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Abstract

SVM is one of the state-of-the-art techniques for image
and video classification. When multiple kernels are avail-
able, the recently introduced multiple kernel SVM (MK-
SVM) learns an optimal linear combination of the kernels,
providing a new method for information fusion. In this pa-
per we study how the behaviour of MK-SVM is affected
by the norm used to regularise the kernel weights to be
learnt. Through experiments on three image/video classi-
fication datasets as well as on synthesised data, new in-
sights are gained as to how the choice of regularisation
norm should be made, especially when MK-SVM is applied
to image/video classification problems.

1 Introduction

Owing to advances in both computer hardware and com-
puter algorithms, the field of multimedia indexing and re-
trieval has witnessed rapid growth in recent years. Multime-
dia retrieval can be naturally formulated as a classification
problem with probabilistic output. Support vector machine
(SVM) is one of the most successful techniques for such
a classification problem. Recently, a multiple kernel vari-
ant of SVM (MK-SVM) has been proposed in the machine
learning community [8, 17]. When multiple kernels encod-
ing complementary characterisations of a problem are avail-
able, MK-SVM automatically learns the “optimal” weights
of kernels from the training data, thus offering improved
classification performance.

In the MK-SVM framework, regularising the kernel
weights with `1 norm and `2 norm leads to `1 norm and `2
norm MK-SVMs, respectively. In [7], experiments on syn-
thesised data show that `1 norm and `2 norm MK-SVMs
both can be advantageous, depending on the property of the
kernels in terms of “information redundancy”. In this pa-

per, we extend the study in [7] by comparing the behaviour
of `1 norm and `2 norm MK-SVMs on image and video
classification problems. We also provide more insights as
to how one should choose between `1 norm and `2 norm
MK-SVMs.

The rest of this paper is organised as follows. In Sec-
tion 2, we introduce SVM, MK-SVM and the differences
between `1 norm and `2 norm MK-SVMs. Local feature
based kernels for image classification are briefly described
in Section 3. In Section 4, a comparison of `1 norm and
`2 norm MK-SVMs is provided, based on experiments on
three benchmark image/video classification datasets as well
as synthesised data. Finally conclusions are given in Sec-
tion 5.

2 Multiple Kernel Support Vector Machine

In this section SVM with single as well as multiple ker-
nels are presented. We then discuss two norms that can be
used in MK-SVM.

2.1 Support Vector Machine

Support Vector Machine (SVM) [18, 3] has become
the state-of-the-art method for many classification prob-
lems since its introduction. In an SVM, a kernel function
K(xi,xj) is a function defined for a pair of examples in an
original input space, which captures the similarity between
them. Effectively, a kernel function maps the training ex-
amples in the input space into a high dimensional feature
space. A “maximal separating hyperplane” in the feature
space is then found by solving an optimisation problem.
Such a separating hyperplane provides a good trade-off be-
tween learning ability and model complexity, and hence a
good generalisation performance.

More specifically, given training vectors xi ∈ Rd, i =
1, · · · ,m with class labels yi ∈ {1,−1}, an SVM classifies



a new vector x according to the following linear decision
function:

y = sgn{
m∑

i=1

yiα
∗
i K(x,xi) + b∗} (1)

where α∗
i and b∗ define the maximal separating plane, and

it turns out finding this plane is equivalent to solving the
following quadratic programming (QP) problem [18, 3]:

max
α

S(α)

subject to
∑m

i=1 yiαi = 0 (2)
0 ≤ α ≤ C1

where α ∈ Rm, and

S(α) ,
m∑

i=1

αi −
1
2

m∑
i=1

m∑
j=1

yiyjαiαjK(xi,xj) (3)

2.2 SVM with Multiple Kernels

Applying a kernel function on each pair of the m train-
ing examples results in an m×m symmetric matrix known
as a kernel matrix. In many classification problems, mul-
tiple kernel matrices can be constructed. For example, for
a given set of features in the input space, different distance
metrics can be used as kernel functions to capture different
“views” of the similarity. Moreover, in some cases, sev-
eral information modalities are available. For example, in
video classification, visual and audio information both can
be used. Even when considering only visual information,
various types of features can be extracted, such as texture,
colour, etc. Information from each of these “channels” can
be used to construct a kernel matrix, again resulting in mul-
tiple kernels.

