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Abstract—Most networks tend to show complex and multiple
relationships between entities. Networks are usually modeled by
graphs or hypergraphs; nonetheless a given entity can occur
many times in a relationship: this brings the need to deal with
multisets instead of sets or simple edges. Diffusion processes are
useful to highlight interesting parts of a network: they usually
start with a stroke at one vertex and diffuse throughout the
network to reach a uniform distribution. Several iterations of
the process are required prior to reaching a stable solution. We
propose an alternative solution to highlighting main components
of a network using a diffusion process based on exchanges; it is
an iterative two-phase step exchange process. This process allows
to evaluate the importance not only at the vertices level but also
at the regrouping level. To model the diffusion process, we extend
the concept of hypergraphs that are family of sets to family of
multisets, that we call hb-graphs.

Index Terms—exchange, hypergraph, hb-graph, visualisation

I. INTRODUCTION

Many relationships are more than pairwise relations: entities
are often grouped into sets, corresponding to n-adic relation-
ships. Each of these sets can be viewed as a collaboration
between entities. Hypergraphs naturally represent n-adic rela-
tions. It has been shown that facets of an information space
can be modeled by hypergraphs [1]: each facet corresponds
to a type of metadata. The different facets are then linked
by reference data attached to hyperedges within that face.
The step forward is to highlight important information: it
is commonly achieved in hypergraphs using random walks
[2], [3]. Reference [3] shows that the weighting of vertices
at the level of the hyperedges in a hypergraph allows better
information retrieval. These two approaches - [2], [3] - mainly
focus on vertices; but as hyperedges are linked to references
that can be used as pivots in between the different facets [1],
[4], it is also interesting to highlight important hyperedges. For
instance, in a document database, different metadata can be
used to label authors, author keywords, processed keywords,
categories, added tags: the pivots between the different facets
of this information space correspond to the documents them-
selves. In the specific case of tags, it can be important to have
weights attached to them if the users are allowed to attach tags
to documents.

Hyperedge-based weighting of vertices is easier to achieve
through multisets: multisets store information on multiplicity

of elements. We use multisets family over a set of vertices,
called hyper-bag graph - hb-graph for short - as an extension
of hypergraphs. Hb-graph multisets play the role of the hy-
peredges in hypergraph: they are called hb-edges. We want
to answer the following research questions: “Can we find a
network model and a diffusion process that not only rank
vertices but also rank hb-edges in hb-graphs?”. We develop
an iterative exchange approach in hb-graphs with two-phase
steps that allows to extract information not only at the vertex
level but also at the hb-edge level.

We validate our approach by using randomly generated hb-
graphs. The hb-graph visualisation highlights not only vertices
but also hb-edges using the exchange process. We show that
the exchange-based diffusion process allows proper coloring
of vertices with high connectivity and highlights hb-edges with
a normalisation approach - allowing small hb-edges to have a
chance to be highlighted.

This paper contributes to present an exchange-based diffu-
sion process that allows not only the ranking of vertices but
also of hb-edges. It formalizes exchanges by using hb-graphs
that can naturally cope for elements multiplicity. It contributes
also to a novel visualisation of this kind of network included
in each facet of the information space.

In Section II, the related art is listed and the mathematical
background is given in Section III. The construction of the
formalisation of the exchange process is presented in Section
IV. Results and evaluation are given in Section V and future
work and conclusion are addressed in Section VI.

II. RELATED WORK

A hypergraph H = (V,E) on a finite set of vertices (or
vertices) V = {v1 ; v2; ... ; vn} is defined in [5] as a family
of hyperedges E = (e1, e2, ..., ep) where each hyperedge

is a non-empty subset of V and such that
p⋃

i=1

ei = V . A

hypergraph Hw = (V,E,we) is said edge-weighted if there
exists an application we : E → R+∗.

In a weighted hypergraph the degree deg (vi) of a vertex vi
is defined as:

di = deg (vi) =
∑

ek∈E:vi∈ek

we (ek) .
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The volume of S ⊆ V is defined as:

vol(S) =
∑
vi∈S

deg (vi) .

