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Abstract— The number of networked cameras is growing 

exponentially. Multiple applications in different domains result 

in an increasing need to search semantically over video sensor 

data. In this paper, we present the GOOSE demonstrator, which 

is a real-time general-purpose search engine that allows users to 

pose natural language queries to retrieve corresponding images. 

Top-down, this demonstrator interprets queries, which are 

presented as an intuitive graph to collect user feedback. Bottom-

up, the system automatically recognizes and localizes concepts in 

images and it can incrementally learn novel concepts. A smart 

ranking combines both and allows effective retrieval of  relevant 

images. 

Keywords—Semantic reasoning, concept detection, incremental 

learning 

I. INTRODUCTION 

The number of networked cameras is growing 

exponentially. Multiple applications in different domains 

result in an increasing need to search semantically over video 

sensor data. The GOOSE concept [5][12] aims to allow 

semantic search in such networked cameras. Typical 

applications might include domains as diverse as camera 

surveillance, traffic monitoring as well as social networking.  

In contrast to standard internet search engines who are 

based on text tags found in a fairly static web, the GOOSE 

concept facilitates search on dynamic scene content as 

depicted by camera systems. To make this happen image 

content – i.e. a set of pixels – needs to be matched to words 

specified by the user in the search query. This challenge – the 

large difference in abstraction level between the raw data and 

the user query – can be viewed as an instance of the semantic 

gap [13]. Similar to internet search engines we envision the 

GOOSE system to allow many users to simultaneously pose 

different queries. In such a setup, any cost effective solution 

cannot afford that the number of users U evaluate imagery 

consisting of P pixels (possibly the subset of pixels needed to 

accomplish this task) in N different networked cameras, as that 

would lead to a total computation cost of O(U ∙ P ∙ N). This is 

the scalability challenge. Application areas such as traffic 

monitoring, crowd control, urban warfare or burglary alarm 

services, all carry their own vocabulary, concepts of interest 

and specific assumptions on situational awareness. Domain 

independence requires flexible incremental learning of novel 

concepts for new situations. 

In this paper, we present the GOOSE demonstrator system 

which addresses the semantic gap by computing for all 

incoming images the presence of a set of concepts, related 

attributes, and relations between the concepts. In the query 

domain the concepts map to verbs and nouns; their related 

attributes relate to adjectives; their cardinality relates to 

determiners; and the relations between to concepts to 

prepositions. At the same time this addresses the scalability 

challenge as it allows to calculate a concept-based imagery 

representation independent of the actual queries. This means 

we have computational costs in the camera part of the 

processing of O(P ∙ N), followed by a query part of O(U), 

which are both coupled by a common (distributed) database 

similar to the database used with regular internet search. To 

guarantee independence of application we take an approach 

that relies on run-time user-assisted incremental learning and 

online external resource query expansion, as opposed to 

domain-specific design-time preparation and concept training. 

The GOOSE concept differs from earlier work in video 

tagging [8] and semantic browsing of videos [1][16] as it is 

aimed at processing live video and incremental learning of 

novel concepts rather than exploiting static video archives. 

Earlier ontologies such as LSCOM [9] often are limited to a 

fixed domain. 

The outline of this paper on the GOOSE demonstrator is as 

follows: methods are described in Section 2, results are shown 

in Section 3, and conclusions are presented in Section 4. 
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Fig. 1. System overview. 

 

 



II. METHOD 

The system consists of the 

following main components: 

semantic query interpretation, 

concept learning, concept 

detection, and user interaction and 

results re-ranking (see  Fig. 1). 

A. Semantic Query Interpretation 

The aim of the semantic query 

interpretation is to transform the 

user query to a structured query 

that can either be mapped to 

known concepts or for which novel 

concepts become necessary. The 

semantic query interpretation 

consists of several modules. First, 

the user query is lexically analyzed 

using the Stanford Typed 

Dependency parser [9] that 

transforms the natural language 

query into a directed graph 

representation. In this graph representation, words of the query 

are transformed into nodes and grammatical relations into 

edge labels. A set of rules is applied to the lexical graph to 

generate a new graph in terms of objects, attributes, actions, 

scenes and relations – the semantic categories defined in our 

semantic meta-model. Details on this meta-model can be 

found in [3]. This semantic graph is matched against the 

concepts that can be detected by the concept-detection 

component in  Fig. 1. If there is an exact match with known 

concepts, then the corresponding nodes in the graph are 

colored in green to indicate that these concepts have been 

recognized. If there is no exact match, then the semantic graph 

is expanded [2][4] using ConceptNet, which is a large 

knowledge base constructed by combining multiple web 

sources, such as DBpedia, Wiktionary and WordNet [14]. 

