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Spetral Similarity Metris For Sound Soure FormationBased on the Common Variation CueMathieu Lagrange · Martin Raspaud
Reeived: date / Aepted: dateAbstrat Sene analysis is a relevant way of gathering information about the strutureof an audio stream. For ontent extration purposes, it also provides prior knowledgethat an be taken into aount in order to provide more robust results for standardlassi�ation approahes.In order to perform suh sene analysis, we believe that the notion of temporality isimportant. Consequently, we study in this paper a new way of modeling the evolutionover time of the frequeny and amplitude parameters of spetral omponents. Weevaluate its bene�ts by onsidering its ability to automatially gather the omponentsof the same sound soure. The evaluation of the proposed metri shows that it ahievesgood performane and takes better aount of miro-modulations.Keywords auditory sene analysis, mid-level representation, lustering, ommonvariation ue1 IntrodutionExtrating ontent from polyphoni audio suh as musial streams appears to bebounded to moderate performane if the stream is onsidered 'blindly', i.e. proessedwithout any prior knowledge of the struture of the stream [2℄. As sene analysis is arelevant way of gathering informations about the struture of an audio stream, per-forming suh operation prior extrating ontent is a way to address this issue.On the high end, one an onsider a mid-level representation of the polyphony [13,5℄ desribing polyphoni sounds as a set of oherent spetral regions, where eah setan be onsidered as monophoni. In this ase, one an fous the ontent extrationM. LagrangeTeleom ParisTeh 46, rue Barrault 75634 PARIS Cedex 13 - FRANCETel.: +33 (0)1 45 81 73 24 Fax: +33 (0)1 45 81 71 44E-mail: lagrange�teleom-paristeh.frM. RaspaudLinköping University Bredgatan 33 SE-60174 Norrköping - SWEDENTel.: +46 (0)11-36 34 53 Fax: +46 (0)11-36 32 70E-mail: Martin.Raspaud�itn.liu.se



2proess to a given element of the sene [28℄. On a lower end, one an onsider sometime segmentation of the audio stream where setions that have similar propertiesare identi�ed and/or lustered. Based on this representation, the temporal priors areonsidered to integrate the indexing deision done at eah analysis frame to obtainmore robust lassi�ation results [21℄.In order to extrat suh representation or segmentation, many ues an be onsid-ered [6℄. Timbre is one of them. The desription of the timbre of monophoni soundshas been widely studied [31℄ and many desriptors have been proposed [18℄. These de-sriptors or features are mainly based on the temporal or spetral observations of thesounds sine �Timbre depends primarily upon the spetrum of the stimulus, but it alsodepends on the waveform, the sound pressure, the frequeny loation, of the spetrum,and the temporal harateristis of the stimulus.�, as stated in the ANSI de�nition oftimbre [19℄. Unfortunately, most of these desriptors an not be diretly extrated frompolyphoni reordings.If the sounds produed by the instruments an be onsidered as pseudo-periodi, amonophoni or polyphoni signal may be deomposed into sinusoidal omponents withparameters that evolve slowly with time, the partials. This restrition is not too strongsine most lassial instruments �t in this ategory, from strings to brass instruments.In this ase, several riteria or psyhoaoustial 'ues' proposed in the Auditory SeneAnalysis (ASA) literature [6℄ may then be onsidered for an automati evaluation of thetimbre of eah sounds soures [14℄. In partiular, it is shown in the work of MAdams[32℄ that the orrelated evolution of the parameters of the partials of a given musialor voal tone is an important ue for the pereption of timbre.Consequently, in order to ensure the relevane of the approah proposed in thispaper, the analysed signals have to be pseudo-periodi in order to be suitable for thesinusoidal model that is the front-end of our method. The signals an be inharmoni. Infat, that is the main motivation of the use of the ommon variation ue to omplementthe harmoniity one. They should be best monophoni but in ase of weak polyphonies,i.e. no unison, some partials are not overlapping and an be assigned to only one ofthe two di�erent soures ative at the same time.The ommon variation ue has been used for soure separation [9,12,46℄ i.e. todetermine whih partials have been produed simultaneously by the same ProduingSound System (PSS) and therefore automatially extrat a high level desription ofpolyphoni sound. This ue is also a musial parameter that desribes timbre andtherefore also have potential for Musial Information Retrieval (MIR) appliations suhas musial instrument, instrument lass identi�ation, and instrumentalist or loutorreognition.These appliations both rely on the de�nition of a metri to evaluate how dissimilartwo partials are, aording to the ommon variation of their parameters. We will showin this paper that onsidering the spetrum of these variations allows us to proposea robust dissimilarity metri. The paper is organized as follows: after a presentationof the sinusoidal model in Setion 2, existing metris proposed in the literature arereviewed in Setion 3 and the requisites of a relevant metri are also detailed.The proposed metri is next introdued in Setion 4. Motivated by the propertiesof the evolutions of the frequenies of the partials, a �rst metri is proposed. We nextshow that this metri an also be suessfully used while onsidering the evolutions ofthe amplitudes as soon as the variation of the envelope is removed. The de�nition of ametri that jointly onsiders these two ues is next studied.