The incident matrix of a hypergraph is the matrix H =

[hkl]16k6n
16l6p

of Mn×p ({0 ; 1}), where hkl =

{
1 if vk ∈ el
0 otherwise

.

Random walks are largely used to evaluate the importance
of vertices. In [2], a random walk on a hypergraph is defined
as choosing a hyperedge ek with a probability proportional to
we (ek); in a given hyperedge a vertex is uniformly randomly
chosen. The probability transition from a vertex vi to a vertex
vj is:

p(vi, vj) =

p∑
k=1

we (ek)
hik
di
× hjk

δk
,

where δk = deg (ek) is the degree of a hyperedge defined
in [2] as its cardinality. This random walk has a stationary

state which is shown to be πi =
di

volV
for 1 6 i 6 n [6]. The

process differs from the one we propose: our diffusion process
is done by successive steps from a random initial vertex on
vertices and hyperedges.

Reference [3] defines a random walk to allow the use of
weighted hypergraph with weight functions both on hyper-
edges and on vertices: a vector of weights is built for each
vertex making weights of vertices hyperedge-based; a random
walk similar to the one above is built that takes into account
the weight of the vertices. The evaluation is done using a
hypergraph built from a public dataset of computer science
conference proceedings; each document is seen as a hyperedge
that contains keywords; hyperedges are weighted by citation
score and vertices of a hyperedge are weighted with a tf-
idf score. Reference [3] shows that a random walk on the
(double-) weighted hypergraph enables vertex ranking with
higher precision than with unweighted vertices random walk.
The process differs again from our proposal: our process not
only enables simultaneous alternative updates of vertices and
hb-edges values but also allow the ranking of hb-edges. We
also introduce a new theoretical framework to achieve this.

Random walks are related to diffusion processes. [7] use
random walks in hypergraph to do image matching. [8] builds
higher order random walks in hypergraph and constructs a
generalised Laplacian attached to graphs generated by their
random walks.

Hypergraphs are used in multi-feature indexing to help the
retrieval of images [9]. For each image a hyperedge gathers
the first n most similar images based on different features.
Hyperedges are weighted by average similarity. A spectral
clustering algorithm is applied to divide the dataset into k
sub-hypergraphs. A random walk on these sub-hypergraphs
allows to retrieve significant images: they are used to build a
new inverted index, useful to query images.

III. MATHEMATICAL BACKGROUND

A. Multisets

Our definitions on multisets are mainly based on [10]. A
multiset - or mset or bag - is a pair Am = (A,m) where
A is a set of distinct objects and m is an application from
A to W ⊆ R or N. A is called the universe of the multiset
Am, m is called the multiplicity function of the multiset Am.
A?

m = {x ∈ A : m(x) 6= 0} is called the support of Am. The
elements of the support of an mset are called its generators.
A multiset where W ⊆ N is called a natural multiset. The
m-cardinality of Am written #mAm is defined as:

#mAm =
∑
x∈A

m(x).

Considering A = ΩmA and B = ΩmB two msets on the
same universe Ω, we define the empty mset, written ∅ the set
of empty support. A is said to be included in B - written
A ⊆ B - if for all x ∈ Ω: mA(x) 6 mB(x). In this case, A is
called a submset of B. The power multiset of A, written P̃(A),
is the multiset of all submsets of A. Different operations can
be defined on multisets of same universe as union, intersection
and sum [10].

B. Hb-graphs

Hb-graphs are introduced in [11]. A hb-graph is a family
of multisets with same universe V and support a subset of
V . The msets are called the hb-edges and the elements of
V the vertices. We consider for the remainder of the article
a hb-graph H = (V,E), with V = {v1, ..., vn} and E =
{e1, ..., ep} the family of its hb-edges.

Each hb-edge ei ∈ E has V as universe and a multiplicity
function associated to it: mei : V →W where W ⊂ R+. For
a general hb-graph, each hb-edge has to be seen as a weighted
system of vertices, where the weights of each vertex are hb-
edge dependent.