When multiple kernels are available, the following ques-
tion arises naturally: how can we combine the kernels to
improve the performance of a kernel based learning algo-
rithm, such as an SVM? Mathematically, let Kk be the kth

of the n available kernels, we would like to find a set of
linear mixture coefficients, β ∈ Rn:

K(xi,xj) =
n∑

k=1

βkKk(xi,xj) (4)

such that the resulting kernel K gives good performance on
test data.

One straightforward way of finding a good set of mix-
ture coefficients is to use cross validation, which is also a
universally applicable method for model selection. In fact,
this idea has been exploited in object classification. In [2],
two kernels, one capturing shape similarity of objects, the
other capturing appearance similarity, are constructed. A

weighted combination of the two kernels is used in a con-
ventional single kernel SVM (SK-SVM). The weights of the
kernels are learnt in a brute force search over a validation
set. This approach, although demonstrated effective in the
paper, quickly becomes impractical as the number of ker-
nels grows. Another way of combining kernels is to weight
them uniformly, i.e., to set βk = 1

n for all kernels. In this
approach the kernel weights are set rather arbitrarily, with-
out any knowledge of the training data, and thus may not be
optimal.

The idea of learning optimal kernel weights for SVM
from training data was first introduced in [8], where the
margin of an SVM is maximised with respect both to α and
to kernel weights β. This leads to a min-max problem:

min
β

max
α

S(α,β)

subject to
∑m

i=1 yiαi = 0
0 ≤ α ≤ C1 (5)

β ≥ 0

||β||1 = 1

where α ∈ Rm, β ∈ Rn, and

S(α,β) ,
m∑

i=1

αi −
1
2

m∑
i=1

m∑
j=1

yiyjαiαj

n∑
k=1

βkKk(xi,xj)

(6)
In [8], (5) is formulated as a semi-definite program (SDP).
Following [8], several other formulations have been pro-
posed in the literature [1, 12, 17]. These formulations es-
sentially solve the same problem, and differ only in the op-
timisation techniques employed.

2.3 `1 Norm and `2 Norm MK-SVMs

The multiple kernel learning framework discussed above
imposes an `1 norm regularisation on the kernel weights,
i.e., ||β||1 = 1,β ≥ 0. This convex constraint makes the
associated optimisation problem easier to solve. However,
it has been known that `1 norm regularisation tends to pro-
duce sparse solutions (e.g. [13]), which means during the
learning most kernels are assigned virtually zero weights.
This behaviour may not always be desirable, since the infor-
mation carried in the kernels that get zero weights is com-
pletely discarded.

A non-sparse version of MK-SVM is proposed by Kloft
et al. in [7], where an `2 norm regularisation is imposed
instead of `1 norm. Comparing to (5), the only difference
in their formulation is that the ||β||1 = 1 constraint is re-
placed by ||β||2 = 1. The associated optimisation problem
is complicated by this modification, since the set given by
{β : ||β||2 = 1,β ≥ 0} is not convex. This is remedied by
seeking a tight approximation rather than the exact solution
of the problem.



In [7], experiments on synthesised data show that `1
norm and `2 norm MK-SVMs both can be advantageous,
depending on the property of the kernels in terms of “infor-
mation redundancy”: `1 norm regularisation is better when
the kernels contain a large amount of redundant informa-
tion among them, otherwise `2 norm version is preferable.
In this paper, we extend the study in [7] by comparing the
behaviour of `1 norm and `2 norm MK-SVMs on image
and video classification problems. We also provide more
insights as to how one should choose between `1 norm and
`2 norm MK-SVMs.