3In order to ompare existing metris to the ones introdued in this artile, we usethe evaluation methodology presented in Setion 5, where the database and the riteriathat evaluate the ability of the tested metri to disriminate partials produed fromdi�erent PSS. The results of this evaluation are presented in Setion 6.The timbral disrimination apabilities of the proposed metri, i.e. its ability to dif-ferentiate partials produed by not only di�erent PSS but also di�erent instruments ordi�erent lasses of intruments are studied in Setion 7 and some potential appliationsare desribed in Setion 8.2 High-Level Representation of Polyphoni SoundsMost of the desriptors used in MIR appliations onsider temporal features suh asmean zero-rossing rate or spetral ones suh as Mel-Frequeny Cepstrum Coe�ients(MFCC), see the work of P. Herrera et al. [18℄ for a deeper review. These desrip-tors are generally extrated on a frame basis and the frames are usually onsideredindependently, loosing most of the temporal information.For various appliations, one needs a representation of polyphoni sounds wherethe timbral information as well as their evolutions with respet to time of eah soundsoures an be onsidered. In this setion, we disuss the fat that the well-knownsinusoidal model an be a basis for suh a representation.2.1 Sinusoidal ModelThe sinusoidal model represents pseudo-periodi sounds as sums of sinusoids � so-alled partials � ontrolled by parameters that evolve slowly with time [33,43℄. Moreformally put, the audio signal s an be alulated from the ontrolling parameters usingEquations 1 and 2, where N is the number of partials and the funtions fp, ap, and φpare the instantaneous frequeny, amplitude, and phase of the p-th partial, respetively.The N pairs (fp, ap) are the parameters of the additive model and represent points inthe frequeny-amplitude plane at time t.
s(t) =

NX

p=1

ap(t) cos(φp(t)) (1)
φp(t) = φp(0) + 2π

Z t

0

fp(u) du (2)This an also be written from the set point of view:
Pk(m) = {Fk(m),Ak(m), Φk(m)} (3)where Fk(m), Ak(m), and Φk(m) are respetively the frequeny, amplitude, and phaseof the partial Pk at time index m. These parameters are valid for all m ∈ [bk, · · · , bk +

lk − 1], where the bk and lk are respetively the starting index and the length of thepartial.On a frame basis, the instantaneous frequeny, amplitude, and phase of eah par-tials an be estimated using Fourier based approahes like the paraboli methods [1℄the phase-based methods [25℄ and the reassignment one proposed in [3℄. In order to



4go beyond the resolution limitation of the Fourier transform, one an also onsiderparametri methods like the ESPRIT algorithm [29,4℄ or maximum likelihood ones,like the mathing pursuit [8,10℄. Those estimate an be omplemented with the esti-mation of the slope of the frequeny and amplitude [1,42℄ that ould be onsidered atthe traking phase to obtain a more preise modeling of the long term evolution of thefrequeny and amplitude parameters through time.The partials an be extrated from the parameters estimated on a frame basis usingpartial traking algorithms [33,43,44,27,40,35℄. Polyphoni sounds an be onsideredwith dediated traking algorithms [11,26℄. However, in order to avoid problems dueto strong polyphony [13℄, we only onsider in this paper mixtures of entities extratedfrom monophoni signals.2.2 Aoustial EntitiesThese sinusoidal omponents are alled partials beause they are only a part of a morepereptively oherent entity that may be alled an aoustial entity.This an be written as:
S =

N[

n=1

En (4)with S being the mid-level representation of the sound, E being an aoustial entityand N the total number of entities in the sound. Hene eah entity is made of a groupof partials:
En =