A hb-graph where the multiplicity range of each hb-edge is
a subset of N is called a natural hb-graph. A hypergraph is
a natural hb-graph where the hb-edges have multiplicity one
for every vertex of their support.

The order of a hb-graph H - written O (H) - is:

O (H) =

n∑
j=1

max
e∈E

(me (vj)) .

The support hypergraph of a hb-graph H = (V,E) is the
hypergraph whose vertices are the ones of the hb-graph and
whose hyperedges are the support of the hb-edges in a one-to-
one way. We write it H = (V,E), where E = {e? : e ∈ E}.

The hb-star of a vertex x ∈ V is the multiset - written
H(x) - defined as:

H(x) =
{
e
mei

(x)

i : ∀1 6 i 6 p: ei ∈ E ∧ x ∈ e∗i
}
.

The m-degree of a vertex x ∈ V of a hb-graph H - written
degm (x) = dm(x) - is defined as:
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Figure 1. Diffusion by exchange: principle

degm(x) = #mH(x).

The degree of a vertex x ∈ V of a hb-graph H - written
deg (x) = d(x) - corresponds to the degree of this vertex in
the support hypergraph H.

The matrix H = [mj (vi)]16i6n
16j6p

is called the incident

matrix of the hb-graph H.
A weighted hb-graph Hw = (V,E,we) is a hb-graph H =

(V,E) where the hb-edges are weighted by we : E → R+∗.
An unweighted hb-graph is then a weighted hb-graph with
we (e) = 1 for all e ∈ E.

A strict m-path x0e1x1...esxs in a hb-graph from a vertex
x to a vertex y is a vertex / hb-edge alternation with hb-edges
e1 to es and vertices x0 to xs such that x0 = x, xs = y, x ∈ e1
and y ∈ es and that for all 1 6 i 6 s− 1, xi ∈ ei ∩ ei+1.

A strict m-path x0e1x1...esxs in a hb-graph corresponds to
a unique path in the hb-graph support hypergraph called the
support path. In this article we abusively call it a path of the
hb-graph. The length of a path corresponds to the number of
hb-edges it is going through.

Representation of hb-graphs can be achieved either by using
sub-mset representation or by using edge representation. In this
article we use the extra-vertex representation of the support
hypergraph of the hb-graph: an extra-vertex is added for each
hb-edge. Each hb-edge is represented by enabling a link in
between each vertex of the hb-edge support and the hb-edge
extra-vertex.

IV. EXCHANGE-BASED DIFFUSION IN HB-GRAPHS

In diffusion processes and random walks an initial vertex
is chosen. The diffusion process leads to homogenising the
information over the structure. Random walks in hypergraphs
rank vertices by the number of times they are reached and this
ranking is related to the structure of the network itself. Several
random walks with random choices of the starting vertex can
be needed to achieve ranking by averaging.

We consider a weighted hb-graph H = (V,E,we) with
|V | = n and |E| = p; we write H the incident matrix of
the hb-graph.

At time t we set a distribution of values over the vertex set:

αt :

{
V → R

v 7→ αt (v)
.

and a distribution of values over the hb-edge set:

εt :

{
E → R
e 7→ εt (e)

.

PV,t = (αt (vi))16i6n is the row state vector of the vertices
at time t and PE,t = (εt (ej))16j6p is the row state vector of
the hb-edges.

We consider an iterative process with two-phase steps as
illustrated in Figure 1. At every time step: the first phase starts

at time t and ends at t +
1

2
followed by the second phase

between time t+
1

2
and t+ 1.

The initialisation sets α0 (v) =
100

O (H)
for every vertex v ∈

V and ε0 (e) = 0 for every hb-edge e ∈ E.

During the first phase between time t and t +
1

2
, each

vertex vi of the hb-graph shares the value αt (vi) it holds at
time t with the hb-edges it is connected to.