3 Kernels

Kernel construction involves feature extraction, example
representation and similarity measure. Recently, local fea-
tures have become popular in image classification and ob-
ject recognition [6, 9, 14]. To extract local features from
an image, first small patches in the image are chosen, either
through interest point detection, e.g., with a Harris-Laplace
detector [11], or by densely sampling the image at multiple
scales. A local feature descriptor, e.g., a SIFT [10], is then
used to characterise each patch. This results in a set of lo-
cal features, which is also referred to as a bag of words, in
analogy with the features used in text classification.

The sets of local features extracted from all the training
images are clustered to form a codebook [5], where each
cluster can be thought of as a “code”. For an given image,
the extracted local features are mapped onto this codebook
according to which cluster each of the features belongs to.
After this process, a histogram is obtained for each image
whose size is equal to the size of the codebook. A function
that measures the similarity between two such histograms
can be used as a kernel function in kernel-based learning
algorithms, such as an SVM, providing that Mercer’s con-
dition [3] is satisfied. Such functions include histogram in-
tersection, χ2 distance function, etc.

Several extensions to this codebook based approach have
been proposed. In pyramid match kernel (PMK) [6], a vo-
cabulary “tree” is constructed instead of a “flat” codebook,
by recursively applying clustering on the training features.
By mapping features onto this tree, multi-resolution his-
tograms are generated. This allows for weighting the inter-
section of two such multi-resolution histograms differently
according to which level of the histogram is being consid-
ered, thus offering a more accurate measure of the similarity
of two feature sets.

In [9], a variant of PMK which encodes spatial informa-
tion, spatial PMK (SPMK), is proposed. The basic idea of
SPMK is to take into account the spatial distribution of the
features when computing the similarity of two histograms.
Images are divided into spatial location grids. If two fea-
tures from two images in the same cluster fall into the same

grid, they contribute more to the similarity function than
otherwise. The improvement of SPMK over PMK is signif-
icant, especially when the objects are well aligned [9].

In our experiments, various combinations of sampling
techniques, descriptors, and kernel functions, are used to
generate kernels. We will discuss this in more details in
next section.

4 Experiments

In this section we perform a number of experiments
to demonstrate advantages and disadvantages of the two
norms. We first discuss the standard datasets and evalua-
tion criteria and then present the results.

4.1 Datasets

Three datasets for image/video classification and re-
trieval are used in the experiments: PASCAL visual ob-
ject classes challenge 2008 development set (VOC08) [4],
Mediamill video retrieval challenge set [16], and TRECVid
video retrieval evaluation 2007 development set [15]. Some
statistics of the three datasets are shown in Table 1. Note
that although Mediamill and TRECVid07 are essentially
video classification problems, we use only one keyframe
from each video shot to classify the shot. Other information
modalities, e.g., audio, text, are not used.

Table 1. Some statistics of the datasets

VOC08 Mediamill TRECVid07

no. of classes 20 101 36

size of train set 2111 30993 9060

size of test set 2221 12914 9060

4.2 Performance Criterion

The classification of different classes in a dataset are
treated as independent binary problems. Take Mediamill
dataset for example. There are 101 semantic concept
classes, such as explosion, indoor, military, etc. The ob-
jective is to make 101 binary decisions for each given test
image as to whether it contains each of the 101 concepts.
In our experiments, average precision is used to measure
the performance of each binary classifier. To calculate av-
erage precision, all test examples are ordered (from high
to low) according to the probabilities that they belong to
the class under considering, where the probabilities are
give by the binary classifier trained for this class. Let
E i = {e1, e2, · · · , ei} be the subset of the ranked exam-
ples which contains the top i examples, and X be the set of



Figure 1. Kernel weights when only informa-
tive kernels are used. “motorbike” class.

examples that belong to the class. Average precision, AP, is
defined as [16]:

AP =
1
|X |

l∑
i=1

|X ∩ E i|
i

I(ei) (7)

where l is the number of test examples, and I(·) is an indica-
tor function: I(ei) = 1 if ei ∈ X and I(ei) = 0 otherwise.
Once AP is defined, the mean of the APs for all classes in
a dataset, MAP, serves as an indicator of the overall perfor-
mance.