Mn[

k=1

P
n
k (5)where Mn is the total number of partials Pn

k in the entity.To extrat these entities from a sinusoidal representation of a sound, similaritiesbetween partials should be onsidered in order to gather the ones belonging to the sameaoustial entity. From the pereptual point of view, some partials belong to the sameentity if they are pereived by the human auditory system as a unique sound. Thereare several ues that lead to this pereptual fusion: the ommon onset, the harmonirelation of the frequenies, the orrelated evolutions of the parameters and the spatialloation [6℄.The earliest attempts at aoustial entity identi�ation and separation onsiderharmoniity as the sole ue for group formation. Some rely on a prior detetion of thefundamental frequeny [17,15℄ and others onsider only the harmoni relation of thefrequenies of the partials [23,46,41℄. Yet, many musial instruments are not perfetlyharmoni.In ontrast, the ue that onsider the orrelated evolutions of the parameters ofthe partials is generi. Also, numerous psyho aoustial studies showed that the vari-ations or the miro-modulations are important for pereption. Bregman writes: �Small�utuations in frequeny our naturally in the human voie and in musial instru-ments. The �utuations are not often very large, ranging from less than 1 perent fora larinet tone to about 1 perent for a voie trying to hold a steady pith, with largerexursions of as muh than as 20 perent for the vibrato of the singer. Even the smalleramounts of frequeny �utuation an have potent e�ets on the pereptual groupingof the omponents harmonis.� Aording to the work of MAdams [32℄, a group of



5
B

A

C

E

D

Time

Fr
eq

ue
nc

y

Fig. 1 Representation of two �tive sounds in the time-frequeny domain. Partials A, B, andC (learly orrelated in modulation and starting and ending times, that is ommon variation)represent the sinusoidal omponents of the �rst sound, while D and E represent the sinusoidalomponents of the seond sound.partials is pereived as a unique aoustial entity only if these variations are orrelated.Therefore, the orrelated evolutions of the parameters of the partials is a generi uesine it an be observed with any vibrating instruments. As an example, see Figure 1.In order to de�ne a dissimilarity metri that onsiders the ommon variation ue, wewill study in the next setion the physial properties of the evolutions of the frequenyand amplitude parameters of the partials.3 The Common Variation CueIn order to de�ne a dissimilarity metri that onsiders the ommon variation ue, wehave to study the physial properties of the evolutions of the frequeny and amplitudeparameters of the partials.Let us onsider a harmoni tone modulated by a vibrato of given depth and rate.All the harmonis are modulated at the same rate and phase but their respetive depthis saled by a fator equal to their harmoni rank (see Figure 2(a)). It is then importantto onsider a metri whih is sale-invariant.Cooke uses a distane [9℄ equivalent to the osine dissimilarity dc, also known asinterorrelation:
dc(X1, X2) = 1 −

c(X1, X2)p
c(X1, X1)

p
c(X2, X2)

(6)
c(X1, X2) =

NX

i=1

X1(i)X2(i) (7)where X1 and X2 are real vetors of size N . This dissimilarity is sale-invariant.T. Virtanen et al. proposed (in [46℄) to use the mean-squared error between thevetors �rst normalized by their average values:
dv(X1, X2) =

1

N

NX

i=1

„
X1(i)

X̄1

−
X2(i)

X̄2

«2 (8)where X1 and X2 are vetors of size N and X̄ denotes the mean of X. This normaliza-tion is partiularly relevant while onsidering the frequenies sine the ratio between



6the mean frequeny of a given harmoni and the one of the fundamental is equal to itsharmoni rank.It is proposed in [24℄ to onsider the Auto-Regressive (AR) model as a sale-invariant metri that onsiders only the preditable part of the evolutions of the pa-rameters:
Xl(n) ≈

nX

i=1

kl(i)Xl(n − i) (9)where the kl(i) are the AR oe�ients. Sine the diret omparison of the AR oe�-ients omputed from the two vetors X1 and X2 is not relevant, the spetrum of theseoe�ients is ompared as proposed by Itakura [20℄:
dAR(X1, X2) = log

