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Abstract—Feature detectors and descriptors have been success-
fully used for various computer vision tasks, such as video object
tracking and content-based image retrieval. Many methods use
image gradients in different stages of the detection-description
pipeline to describe local image structures. Recently, some, or
all, of these stages have been replaced by convolutional neural
networks (CNNs), in order to increase their performance. A
detector is defined as a selection problem, which makes it more
challenging to implement as a CNN. They are therefore generally
defined as regressors, converting input images to score maps
and keypoints can be selected with non-maximum suppression.
This paper discusses and compares several recent methods that
use CNNs for keypoint detection. Experiments are performed
both on the CNN based approaches, as well as a selection of
conventional methods. In addition to qualitative measures defined
on keypoints and descriptors, the bag-of-words (BoW) model is
used to implement an image retrieval application, in order to
determine how the methods perform in practice. The results
show that each type of features are best in different contexts.

Index Terms—neural networks, keypoints, detectors, descrip-
tors

I. INTRODUCTION

As billions of images and millions of hours of video are
uploaded on the Internet every year, the ability to decode their
contents is a challenge for computers that has great value.
However, extracting high-level information from raw-pixel
data has been the topic of a lot of research. Most traditional
methods rely on detection and extraction of salient features.
A plethora of methods that detect and describe features have
been proposed [1], [2]. One of the most popular methods
is SIFT [3]. Some methods approximate image gradients, as
directly calculating them is an expensive operation and the
added performance of calculating exact gradients is usually
not worth the extra processing time [4]. Other methods work
by directly comparing pixel intensities and do not approximate
gradients [5]–[7]. Such methods may be preferable in on-line
applications computational efficiency is critical.

In recent years, researchers have proposed CNN based
methods for detecting and extracting features [8]–[12]. CNNs
have been successfully used to solve complex problems,
such as image classification or speech recognition, but their
application to feature detection and description is relatively
new. The learning process of these methods can generally be

divided into two classes, supervised learning and unsupervised
learning. They key difference between the two is existence
of annotated data, which help the supervised methods have
a very efficient learning process. The result though might be
biased according to biases in the data labels. On the other
hand unsupervised methods rely on the method’s intrinsic
ability to find clusters of similar data. This, however, makes
the task more challenging and requires a specifically designed
algorithm for learning. The goal of this paper is to review
how CNNs can be used for feature detection and extraction
and compare the performance of the resulting CNNs to the
traditional, hand crafted, detectors and extractors.

Many works have compared different local feature detectors,
either by comparing literature to their own method or making
a generic comparison [1], [2], [8]–[12]. To the best of our
knowledge, there is minimal work that compared CNN based
detectors. Most survey papers compare traditional methods [1],
[2], whilst papers that introduce CNN based detectors compare
their own method to one or more traditional approaches [8]–
[12]. This paper performs an in depth comparison between
CNN based and traditional detectors. We evaluate the methods
based on robustness in the presence of common distortions
(such as rotation, scaling, and noise) and also directly on the
domain of image retrieval.

II. HAND CRAFTED DETECTORS

As mentioned above, a plethora of different hand-crafted
local feature detectors have been proposed in the literature.
Due to space limitations , we selected a representative set
from the literature [1], [2], [13]. More specifically, we will
utilize the well known SIFT [3] and SURF [4], CenSureE
[14], a detector leveraging the computational efficiency of
SURF’s box filters and the accuracy of SIFT’s circular filters
and AGAST [15], a more accurate and efficient extension of
the FAST detector [16].

III. CNN BASED DETECTORS

In the past few years, several CNN approaches that try
to detect keypoints have been proposed. The first, main
characteristic these methods can be divided by is whether
the training objective depends on predefined keypoints (e.g.
SIFT keypoints) or they learn in an ”unsupervised” manner.
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TABLE I
CNN LOCAL FEATURE DETECTION METHODS

Method Supervision Detection Orientation Invariant Description
Covariant feature detector [8] covariant constraint Yes Depends on defined transformations No
Quad detector [10] rank constraint Yes Depends on defined transformations No
Orientation Estimator Network [12] rotation loss No Yes No
LIFT [11] SIFT, rotation loss Yes Yes Yes

In the first category the methods extract keypoints using an
existing method, such as SIFT and train the network to predict
where these points appear. This method has the benefit of
using very clear supervised signals which result in an efficient
training procedure. On the other hand, they are limited on
the capabilities of the method they try to approximate. In the
second category are methods that define a loss function that
is minimized when the network is able to identify points that
show certain characteristics. None of the methods presented
is truly unsupervised, since a set of transformations is defined
and a very specific dataset tailored to the objective function
created in order to train the networks. Moreover, there are
several features that a method may or may not have, such as
orientation assignment and whether it provides a description
method. All the methods are briefly discussed below and
summarized in Table I. Many researchers have used the
activations of pre-trained VGG network on the ImageNet 2012
dataset, as descriptors for keypoints [17]. Thus, we also try to
combine them with some of the detectors.

