aaa

SSS 332 ),min( =  

),(),(),( 2331

?

21 SSDSSDSSD +≤        
 
By substituting the above values in this last relation we get; 
 

aaaaaaaaa
SSSSSSSSS 323331

?

121 222 −++−+≤−+  
 

aa
SS 31

?
220 −≤  

 
valid 
 

6- aaa
SSS 123 ≤≤  

 
In this case we have; 
 

aaa
SSS 221 ),min( =  

aaa
SSS 331 ),min( =  

aaa
SSS 332 ),min( =  

),(),(),( 2331

?

21 SSDSSDSSD +≤        
 
By substituting the above values in this last relation we get; 
 

aaaaaaaaa
SSSSSSSSS 323331

?

221 222 −++−+≤−+  
 

aa
SS 32

?
220 −≤  

 
valid 
 
From 1-6 we conclude that the lemma is valid for 1=n  
 
ii- Let’s assume that the lemma holds for 1−n , where 2≥n and we will prove it for 
n  
 
Since the lemma holds for 1−n then ; 
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),(),(),( 233121 SSDSSDSSD +≤  (2) 

 
where 
 

∑−+=
−

=

1

1

)2()1(
2121 ),min(2),(

n

i

S
i

S
i ffSSSSD

 

∑−+=
−

=

1

1

)3()1(
3131 ),min(2),(

n

i

S
i

S
i ffSSSSD

 

∑−+=
−

=

1

1

)2()3(
2323 ),min(2),(

n

i

S
i

S
i ffSSSSD

 
 
When a new character is added the strings represented by 1−n characters are 
represented by n   
 

Let the frequency of the newly introduced character be )3()2()1( ,, S
n

S
n

S
n fff in 

321 ,, SSS∀  respectively. 

 
We have six configurations of the newly added character; 
 

 7- )3()2()1( S
n

S
n

S
n fff ≤≤  

 8- )2()3()1( S
n

S
n

S
n fff ≤≤  

 9- )3()1()2( S
n

S
n

S
n fff ≤≤  

10- )1()3()2( S
n

S
n

S
n fff ≤≤  

11- )2()1()3( S
n

S
n

S
n fff ≤≤  

12- )1()2()3( S
n

S
n

S
n fff ≤≤  

 
We will prove that relation (1) holds in these six configurations. 
 

7- )3()2()1( S
n

S
n

S
n fff ≤≤  

 
In this case we have; 
 

)1()2()1( ),min( S
n

S
n

S
n fff =  

)1()3()1( ),min( S
n

S
n

S
n fff =  

)2()3()2( ),min( S
n

S
n

S
n fff =  
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),(),(),( 2331

?

21 SSDSSDSSD +≤  
⇒  
      

),min(2),min(2

),min(2),min(2

),min(2),min(2

)2()3()2()3()2(1

1

)3(
23

)3()1()3()1()3(1

1

)1(
31

?)2()1()2()1()2(1

1

)1(
21

S
n

S
n

S
n

S
n

S
i

n

i

S
i

S
n

S
n

S
n

S
n

S
i

n

i

S
i

S
n

S
n

S
n

S
n

S
i

n

i

S
i

ffffffSS

ffffffSS

ffffffSS

−++∑−+

+−++∑−+

≤−++∑−+

−

=

−

=

−

=

 
⇒  
 

)2()2()3(1

1

)2()3(
23

)1()3()1(1

1

)3()1(
31

?
)1()2()1(1

1

)2()1(
21

2),min(2

2),min(2

2),min(2

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

n

i

S
i

S
i

fffffSS

fffffSS

fffffSS

−++∑−+

−++∑−+

≤−++∑−+

−

=

−

=

−

=

 
 
⇒  
 

)2()3(1

1

)2()3(
23

1

1

)3()1(
31

?1

1

)2()1(
21

22),min(2

),min(2

),min(2

S
n

S
n

n

i

S
i

S
i

n

i

S
i

S
i

n

i

S
i

S
i

ffffSS

ffSS

ffSS

−+∑−+

∑−+

≤∑−+

−

=

−

=

−

=

 
 
Taking (2) into account , we get; 
 

)2()3(
?

220 S
n

S
n ff −≤  

 
which is valid according to (7) 
 

8- )2()3()1( S
n

S
n

S
n fff ≤≤  

 
In this case we have 
 

)1()2()1( ),min( S
n

S
n

S
n fff =  
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)1()3()1( ),min( S
n

S
n

S
n fff =  

)3()3()2( ),min( S
n

S
n

S
n fff =  

 

),(),(),( 2331

?

21 SSDSSDSSD +≤  
⇒  
    

),min(2),min(2

),min(2),min(2

),min(2),min(2

)2()3()2()3()2(1

1

)3(
23

)3()1()3()1()3(1

1

)1(
31

?)2()1()2()1()2(1

1

)1(
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S
n

S
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S
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S
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)3()2()3(1

1

)2()3(
23

)1()3()1(1

1
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?
)1()2()1(1

1

)2()1(
21

2),min(2

2),min(2
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⇒  
 

∑−+

∑−+

≤∑−+

−

=

−

=

−

=

1

1

)2()3(
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1

)3()1(
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Which is true according to (2)  
 

9- )3()1()2( S
n

S
n

S
n fff ≤≤  

 
In this case we have 
 

)2()2()1( ),min( S
n

S
n

S
n fff =  

)1()3()1( ),min( S
n

S
n

S
n fff =  
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Taking (2) into account , we get; 
 

)1()3(?
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n
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which is valid according to (9) 
 

10- )1()3()2( S
n

S
n

S
n fff ≤≤  

 
In this case we have 
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Which is true according to (2)  
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In this case we have 
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Taking (2) into account , we get; 
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In this case we have 
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which is true according to (12) 
 
From 7-12 we conclude that the lemma is valid for n  
 
From i and ii, the lemma holds  