Z π

−π

|K1(ω)|

|K2(ω)|

dω

2π
(10)where

Kl(ω) = 1 +
nX

i=1

Kl(i)e
−jiω (11)When onsidering the amplitudes of the partials, a sale-invariant metri is alsoimportant. In this ontext, the normalization proposed by T.Virtanen is no longermotivated sine the relative amplitudes of the harmonis depend on the envelope ofthe sound. For example, on Figure 2(b), the topmost urve (with small modulations)represents the amplitudes of the fundamental partial, while the seond to the top urvewith broad osillation represents the �rst harmoni.Moreover the envelope is globally dereasing as the frequeny grows, but it anappear that the amplitude of the envelope is also asending due to the spei� shape ofthe envelope around formants. Therefore, when the frequeny of a partial is modulated,the amplitude may be modulated with a phase shift, see the bottom urve of Figure2(b). Therefore, a metri that is phase-invariant should be onsidered.The amplitude evolution of a partial is omposed of a temporal envelope and someperiodi modulations. Sine the envelope of the amplitude of the partials an be verydi�erent from partials to partials of the same entity it may be useful to onsider onlythe periodi modulations while omputing their similarities. The metri introdued inthe next setion will ope with these issues.4 Proposed MetriWe propose to go beyond temporal domain by taking the parameters to the spetraldomain. There was already an attempt at this, using AR models (see equation 10).Sine the Fourier transform is based on the fat that the input signal is periodi, usinga spetrum of the evolution of the partials might show ommon periodiities of thepartials. This will be handy for the modulations of the partials reated by vibratoand tremolo, sine we an assimilate these modulations to sinusoidal ones over a shortperiod of time (see [30℄). It an be also interesting for miro-modulations suh as theones produed by vibrating strings suh as the strings of a piano (see Figure 3). Hene,the spetrum of the evolutions in frequeny and amplitude of the sound are relevantfrom the point of view of the orrelation of evolutions.
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(b) AmplitudesFig. 2 Mean-entered frequenies and amplitudes of some partials of a saxophone tone withvibrato.4.1 Using the Frequenies of the PartialsThe �rst step in the alulation of our new metri is to orrelate the evolutions of thefrequenies of the partials. As we said before, a good desription of these evolutions isgiven by the spetra of these evolutions.The way to ompute the spetra of the frequeny evolutions of the signal from apartial is to take o� the mean value of this frequeny and then ompute the Fouriertransform of the resulting signal. Indeed, in order to have a lean spetrum relevant tothe evolutions, it is neessary to have the evolutions entered around zero.Then, we apply the previously exposed proess to the frequenies of all the partialsfrom whih we want to measure evolution orrelation. One we have these frequeniesexpressed in terms of spetra, the way to ompute the distane between two partialsignals is to interorrelate their spetra (see equation 6). This gives
ds(f1, f2) = dc(|F1|, |F2|) (12)
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Frequency (Hz)Fig. 3 Centered frequenies (top) of a piano note and their orresponding spetra (bottom).Eah urve is shifted for larity sake.
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Fig. 4 Amplitudes of a partial of an Bb Clarinet and its polynomial envelope estimation.where f1 and f2 are the frequeny vetors of two partials P1 and P2 and Fk is theFourier spetrum of fk. Thanks to the absolute value applied to the spetra, thisdistane is phase-invariant.4.2 Using the Amplitudes of the PartialsIn the ase of the amplitudes of the partials, the problem is slightly more ompliated.Indeed, in order to enter the osillating part of the signal around zero subtrating themean will not be su�ient. As presented in other work [38℄, subtrating a polynomialis su�ient to enter the osillations around zero, as we see on Figure 4. The idea
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(b) Corresponding SpetraFig. 5 Amplitudes of three partials of an Bb Clarinet when the polynomial envelope is removed(a), and their orresponding spetra (b). The urves have been shifted for larity sake.behind this polynomial subtration is that the envelope of a sound (seen as attak,deay, sustain and release) an be roughly approximated by a 9th degree polynomial.An example of suh a subtration is shown on Figure 5.This gives us the distane dsp:
dsp(a1, a2) = dc(|fA1|, |fA2|) (13)where fAk is the Fourier spetrum of fak with

fak = ak − Π(ak)where a1 and a2 are the amplitudes of two partials, Π(x) is the envelope polynomialomputed from signal x, using a simple least-squares method [34℄.



104.3 Metri CombinationIn order to exploit both the frequeny and amplitude parameters, we need a way toombine the measures of amplitude and frequeny distanes.T.Virtanen et al. proposed to ombine frequeny and amplitude parameters dis-tanes by means of adding the two distane measures while onsidering an harmoniityfator. In their work [46℄, eah distanes are weighted before performing the addition.For omparison purposes, we onsider the following distane:
dv+v(P1, P2) =

dv(f1, f2) + dv(a1, a2)

2
(14)where fk and ak are respetively the frequenies and amplitude of partials Pk. Sinethe weights are not supplied and no harmoniity information is available it is only anapproximation of the ombination sheme proposed by T. Virtanen.Sine our proposed distanes ds and dsp are normalized, if we want to give the sameweight to the two distanes, we an ombine the frequeny and amplitude distanes byperforming a simple mean. This would then yield :

d+(P1, P2) =
ds(f1, f2) + dsp(a1, a2)

2
(15)In order to take into aount the best result on part of one of the measures, amethod would be to take the minimum of the two distanes:

dm(P1, P2) = min(ds(f1, f2), dsp(a1, a2)) (16)As it will be presented in Setion 6, better results are ahieved when we multiplyamplitude and frequeny parameter distanes. This ombination, however less robustto errors, seems to take better aount of the performane of eah distane measureindependently. In order to keep the metris in the same sale, a square root is appliedto the ombination:
d×(P1, P2) =

q
ds(f1, f2)dsp(a1, a2) (17)5 EvaluationIn this setion, we present the methodology used for evaluating the performane ofthe di�erent metris reviewed in Setion 3 and proposed in Setion 4. The evaluationdatabase is �rst desribed. Next, several riteria are presented, eah one evaluating aspei� property of the evaluated metri.The objetive of the evaluation presented in the remaining of the paper is to studyif the proposed similarity metris are good andidates for implementing a lusteringof the partials of the same aoustial entity. In Setion 7, we extend this study byonsidering the statistial properties of one of the proposed metri while onsideringnot only the entity level but also larger sets suh as all the partials played by a giveninstrument or a lass of instruments.