During the expansion, our algorithm matches the unknown 

concepts against concepts from ConceptNet. If a match is 

found, these concepts and their corresponding ‘IsA’ and 

‘Causes’ relations are imported in our graph. If there is still no 

match, the expansion cycle is repeated a second time, where 

the results of the first cycle now are used as seed. Concept 

nodes that correspond to expansions with ConceptNet are 

colored in orange and concepts that are still unknown to the 

system after the expansion are colored red. An example of the 

colored semantic graph for the query ‘Find a brown animal in 

front of a red mercedes’ is shown in Fig. 2. This graph is the 

final output of the semantic query interpretation and 

corresponds to the structured query that is input to the User 

refinement component in  Fig. 1.  

B. Concept Learning and Concept Detection 

Concept detection makes the transition from pixels in the 

image to concepts that can be interpreted semantically. In each 

of the images, concepts are recognized and spatially localized 

in the image. At initialization, there is a collection of known 

concepts that are pre-trained on average 100 training images 

per concept, which are available in the TOSO (toy and office-

supplies objects) dataset1. The concept detection and 

localization is based on the R-CNN [7]. The system takes an 

input image, extracts bottom-up region candidates, computes 

features for each candidate using a large convolutional neural 

network (CNN) and then classifies each region using class-

specific linear support vector machines (SVMs) for the 

recognition of the concepts. We map the SVM output to a 

confidence score by a mapping function, where the confidence 

score predicts the expected concept precision. 

When the user is interested in a novel concept, the system 

can learn these novel concepts incrementally in an online 

learning mode. Novel concepts will initially have only a 

limited number of positive training samples (typically 4 to 10) 

recorded by the user. The user can add images with a 

bounding box and a concept label annotation for the training 

of new concepts. Negatives are taken from samples of all  

previously trained concepts. For a new concept we train a new 

one-to-the-rest SVM classifier, where the CNN 4096 element 

output proved sufficient general to support new concept 

classes. Hard negative mining is applied to address the 

unbalance in number of positive and negative training images; 

resulting unbalance leads to biased SVM scores. This bias is 

corrected by increasing the SVM-weights of the classes with a 

low number of positive examples. Training time for a novel 

concept is dominated by calculation of the region candidates 

within the training images and subsequent application of the 

CNN to the region candidates. More details about incremental 

concept recognition and concept learning with few examples 

are described in [6]. 

                                                           
1 https://www.researchgate.net/publication/275347805_TOSO-

dataset. DOI: 10.13140/RG.2.1.1219.0248 

 

Fig. 2 Semantic expansion of example query. 



C. User Interaction and Results Re-ranking 

The GOOSE concept is a user-centric search concept. The 

user can provide queries in a natural language, which is 

transformed in  a structured query by the query-expansion 

module. Because natural language is ambiguous by nature and 

the number of known concepts in the system is limited, the 

user can refine queries, select the proper expansion or learn 

novel concepts. Furthermore, the user can influence the 

ranking of results by selecting good results and deleting bad 

ones. Based on these choices, the system can learn about the 

user and the context. This allows the system to handle 

ambiguities and adjust to subjective aspects. For example, the 

query “find a black dangerous animal” maybe interpreted 

differently by different people because the concept of a 

dangerous animal may differ per user [11].  

In order to bootstrap user ranking, a baseline ranking is 

implemented that fulfills a basic way of ranking search results. 

In Table I, all dimensions considered when ranking results 

with respect to the query are listed. 

All images containing one of the requested concepts are 

retrieved unless it contains a concept that is negated. The 

ranking of these results is then based on a penalty system. The 

penalties are calculated by comparing detected concepts in an 

image to requested concepts in a query. A first penalty is 

given based on the confidence of a detection; a penalty of (1-

confidence) is given to create a preference for images with 

higher confident detections. Second, a penalty is assigned for 

each concept attribute in the image that is missing or not as 

requested by the query. Finally, a penalty is given for missing 

concepts in the images. This includes a penalty for images that 

have too few instances of a requested concept with a certain 

cardinality. If an image contains more instances of a concept 

than requested, the best scoring concept instance is used to 

determine the score for the image. 

TABLE I.  RANKING CONSTRUCTS 

Construct Example 

Concept an animal and a mercedes 

Attributes the mercedes should be red 

Relationships the animal should be in front of the mercedes 

Cardinality one animal and two cars 

Negation a car but not a road 

 

D. Integration of the Live Demonstrator 

For validation of the generic GOOSE search-engine 

approach, a demonstrator is built. This demonstrator 

implements two search modes. The first is a historical search, 

operating on stored images. The second mode implements 

(near) real-time search, where queries are active over 

incoming video streams [15] and the user is alerted on 

matching imagery. 