4.3 VOC08 Results

Using only informative kernels To generate kernels for
VOC08 dataset, 2 sampling techniques: dense sampling and
Harris-Laplace interest point sampling; 5 colour variants of
SIFT descriptors; and 3 ways of dividing an image into spa-
tial location grids for SPMK, are used (see [14] for details).
The combination of them results in 2× 5× 3 = 30 kernels,
each of which is generated using a generalised RBF kernel
with χ2 distance.

Fig. 1 plots the learnt kernel weights for the “motorbike”
class in VOC08 as an example. It is evident that `1 norm
MK-SVM produces sparse kernel selection results. Since
the kernels computed in our experiments carry complemen-
tary information about the images, setting the weights of
some kernels to zeros means useful information carried in
those kernels is completely discarded.

In Table 2, the first column shows for each class, the best
performance of the 30 kernels with SK-SVMs in terms of
average precision. Note that the best performance for dif-
ferent classes may be achieved with different kernels, so
the MAP in this column is not “realistic”. The next three
columns of the table show the performance of three kernel
level fusion schemes. The first scheme uses an SK-SVM
with a kernel obtained by weighting the 30 kernels uni-
formly. The last two columns are the APs obtained with

Table 2. VOC08 average precisions

sk-svm sk-svm mk-svm mk-svm
max. of 30 uniform `1 norm `2 norm

aeroplane 0.725 0.746 0.744 0.795
bicycle 0.341 0.381 0.375 0.381

bird 0.424 0.489 0.477 0.515
boat 0.575 0.590 0.598 0.632

bottle 0.202 0.174 0.158 0.176
bus 0.445 0.534 0.500 0.530

car 0.515 0.538 0.517 0.539
cat 0.493 0.538 0.517 0.549

chair 0.424 0.414 0.400 0.419
cow 0.188 0.155 0.130 0.171

diningtable 0.270 0.243 0.255 0.258
dog 0.335 0.340 0.320 0.326

horse 0.411 0.451 0.442 0.471
motorbike 0.346 0.391 0.348 0.401

person 0.845 0.863 0.866 0.885
potted plant 0.278 0.258 0.212 0.257

sheep 0.296 0.298 0.247 0.299
sofa 0.407 0.345 0.367 0.369
train 0.557 0.641 0.629 0.654

tv monitor 0.492 0.537 0.530 0.530

winner of - 5 0 16

MAP 0.428 0.446 0.432 0.458

`1 norm MK-SVM and `2 norm MK-SVM, respectively.
It is clear that `2 norm MK-SVM outperforms its `1 norm
counterpart in all 20 classes. When comparing all three ker-
nel fusion schemes, the naive uniform approach wins in 5
classes out of 20, and `2 norm MK-SVM wins in 16.

Mixing informative and random kernels To further in-
vestigate how the properties of kernels affect the perfor-
mance of `1 norm and `2 norm MK-SVMs, we introduce
random kernels in our experiments. We call the 30 kernels
used previously the 30 informative kernels. We then gen-
erate 30 random kernels (Gram matrices of 10 dimensional
random vectors) and mix them with the informative ones. In
the first run, only the 30 random kernels are used. In the fol-
lowing runs the number of informative kernels is increased
and that of random kernels decreased, until in the 31st run,
where all 30 kernels are informative.

Fig. 2 plots the MAP of the three kernel fusion schemes
as the composition of the kernels changes. First of all, as the
number of informative kernels increases, the performance
of all three approaches also increases. Secondly, it is clear
that `1 norm MK-SVM outperforms the `2 norm version
when the number of random kernels is high. As the number
of informative kernels increases, the MAP of `2 norm MK-
SVM increases faster than `1 norm version. It surpasses
that of `1 norm when there are 19 informative kernels, and
widens its advantage in the rest of the runs.



Figure 3. Kernel weights when both informative and random kernels are used. “motorbike” class.

Figure 2. MAP with various informative / ran-
dom kernel mixture.