115.1 DatabaseIn this study, we fous on a subset of musial instruments that produe pseudo-periodisounds and model them as a sum of partials (see Setion 2). The instruments of theIOWA database [16℄ whose instrument hierarhy is plotted in Figure 7, globally �t tothis ondition even though some samples have to be removed. The �pizziato� tones,i.e pluked-string tones with strong attak and weak resonating phase as well as the�pianissimo� tones i.e tones with very low amplitude are disarded.In order to extrat the partials for eah tone, eah �le of the IOWA database is splitinto a series of audio �les, eah ontaining only one tone. The spetral parameters ateah frames are estimated using the phase derivative method studied in [25℄ with thefollowing parameters: the window size is 2048 samples long, the hop size is 512 sampleslong at a sampling rate of 44100 Hz. An implementation of the algorithm proposedby MAuly and Quatieri in [33℄ is used with a frequeny tolerane of 50 Hz. Sine weonsider only the prominent partials of a given tone, only the extrated partials lastingfor at least 2 seonds are retained. For eah entity, only the 20 partials with the highestamplitude are retained.5.2 MethodologyTo ompare the metris proposed in Setion 4 and those reviewed in Setion 3, we usethe following methodology to ompute the three evaluation riteria. For the two entitiesof the onsidered ouple, the median values of the starting/ending time index of thepartials ts and te are omputed. Only the partials existing before and after ts + ǫs and
te − ǫe are kept (see Figure 6). The values ǫs and ǫe are arbitrarily small onstants.Then, the partials of the two entities are gathered. Only the ommon part de�nedas the time interval where all the partials are ative is onsidered to evaluate the testedmetri. For example, the ommon part of the partials represented in Figure 6 is between
cs and ce. Frequeny

Timets tececsFig. 6 Seletion of the ommon parts of the partials of the two aoustial entities. A partialstart is represented with a blak �lled dot and its end with a white �lled dot. Only the partialsexisting before and after ts and te are kept, represented with solid lines. The indexes cs and
ce delimit the ommon part of all the partials.



125.3 Performane CriteriaOne the evaluation database and the evaluation methodology are de�ned, some riteriahave to be de�ned that re�et if, by onsidering the evaluated metri, two partials are�lose� if they atually belong to the same aoustial entity and �far� otherwise.5.3.1 Fisher riterionA relevant dissimilarity metri between two partials is a metri whih is low for partialsof the same entity � the lass from the statistial point of view � and high for partialsthat do not belong to the same entity. The intra-lass dissimilarity should then beminimal and the inter-lass dissimilarity as high as possible. Let U be the set of elementsof ardinal # U and Ci the entity of index i between Nc di�erent entities. An estimationof the relevane of a given dissimilarity d(x, y) for a given aoustial entity is:intra(Ci) =

niX

j=1

niX

k=1

d(Ci(j), Ci(k)) (18)inter(Ci) =

niX

j=1

# U−niX

l=1

d(Ci(j), Ci(l)) (19)
F(Ci) =

inter(Ci)intra(Ci)
(20)where ni is the number of partials in Ci and Ci = U\Ci. The overall quality F(U) isthen de�ned as:

F(U) =

PNc

i=1 inter(Ci)PNc

i=1 intra(Ci)
(21)This last riterion F(U) is loosely based on the �sher disriminant ommonly used instatistial analysis. It provides a �rst evaluation of the disrimination quality of a givenmetri. It an however be notied that this riterion is dependent of the sale of thestudied dissimilarity metri.5.3.2 Density riterionDissimilarity-vetor based lassi�ation involves alulating a dissimilarity metri be-tween pair-wise ombinations of elements and grouping together those for whih thedissimilarity metri is small aording to a given lassi�ation algorithm.The density riterion D intends to evaluate a property of the tested metri thatshould be ful�lled in order to be relevantly used in ombination with ommon lassi�a-tion algorithms suh as hierarhial lustering or K-means. Indeed, many lassi�ationalgorithms iteratively luster partials whih relative distane is the smallest one. Thedensity riterion veri�es that these two partials atually belong to the same aoustialentity.More formally, given a set of elements X, ζ(X) is de�ned as the ratio of ouples

(a, b) so that b is the losest to a and a and b belong to the same aoustial entity.