The database and many of the processes listed in Table II, 

as well as their communication protocols and the libraries are 

state-of-the-art mainstream components for building general 

web-applications. Most processes have been deployed on a 

single server, except for the GUI process – which runs in the 

browser – and the concept detection – which can be 

distributed over a cluster of computers scaling with the 

amount of connected cameras. For small-scale demonstrations, 

one computer is sufficient. There were no performance issues 

in the webserver under the load that we tried, ingesting and 

persisting up to 10 images per second, while also comparing 

them to all alerts set by users. It has to be noted though, that 

this excludes the object detection and learning. Detection time 

for a single image is a couple of seconds (depending on image 

size and content). The learning time for each additional 

concept (with 10 example images) is about 1 minute. This 

process is typically CPU or GPU-bound, which makes it a 

good candidate for deployment on a cluster. Current query 

time, without optimization and 77000 detections in the 

database takes up to 200 ms including network roundtrips. We 

expect this to scale well up to millions of entries without 

needing more than some simple optimizations. 

Most communication is done over HTTP, using JSON 

encoding, with two notable exceptions. First, the alerting / 

notification feature of the GUI does not fit well with the 

classical REST model, so instead SocketIO technology is 

used, as compatibility layer for the emerging WebSocket 

technology. This allows for active push capabilities from the 

server and the database communications follows the specific 

protocol of MongoDB. The concept features are stored as 

JSON files in the MongoDB server, alternatively the database 

can be stored using a traditional relational database. 

TABLE II.  PROCESSES AND TECHNOLOGY 

Process Technology Responsibility 

GUI 
AngularJS, 

Bootstrap, SocketIO 
Monitoring and querying. 

Webserver 
Flask, MongoKit, 
SocketIO 

Manage parser, handle 
queries and ranking. 

Database MongoDB 
Store detections, images, 

queries, concepts, attrib. 

Parser 
Java, Stanford 
parser 

Parsing natural language 
into structured format. 

Concept detection 
Matlab, R-CNN, 

C/Mex, python.  

Detect and localize 

concepts in images. 

Concept learning 

Matlab, libSVM, R-

CNN, C/Mex, 

python 

Online learning of 

additional concepts. 

Camera GUI Python, OpenCV Image acquisition. 

III. RESULTS 

A. Demonstrator Capabilities 

The GOOSE system is deployed as a so-called table-top 

demonstrator. This portable set-up allows an interactive query 

expansion, concept detection and re-ranking of results. As a 

baseline, the system starts with 36 known concepts that are 

easy to transport for demonstration purposes, including office 

supplies, e.g., stapler and computer mouse, and toys, e.g., car, 

horse, donkey, cow, barbie, airplane, motorcycle and many 

more. People can put one or multiple of the known objects in 

front of the camera and the system will be able to recognize 

them with high mean average precision [6]. The images are 



stored in the database and attendees will be able to define 

complex natural language queries. The system will present the 

structured query and the ranked resulting images. 

Furthermore, we can learn novel concepts, such as a 

conference badge, on-the-fly during the demonstration. 

B. Example User Query and Ranked Results 

The user can type the natural-language query in the input 

dialog, as shown in Fig. 3. 

 
Fig. 3. Demonstrator interface with query example. 

     The user query is converted to a structured query and the 

concepts are mapped to known concepts. An example 

expansion is shown in Fig 2. in section II.A. Nodes are 

colored green if a direct match is found with known concepts 

(without expansion), they are orange if an indirect match was 

possible after expansion in ConceptNet, and they are red if 

matching was not possible.  The cardinality is shown in blue 

nodes. We experienced that the expansion may include a 

transition from specific to generic, e.g. mercedes expands to 

car) or vice versa (e.g. animal expands to donkey, horse, pig 

etc.). The directional part of the structured query of Fig. 2 

therefore relates to the expansion direction, and not an 

ontological direction (e.g., specialization). The shown 

structured query contains information about a car with 

cardinality one and color red, and several examples of animals 

with cardinality one and color brown. Since attributes depend 

on their object, each expansion will carry the original object’s 

attribute.  

     Finally, the resulting images are ranked by their normalized 

confidence score and presented to the user, as shown in Fig. 4. 

These images indeed show the presence of at least one red car 

(expanded from mercedes) and at least one brown horse or 

sheep (expanded from animal). 

IV. CONCLUSIONS 

     In this paper, we presented the GOOSE demonstrator, 

which is a search engine for images or video that allows users 

to pose natural language queries to retrieve corresponding 

images. The system interprets queries using query expansion 

using external resources, which are presented as an intuitive 

graph to collect user feedback. The system automatically 

recognizes and localizes concepts in video using state-of-the-

art Deep Learning Convolutional Neural Networks and it can 

learn novel concepts on-the-fly. A smart re-ranking allows 

effective retrieval of  relevant images. 
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Fig. 4. First three ranked results for the example query. 
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