Covariant Feature Detector (CFD) [8]: With CFD, a
network is supervised by a covariant constraint and is forced
to resolve a set of transformations while be covariant to all
transformations defined.

Quad Detector [10]: It is called quad-detector because
it learns from quadruples of input patches. The output of
the network is supposed to be a heat map showing features
at the maximum. Given two points and a transformation of
those, the network is asked to keep the ranking of the points
before and after the transformation. The invariance of the
network is handled by the train set, in which all the desired
transformations are defined. The transformations can either be
included in the dataset, or manually applied.

LIFT [11]: LIFT is the only method proposed that in-
cludes detection, explicit orientation estimation and descrip-
tion. Overall it defines three networks, one for each task.
The LIFT can be also viewed as a combination, with slight
adjustments, of the TILDE [9] and the Orientation Estimation
Network (OEN) [12]. TILDE is a network that learns to
identify patches that are centered around a keypoint. This
is achieved through a classification loss, as well as two
regularization losses. One to force local maxima of the output
have higher peaks and the other helps identify the same
keypoints under different image conditions. OEN on the other
hand, does not detect keypoints, but given a keypoint it assigns
it an orientation. Given an image patch, the network outputs
two values, which are interpreted as scaled the sine and cosine
of the angle patch.The network tries to minimize the difference

between the description of rotated patches.
The LIFT pipeline works as following. Initially the de-

scriptor network is trained, where its given pairs of image
patches around SIFT keypoints. It learns to produce a de-
scriptor which is similar for matching pairs and dissimilar
for pairs of different keypoints. Then the orientation network
is trained similarly to OEN, coupled with the already pre-
trained descriptor. Lastly, the detector is trained in a similar
fashion to TILDE where it tries to classify SIFT keypoints.
The loss function is different than TILDE’s, as it leverages
quadruples of patches and forces the detector to favor points
that are invariant to the transformations of the training data.

IV. EXPERIMENTAL SETUP

There are a numerous metrics that measure the quality of
detectors [1], repeatability being the most frequently used.
Moreover, we measure the descriptor matching precision and
recall, as well as the non-redundancy and coverage of the
key points produced as defined in [18], [19]. Besides the
theoretical characteristics an ideal detector needs to have, it
mostly needs to provide points that lead to good performance
on real life applications. Thus, we test the detectors both
on theoretical measurements (i.e. repeatability) and on a real
world application, i.e. Image Retrieval (IR).

For the repeatability experiment, we chose the first 2K
images from the test set of the ImageNet 2017 set. On every
image, we perform rotation, scaling, blur and add Gaussian
noise. We measure the repeatability for different levels of
these transformations. In order to make a fair comparison, the
K ∈ {300, 600, 1000} most prominent keypoints from each
detectors were used. The results in Figure 1 show the average
performance over the three K values.

TABLE II
THE COMBINATIONS OF DETECTOR, ORIENTATION ESTIMATOR AND

DESCRIPTOR USED.

Method Detector Or. Estimator Descriptor
SIFT [3] SIFT SIFT SIFT

SIFT + VGG16 [3], [20] SIFT SIFT VGG16
SURF [4] SURF SURF SURF

CenSurE [14] CenSurE SURF SIFT
AGAST [6], [15] AGAST BRISK BRISK

Quad [10] Quad SIFT SIFT
Quad + VGG16 [10], [20] Quad SIFT VGG16

LIFT [11] LIFT SIFT/LIFT LIFT

In real-world image retrieval systems, the database may
contain millions of images. While the comparison of every
pair of descriptors is a very precise method, it is too costly to



Fig. 1. The repeatability scores of the manual transformations and the lighting changes.