13Given a funtion named cl de�ned as:l: X → N

a 7→ iwhere i is the index of the lass of a. We get:
D(X) =

# {(a, b) | d(a, b) = minc∈X d(a, c) ∧ l(a) = l(b)}
# X

(22)where X an be either an aoustial entity Ci or the universe U and # x denotes theardinal of x.5.3.3 Classi�ation riterionFor this riterion, the quality of the tested metri is evaluated by onsidering the qualityof a lassi�ation done using the tested metri and a lassi�ation algorithm.We onsider an agglomerative hierarhial lustering (AHC) proedure [22℄. Thisalgorithm produes a series of partitions of the partials: (Pn, Pn−1, . . . , P1).The �rst partition Pn onsists of n singletons and the last partition P1 onsistsof a single lass ontaining all the partials. At eah stage, the method joins togetherthe two luster of partials whih are most similar aording to the hosen dissimilaritymetri. At the �rst stage, of ourse, this ends in joining together the two partials thatare losest together, sine at the initial stage eah luster has only one partial. At eahstage, the dissimilarity between the new luster and the other ones is omputed usingthe method proposed by Ward [47℄.Hierarhial lustering may be represented by a two dimensional diagram knownas dendrogram whih illustrates the fusions made at eah suessive stage of lustering,see Figure 7 where the length of the vertial bar that links two lasses is alulatedaording to the distane between the two joined lusters.The aoustial entities an then be found by �utting� the dendrogram at relevantlevels. Here, for the lassi�ation riterion, the aoustial entities are identi�ed bysimply utting the dendrogram at the highest levels to ahieve the desired number ofentities. If the desired number of entities is 2, only the highest level is ut (see Figure7). The lassi�ation riterion H is then de�ned as the number of partials orretlylassi�ed versus the number of partials lassi�ed:
H(X) =

# {a|a ∈ Ĉi ∧ cl(a) = i}

# X
(23)where Ĉi is an aoustial entity extrated from the hierarhy.6 ResultsEah metris reviewed in Setion 3 and proposed in Setion 4 are now ompared usingthe evaluation methodology desribed in the previous setion. The orrelation metri

dc of Equation 6 and the metri dv proposed by T.Virtanen (see Equation 8) requiresno parameterization.The metri dar onsiders AR vetors of 4 oe�ients omputed with the Burgmethod [7℄. The metri ds of Equation 12 onsiders spetra omputed with the FastFourier Transform (FFT) using vetors windowed by the periodi Hann window. The
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Fig. 7 Dendrogram representing the hierarhy obtained using the AHC algorithm with 6 par-tials. The ut at the highest level of the hierarhy represented by a dot identify two aoustialentities C1 = {p1, p6, p2} and C2 = {p3, p4, p5}.
F D H

dc 2.909 0.938 (0.216) 0.929 (0.137)
dv 1.763 0.929 (0.230) 0.881 (0.172)
dar 1.863 0.712 (0.326) 0.757 (0.166)
ds 3.488 0.944 (0.210) 0.940 (0.130)
dsp 2.909 0.936 (0.219) 0.931 (0.133)Table 1 Three riteria (Fisher, density, hierarhial lassi�ation) results for the �ve metrispresented in this paper, applied on the frequenies of the partials. The density and hierarhialriteria (two last olumns) are presented as sores between 0 and 1. For every riteria, a highervalue means better performane.omputation of the metri dsp (see Equation 13) is similar exept that a 9th orderpolynomial is �rst estimated and removed before the FFT omputation. The results arepresented as mean values for eah riterion, and the braketed values are the standarddeviations (not shown for F sine the value is already normalized).6.1 Frequeny ParameterThe metris between partials based on the frequeny parameter is showed on Table 1.The ds metri we proposed gives the best results for the three riteria. It should benoted that the orrelation metri (dc) gives also good results for the two last riteria.We an also see that removing the polynomial from the frequenies of the partials doesnot ontribute to the quality of the metri sine frequenies of the partials of the soundsin the IOWA database are quasi-stationary. The performane is even worse beause ofthe modulations that the polynomial might take away from the frequeny evolutions.6.2 Amplitude ParameterAs presented on Table 2, the performane of the metris for the amplitude parameterare globally worse than those obtained for the frequeny parameter, lowering from94% to 80% orret lassi�ations at best. However, the polynomial removal slightlyenhanes the results.
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F D H

dc 1.304 0.818 (0.300) 0.786 (0.162)
dv 1.298 0.784 (0.316) 0.773 (0.159)
dar 1.938 0.664 (0.331) 0.733 (0.156)
ds 1.452 0.778 (0.301) 0.781 (0.163)
dsp 1.366 0.796 (0.297) 0.803 (0.171)Table 2 Three riteria (Fisher, density, hierarhial lassi�ation) results for the �ve metrispresented in this paper, applied on the amplitudes of the partials. The density and hierarhialriteria (two last olumns) are presented as sores between 0 and 1. For every riteria, a highervalue means better performane.