In an unweighted hb-graph, the fraction of αt (vi) given by

vi of m-degree dvi = degm (vi) to each hb-edge is
mj (vi)

degm (vi)
,

which corresponds to the ratio of multiplicity of the vertex vi
due to the hb-edge ej over the total m-degree of hb-edges that
contains vi in their support.

In a weighted hb-graph, each hb-edge has a weight we (ej).
The value αt (vi) of a vertex vi has to be shared by taking not
only the multiplicity of the vertices in the hb-edge but also the
weight w (ej) of a hb-edge ej into account.

The weights of the hb-edges are stored in a column vector
wE = (w (ej))

>
16j6p. We also consider the weight diagonal

matrix WE = diag (w (ej))16j6p.
We introduce the weighted m-degree matrix:

Dw,V = diag (dw,vi)16i6n = HwE .

where dw,vi is called the weighted m-degree of the vertex vi.
It is:

dw,vi = degw,m (vi) =
∑

16j6p

mj (vi)w (ej) .

The contribution to the value εt+ 1
2

(ej) attached to hb-edge ej
of weight w (ej) from vertex vi is:

δεt+ 1
2

(ej | vi) =
mj (vi)w (ej)

dw,m (vi)
αt (vi) .

It corresponds to the ratio of weighted multiplicity of the
vertex vi in ej over the total weighted m-degree of the hb-
edges where vi is in the support.

And the value εt+ 1
2

(ej) is calculated by summing over the
vertex set:

εt+ 1
2

(ej) =

n∑
i=1

δεt+ 1
2

(ej | vi) .

Hence, we obtain:

PE,t+ 1
2

= PV,tD
−1
w,VHWE (1)
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During the second phase that starts at time t+
1

2
, the hb-

edges share their values between the vertices they hold taking
into account the multiplicity of the vertices in the hb-edge.
Every value is modulated by the weight w (ej) of the hb-edge
ej it comes from.

The contribution to αt+1 (vi) given by a hb-edge ej of
weight w (ej) to the vertex vi of multiplicity mj (vi) is:

δαt+1 (vi | ej) =
mj (vi)w (ej)

#mej
εt+ 1

2
(ej) .

The value αt+1 (vi) is then obtained by:

αt+1 (vi) =

p∑
j=1

δαt+1 (vi | ej) .

By writing dm,j = #mej for e ∈ E and writing DE =
diag (dm,j)16j6p the diagonal matrix of size p× p, it comes:

PE,t+ 1
2
D−1E WEH

> = PV,t+1. (2)

Gathering 1 and 2:

PV,t+1 = PV,tD
−1
w,VHWED

−1
E WEH

>. (3)

It is valuable to keep a trace of the intermediate state
PE,t+ 1

2
= PV,tD

−1
w,VHWE as it records the importance of

the hb-edges.
Writing T = D−1w,VHWED

−1
E WEH

>, it follows from 3:

PV,t+1 = PV,tT. (4)

V. RESULTS AND EVALUATION

This diffusion by exchange process has been validated with
two experiments: the first experiment generates a random hb-
graph to validate our approach and the second compares the
results to a classical random walk on the hb-graph.

We built a random unweighted hb-graph generator. The
generator allows to construct single-component hb-graphs or
hb-graphs with multiple connected components. A single
connected component is built by choosing the number of inter-
mediate vertices that link the different components to ensure
that a single component hb-graph is obtained. We generate
Nmax vertices. We start by building each component and then
interconnect them. Let k be the number of components. A
first set V0 of interconnected vertices is built by choosing
N0 vertices out of the Nmax. The remaining Nmax − N0

vertices are then separated into k groups. In each of these
k groups we generate two groups of vertices: a first set Vj,1
of Nj,1 vertices and a second set Vj,2 of N2 vertices with
Nj,1 � Nj,2, 1 6 j 6 k. The number of hb-edges to be
built is adjustable and shared between the different groups.
The m-cardinality #m (e) of a hb-edge is chosen randomly
below a maximum tunable threshold. The Vj,1-vertices are
considered as important vertices and must be present in a
certain amount of hb-edges per group; the number of important
vertices in a hb-edge is randomly fixed below a maximum
number. The completion of the hb-edge is done by choosing
randomly vertices in the Vj,2 set. The random choice made into

this two groups is tuned to follow a power law distribution:
it implies that some vertices occur more often than others.
Interconnection between the k components is achieved by
choosing vertices in V0 and inserting them randomly into the
hb-edges built.