Fig. 2. The matching scores of the detectors using all transformations.

perform with these numbers of images. One method to achieve
real-time performance is the bag-of-words (BoW) model [21],
[22], which is used in these experiments. The BoW trainer
and histogram extractor implemented in the OpenCV library
are used. The number of database images is set to 250K and
the number of clusters to 8K. The images are taken from
the ILSVRC 2012 train set. The dictionary is calculated by
taking the descriptors of the 10 most prominent keypoints in
each image, resulting in 2.5M descriptors. For the histograms,
200 keypoints per image are used. In the final step, 2.5K
query images are constructed by applying a random scale,

rotation, blur, noise, contrast and brightness. The query images
are then compared to the database, using the L1-distance,
and all database images are ranked by their distance to the
query image. If the highest ranked image is the same as the
untransformed query image the result is considered correct. As
quality measurements we use the accuracy (zero rank) over all
test query images and the average rank of the correct image.

V. RESULTS

All the experimental setup was implemented in C++ and
Python. The OpenCV 3 implementations were used for all con-



Fig. 3. The non-redundancy and coverage scores of the detectors.

TABLE III
THE ACCURACY (TOP-1) AND AVERAGE RANK OF THE IMAGE RETRIEVAL BENCHMARK.

Method SIFT SIFT+VGG16 SURF CenSure AGAST Quad Quad + VGG16 LIFT
Correct (%) 43.12 24.24 60.16 48.48 10.64 59.52 36.48 8.08
Avg. rank 4133 10121 1180 2288 25980 1544 4914 24718

ventional features detectors. The parameters of each method
were set to values as close as possible to those given in the
original papers, and otherwise to the standard values present
in the library. The combinations of detectors and descriptors
used for the experiments can be seen in Table II.

The Quad-Detector was re-implemented by the authors
based on the original paper in PyTorch, and trained on the
DTU Robot Image Point Feature Data Set [23], using only illu-
mination changes as correspondences. For the covariant feature
detector, scale-space and orientation assignment of SIFT were
used, but it did not result in stable keypoints and thus omitted
from the experiments. For the VGG descriptor we used the 7th
layer of TensorFlow’s [24] VGG-16 implementation. The input
to the network was a patch 40x40 resulting in an output vector
1x1x256. Finally, for the LIFT detector two implementations
are used. The first one, tested on repeatability did not use large
rotations to train the rotation estimator, and thus the SIFT
orientation assignment was used. The second version which
train the rotation estimator also on large image rotations was
used in the IR experiment.

Figures 1, 2 and 3 show the results of the repeatability,
matching and non-redundancy/coverage experiments respec-
tively. Finally, Table III shows the percentage of images that
were retrieved correctly, as well as the average rank of all the
2.5K instances.

The method that has the highest performance is SURF,
as it has the most correct matches and the lowest average
rank. Moreover, it consistently has top perfrormance on the
repeatability experiments. SIFT did not perform as well. This
may partially result from the fact that the transformations
contain blurring and noise, which SIFT is sensitive to. AGAST
performed very well on the repeatability under rotation and
scaling, but had poor performance on the rest of the experi-

ments. CenSurE also worked relatively well in IR, with 48%
of the predictions correct, but had poor performance on the
repeatability experiments.

From the deep learning methods, the Quad detector had the
highest performance in the IR results whilst in repeatability
LIFT performed better in all measurements except rotations.
An interesting point is that although SIFT and Quad have only
the detectors different, the IR performance is very different.

VI. CONCLUSIONS

CNNs have managed to outperform traditional methods in
many applications. Our experiments show that when it comes
to local feature detection they perform competitively in certain
contexts. From the handcrafted methods, SURF had the best
overall performance and was clearly competitive with the top
CNN approaches.

For the different CNN strategies, we can see that using SIFT
points (see [11]) to supervise the learning procedure did not
raise competitive performance in a real life application, which
can be explained by the fact the we are trying to learn an
imperfect method. On the other hand, LIFT managed to get
competitive performance in repeatability with the presence of
blur and noise. The more ”unsupervised” method managed to
produce one of the best results, in most of our experiments.
Nonetheless, it underperformed in the presence of rotation.
Finally, our experiments show that using VGG features instead
of a handcrafted descriptor in the pipeline gives lower perfor-
mance. Still, more experiments would be required to make a
conclusive remark, as there are numerous ways to utilize a
pre-trained network for that purpose.

Our viewpoint is that many researchers (including some in
our group) have come to a default assumption that deep learned
approaches will greatly outperform the classic handcrafted



features. This paper shows that it depends on the exact
problem(s) one is trying to solve. For example, rotation is
a major challenge for the CNN based methods and more
generally it is clear that additional research is warranted before
turning away from the handcrafted features.
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