F D H
dv+v 1.298 0.784 (0.316) 0.773 (0.159)
d+ 2.040 0.923 (0.230) 0.928 (0.137)
dm 3.303 0.934 (0.216) 0.943 (0.122)
d× 2.702 0.937 (0.217) 0.951 (0.116)Table 3 Three riteria (Fisher, density, hierarhial lassi�ation) results for the four om-bined metris we de�ned. The density and hierarhial riteria (two last olumns) are presentedas sores between 0 and. For every riteria, a higher value means better performane.The metri dc performs best for the density riterion sine it is generally very lowfor very similar partials. The metri dar gives a good result for the Fisher riterionwhile it performs badly for the two other riteria. This metri was tested in anotherwork [24℄, but only on a very limited database. On a larger database suh as one theone of the IOWA, we an see that this metri does not seem very stable on the threeriteria. In this mater, the spetral metris ds and dsp perform best.6.3 CombinationIn order to jointly take into aount the ommon variation ue of the frequeny andamplitude parameters, we onsidered all possible ombinations of preeding metris(dc, dv, dar, ds, dsp) for eah spetral paramter with the three operators we proposed(+, ×, min). Only the most relevant ones are presented on Table 3 for larity sake.The metri dm is given best for the Fisher riterion while the metri d× showsbest results for both density and hierarhial lassi�ation riteria (the lassi�ationperformane is enhaned by 1% over the obtained results with the frequeny ue only).Hene the metri d× will be kept for timbral disrimination presented in the nextSetion.7 Instruments Class disriminationIn the previous setion, we used the evaluation database globally in order to omparethe di�erent metris. We study in this setion a detailed evaluation of the behavior ofthe proposed metri by onsidering several levels in the instruments hierarhy of theIOWA database. Two groups of entities are onsidered at eah experiment to omputethe intra-lass and inter-lass dissimilarities, noted intra and inter in the remainder of



16Instruments intra(a) intra(b) inter(a, b)a b mean σ max mean σ max mean σ minOb Ob 0.018 0.020 0.099 0.018 0.020 0.099 0.101 0.087 0.004Ob Sx 0.018 0.021 0.092 0.062 0.072 0.652 0.314 0.225 0.007Tu To 0.021 0.033 0.334 0.012 0.015 0.131 0.277 0.152 0.011BW WW 0.015 0.022 0.295 0.083 0.102 0.667 0.315 0.184 0.016BS SS 0.127 0.119 0.905 0.479 0.3 1.157 0.5 0.265 0.012S W 0.237 0.216 0.946 0.059 0.11 0.928 0.373 0.204 0.024Table 4 Evaluation of the disrimination apabilities of the proposed metri for di�erentinstruments suh as Oboe (Ob), Saxophone (Sx), Trumpet (Tu) and Trombone (To) as well assets of instruments of the IOWA database suh as Brass Winds (BW), Wood Winds (WW),Bowed Strings (BS), and Struked Strings (SS). The values in the table are respetively themean, standard deviation and maximal values of the d× metri.
Strings WindBowed WoodBrassBass,Cello,Violin

IOWA
Piano Trombone,Trumpet Flute,Saxophone,Clarinet,Flute,Bassoon,Oboe
Struk

Fig. 8 The IOWA database hierarhy.this setion. Eah group orresponds to a node at a given level of the hierarhy showedin Figure 7.The methodology used for these experiments is the one desribed in Setion 5.For eah experiment, we randomly selet 100 entities of eah onsidered group andthe intra and inter are omputed for eah ouple of entities, eah entity belonging toone group. Only ouples with di�erent entities are onsidered. In order to improvethe larity of the results, the intra and inter values are not averaged over all ouples.Instead, the mean and the standard deviation is omputed, as well as the maximumvalue respetively for the intra and the inter.In the �rst experiment, whih results are reported in the �rst line of Table 4,we onsider aoustial entities produed by the Oboe only. Sine the same group isonsidered on both sides, the intra values are equal. However, the inter is not equalto the intra sine the omputation of the intra involves only the partials of one entity,while the omputation of the inter always involves partials of di�erent entities.In order to separate perfetly two entities of the Oboe, we would need to have theminimum value of the inter greater than the maximum value of the intra. It is learlynot the ase, sine 0.0043 < 0.0996. However, the average of the inter is greater thanthe maximum value of the intra, thus we ould ahieve good lassi�ations.