We apply our diffusion process on these generated hb-
graphs: after a few iterations we visualize the hb-graphs to
show the evolution of the vertex value with a gradient coloring
scale. We also take advantage of the half-step to highlight hb-
edges in the background to show important hb-edges with an
other gradient coloring scale.

To get proper evaluation and show that vertices with the
highest α-values correspond to vertices that are important in
the network - in the way they are central for the connectivity -
we compute the eccentricity of vertices from a subset S of the
vertices V to the remaining V \S of the vertices. Eccentricity
of a vertex in a graph is the length of a maximal shortest
path between this vertex and the other vertices of the graph:
extending this definition to hb-graphs is straightforward. If the
graph is disconnected then each vertex has infinite eccentricity.

For the purpose of evaluation, in this article, we define a
relative eccentricity as the length of a maximal shortest path
starting from a given vertex in S and ending with any vertices
of V \S; the relative eccentricity is calculated for each vertex
of S provided that it is connected to vertices of V \S; otherwise
it is set to −∞.

For the vertices set V , the subset is built by using a
threshold value sV : vertices with α value above this thresh-
old are gathered into a subset AV (sV ) of V . We consider
BV (s) = V \AV (sV ) the set of vertices with α values below
the threshold. We evaluate the relative eccentricity of each
vertex of AV (sV ) to vertices of BV (sV ) in the support
hypergraph of the corresponding hb-graph.

Assuming that we stop iterating at time T , we let sV vary
from 0 to the value αT,max = max

v∈V
(αT (v)) - obtained by

iterating the algorithm on the hb-graph - by incremental steps
and until the eccentricity is kept above 0, first of the two
achieved. In order to have a ratio we calculate:

rV =
sV
αref

where αref is the reference normalised value, defined as αref =
100

O (H)
for the hb-graph H. This ratio has values increasing

by steps from 0 to
αT,max

αref
.

We show the results obtained in Figure 3: we plot two
curves. The first plot corresponds to the maximal length of
the path between vertices of AV (sV ) and vertices of BV (sV )

that are connected in function of the value of rV =
sV
αref

: the

length of the path corresponds to the half of the length of the
path observed in the extra-vertex graph representation of the
hb-graph support hypergraph as in between two vertices of
V there is an extra-vertex that represent the hb-edge (or the
support hyperedge). The second curve plots the percentage of
vertices that are in AV (sV ) over the vertex set V in function
of rV . When rV increases the number of elements in AV (sV )
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Figure 2. Exchange-based diffusion in hb-graphs: highlighting important hb-edges. Simulation
with 548 vertices (chosen randomly out of 10 000) gathered in 5 groups of vertices (with 6,
16, 12, 18 and 2 important vertices and 2 important vertex per hb-edge), 300 hb-edges (with
cardinality of support less or equal to 15), 10 vertices in between the 5 groups. Extra-vertices
are colored in green and have square shape.
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Figure 3. Path maximum length and percentage of vertices
in AV (s) over vertices in V vs ratio rV .
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Figure 4. Path maximum length and percentage of vertices
in AE(s) vs ratio.

naturally decreases while they are closer to the elements of
BV (sV ), marking the fact that they are central.

Figure 5 shows that high values of αT (v) correspond to
vertices that are highly connected either by degree or by m-
degree. Hence vertices that are in the positive side of the scale
color in Figure 2 correspond to highly connected vertices: the
closer to red on the right scale they are, the higher the value
of αT (v) is.
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Figure 5. Alpha value of vertices at step 5 and (m-)degree of vertices.