The sub-figures in Fig. 3 plot the learnt kernel weights
for the “motorbike” class when there are 0, 1, 6, 19, 29, 30
informative kernels, respectively. When all kernels are ran-
dom (top-left), that is equally uninformative, the distribu-
tions of weights allocated by both methods are close to uni-
form. As soon as one informative kernel is introduced (top-
middle), `1 norm MK-SVM detects it, and assigns almost
all importance to it. `2 norm MK-SVM however, although
also assigns a large weight to this kernel, gives a relatively
significant amount of weight to the random kernels. This
behaviour is responsible for its poor MAP performance in
the left part of Fig. 2. Note that in each sub-figure of Fig. 3
the weights of the informative kernels are plotted towards
the left end and those of random ones towards the right.

As the number of informative kernels increases, the use-
ful information discarded by `1 norm MK-SVM due to its
“over-regularisation” increases; while the noise included
by `2 norm MK-SVM due to its “under-regularisation” de-
creases. The point where the two methods have comparable
MAP in Fig. 2 can be thought of as the point at which `1

norm MK-SVM’s tendency to discard useful information
and `2 norm MK-SVM’s tendency to include noise reach a
balance.

To conclude, in addition to the information redundancy
criterion discussed in [7], noise level in the kernels can
also be used to help decide which version of MK-SVM to
choose. Although we demonstrate this on semi-synthesised
data, one can imagine practical situations where certain ker-
nels are informative for some classes in a dataset, but are
not for other. For example, kernels built from colour his-
tograms help in concept classes such as “snow”, “desert”,
but contribute little to classes without much colour charac-
teristics. Another example would be that kernels specifi-
cally designed for certain concepts, e.g., a kernel based on
a face detector for classifying a “face” class, may be com-
pletely useless for other classes. If there is a large number of
such uninformative kernels, `1 norm MK-SVM could yield
better performance than its `2 norm counterpart.

4.4 Mediamill and TRECVid07 Results

For the Mediamill and TRECVid07 video classification
datasets, we use three kernels, as summarised in Table 3.
MAP of the three kernels and that of the three kernel fusion
schemes is shown in Table 4. These results are consistent
with those obtained on the VOC08 dataset.

Table 3. The 3 kernels used for Mediamill and
TRECVid07 datasets

sampling technique descriptor kernel function

kernel 1 Harris-Laplace SIFT PMK

kernel 2 Dense SIFT PMK

kernel 3 Dense Colour Histogram PMK



Table 4. Mediamill and TRECVid07 MAP

kernel kernel kernel sk-svm mk-svm mk-svm
1 2 3 uniform `1 norm `2 norm

Mediamill 0.311 0.339 0.252 0.383 0.382 0.394
TRECVid07 0.291 0.369 0.275 0.432 0.422 0.443

4.5 Speed of the Methods

Average train time of the three kernel fusion schemes
is shown in Table 5. `1 norm and `2 norm MK-SVMs are
comparable, and they are both considerably slower than SK-
SVM. In terms of test time, however, `1 norm MK-SVM
is advantageous over the `2 norm version. Since `1 norm
MK-SVM selects a sparse set of kernels, kernels that are
not selected do not even need to be computed for the test
set. This can be an important factor for the choice of norm
in speed-critical applications.

Table 5. Train time (second) of the algorithms

VOC08 Mediamill TRECVid07

size of train set 2111 30993 9060

number of kernels 30 3 3

SK-SVM uniform 0.8 161.6 13.5

MK-SVM `1 Norm 32.4 566.0 44.3

MK-SVM `2 Norm 25.3 539.5 54.9

5 Conclusions

In this paper we study how the behaviour of MK-SVM is
affected by the norm used to regularise the kernel weights.
Experiments on three image/video classification datasets
show that when kernels carry complementary information
of the classification problem, `2 norm MK-SVM outper-
forms its `1 norm counterpart and the uniform weight-
ing scheme. Moreover, through experiments on semi-
synthesised data, new insights are gained as to how the
choice of regularisation norm should be made.
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