17Let us now onsider two instruments of the Wood Wind family, the Oboe andthe Saxophone and two instruments of the Brass Wind family, the Trumpet and theTrombone. Sine the set of entities is di�erent from the previous experiment with Oboeonly, the intra is slightly di�erent. By onsidering two di�erent instruments, the inter isinreased to a value that remains almost stable in the higher levels of the hierarhy. Itshows that the di�erene between instruments is the most salient level of the hierarhy,as far as the proposed metri is onsidered.Next, the Brass Wind and the Wood Wind family ahieve very low intra, meaningthat partials of the same entity of these two families are dense aording to the proposedmetri. The �fth line of Table 4 presents the results while onsidering the Bowed Stringsand Struk Strings families, that appear to be very dissimilar. The high inter value maybe explained by the di�erent types of exitations lead to very di�erent timbre.The partials of the aoustial entities produed by the Piano (unique instrument ofthe struk string family in the database) are spread over the feature spae. Even thoughthe new metri onsiders spetral information whih does improve the performane overthe temporal information in ase of miro-modulations, see Figure 3, it appears that themiro-modulations are not as salient as larger modulations suh as vibrato or tremolo.8 AppliationsIn this setion, we desribe some appliations where suh desription of the spetro-temporal ontent of audio streams an be helpful.8.1 Binaural Sene AnalysisThe urrent paper deals with the ommon variation of partials. However, two moreues are important for the pereptual gathering of partials: the ommon diretion ofarrival, and the harmoniity among partials [6℄.The ommon diretion of arrival an be determined in the ase of multihannelaudio. In the ase of binaural sounds (stereo sounds reorded at the entrane of theauditory hannels), it is possible to obtain an overall good estimation of the diretionof arrival of sound soures. As studied in [37℄, where it is shown that the diretion ofarrival of partials, although not a perfet riterion an be used as a partial lusteringue. The harmoniity ue has been used for the gathering of partials too, suh as in [46℄.By determining the harmoni relationship between partials, it is possible to determinegather the partials by soures of the one hand, and point out the overlapping partials.These three ues work very di�erently from eah other. Hene, by ombining them,we think that we may be able to enhane the robustness and preision of the par-tial gathering proess as the diversity added by the di�erent ues shows interestingperspetives.8.2 Aoustial Entities SimilarityIn this task we are interested in estimating the similarity between two aoustial entitiesthat are whether represented as a segment of audio or its sinusoidal representation.



18 We are interested in this type of appliation sine there is an inreased interesttowards reommendation systems that are not based on an ontology suh as genre [45℄or instrument type [21℄. Alternatively, one an onsider a reommendation system thatstates �show me tunes that are similar to the ones I like�. In this ase, one needs tode�ne the similarity between musial audio signals and the timbre is an interestingdimension to onsider.We are urrently investigating a generalized version of the desriptors desribed inthis paper for suh a purpose. Preliminar evaluations show that on ontinuous musialsolos, the use of those desriptors ombined with standard segmental desriptors likethe MFCC's signi�antly improve the performanes.8.3 Singing Voie DetetionAs the proposed desriptors apture the modulations over time of the spetral param-eters, they model e�iently the modulations of the singing voie, suh as vibrato ortremolo. Assuming that the singing voie is almost always modulated [39℄, one anonsider that the proposed desriptors an be onsidered to estimate whether a singingvoie is ative or not. Preliminar experiments show ompetitive performane omparedto state-of-the-art statistial approahes using standard desriptors like the MFCC's[36℄. As the proposed desriptors and the MFCC's model di�erent aspets of the audiostream, it is expeted that a ombination of both approahes will provides a signi�antimprovement.9 ConlusionIn this artile, we have proposed a new metri that disriminate partials of di�er-ent aoustial entities by onsidering the evolutions of their frequeny and amplitudeparameters.Considering the orrelation of the spetrum of these evolutions lead to more stableresults than the one obtained with the AR modeling approah proposed in previouswork [24℄. Aording to the experiments, the modulations of the frequeny appearto be the most relevant ue, however a slight improvement an be gained onerningthe amplitude if the envelope is removed. We also demonstrated that onsidering theombination of metris of frequenies and the amplitudes enhaned the lassi�ationresults as far as the density and hierarhial riteria are onerned.This new metri may be used for the lassi�ation of partials into aoustial entities.It has to be noted that the hierarhial lassi�ation used as a quality riterion inour study, even though very naive, yields to very good results, about 95 perentsof orret lassi�ations. Even better performane ould ertainly be obtained usingmore sophistiated lassi�ation methods, whih ould be of interest for many MIRappliations.Aknowledgements This work has been initiated when the authors were at the LaBRI(UMR-Cnrs 5800, University of Bordeaux 1) and has been partly funded by the OSEO projetQuaero within the task 6.4: �Musi Searh by Similarity� and the Frenh GIP ANR DESAMunder ontrat ANR-06-JCJC-0027-01.
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