A similar approach is taken for the hb-edges: assuming that
the diffusion process stops at time T , we use the εT− 1

2
function

to partition the set of hb-edges into two subsets for a given
threshold sE : AE (sE) of the hb-edges that have ε values
above the threshold and BE (sE) the one gathering hb-edges
that have ε values below sE .
sE varies from 0 to εT− 1

2 ,max = max
e∈E

(
εT− 1

2
(e)
)

by
incremental steps while keeping the eccentricity is kept above

0, first of the two conditions achieved. In the hb-graph
representation, each hb-edge corresponds to an extra-vertex.
Each time we evaluate the length of the maximal shortest path
linking one vertex of AE (sE) to one vertex of BE (sE) that
are connected in the hb-graph support hypergraph extra-vertex
graph representation: the length of the path corresponds to the
half of the one obtained from the graph for the same reason
than before. In Figure 4 we observe for the hb-edges the same
trend than the one observed for vertices: the length of the
maximal path between two hb-edges decreases as the ratio rE
increases while the percentage of vertices in AE (sE) over V
decreases.

Figure 6 shows on the left figure the high correlation
between the value of ε(e) and the cardinality of e; the right
figure shows that the correlation between value of ε(e) and
the m-cardinality of e is even stronger.

The results obtained after five iterations on hb-graphs with
different configurations show that we always retrieve the
important vertices as the most highlighted. The diffusion
by exchange process also highlights additional vertices that
were not in the first group but that are at the confluence
of different hb-edges. The results on the hb-edges show that
the value obtained is highly correlated to the m-cardinality
of the hyperedges. To color the hb-edges as it is done

in Figure 2 we calculate the ratio rT− 1
2

(e) =
εT− 1

2
(e)

εnorm(e)
,

where εnorm (e) =
∑

v∈e?

me (v)

degm(v)
vref corresponds to the value
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Figure 7. Comparison of the rank obtained by 100 random walks after total
discovery of the vertices in the hb-graph and rank obtained in the exchange-
based diffusion process.

obtained from the vertices of the hb-edge support by giving to
each of them the reference value. Hb-edges are colored using
rT− 1

2
(e), the higher its value, the closer to red the color is:

we use the left gradient color bar for it.
We have generated random walks on the hb-graphs with

random choice of hb-edges when the walker is on a vertex

v with a distribution of probability
(

mi (v)

degm (v)

)
16i6p

and a

random choice of the vertex when the walker is on a hb-edge

e with a distribution of probability
(
me (vi)

#m (e)

)
16i6n

. We let

the possibility of teleportation to an other vertex from a vertex
with a tunable value β: 1− β represents the probability to be
teleported. We choose β = 0.85. We count the number of
passage of the walker through each vertex and each hb-edge.
We stop the random walk when the hb-graph is fully explored.
We iterate N times the random walk, N varying.
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Random walk by number of vertex visits: m-degree
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Figure 8. Comparison of the rank obtained by 100 random walks after total
discovery of the vertices in the hb-graph and (m-)degree of vertices

Figure 7 shows that after 100 iterations there is weak
correlation between the rank obtained by the random walk and
our diffusion process. There is no correlation at all with the
m-degree of the vertices and the degree of vertices as shown
in Figure 8. 100 iterations for the random walk take 6.31 s
while it takes 0.009 ms to achieve the 5 iterations needed in
the exchange-based approach.

VI. FUTURE WORK AND CONCLUSION

The results obtained by using hb-graph highlight the possi-
bility of using hb-edges for analyzing networks; they confirm
that vertices are highlighted due to their connectivity. The
highlighting of the hb-edges has been achieved by using the
intermediate step of our diffusion process: to achieve it con-
veniently without having a ranking by hb-edge m-cardinality
we normalized it. Different applications can be thought in
particular in the search of tagged multimedia documents:
sharing of keywords, geographic location, or any valuable
information contained in the annotations. Using tagged docu-
ments ranking by this means could help in creating summary
for visualisation. Our approach is seen as a strong basis to
refine the approach of [9].
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