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Abstract—In this work, we present a deep learning-based
approach for image tampering localization fusion. This approach
is designed to combine the outcomes of multiple image forensics
algorithms and provides a fused tampering localization map,
which requires no expert knowledge and is easier to interpret by
end users. Our fusion framework includes a set of five individual
tampering localization methods for splicing localization on JPEG
images. The proposed deep learning fusion model is an adapted
architecture, initially proposed for the image restoration task,
that performs multiple operations in parallel, weighted by an
attention mechanism to enable the selection of proper operations
depending on the input signals. This weighting process can be
very beneficial for cases where the input signal is very diverse, as
in our case where the output signals of multiple image forensics
algorithms are combined. Evaluation in three publicly available
forensics datasets demonstrates that the performance of the
proposed approach is competitive, outperforming the individual
forensics techniques as well as another recently proposed fusion
framework in the majority of cases.

Index Terms—Image tampering localization, Deep learning-
based fusion, Image forensics

I. INTRODUCTION

Image forensics algorithms are crucial for determining the
integrity of digital images. This is evident by the number of
research efforts in the literature that deal with different types of
digital manipulations and traces [1]]. Designing algorithms for
detecting and localizing a specific type of forgery has proven
to be challenging, even when evaluating their performance
on controlled datasets and settings [2]]. The situation is even
more difficult when dealing with online media. Images are
manipulated multiple times with different tools and are then
circulated over the Internet, further undergoing a variety
of transformations (e.g., cropping, re-sizing, re-compression).
Consequently, many methods suffer from low detection accu-
racy and localization robustness, presenting noisy outcomes
and higher false-positive rates when applied to new datasets
[2]. Due to these observations, many works posit that there
is true benefit in acquiring different reports from independent
algorithms and inspecting the multiple clues in tandem [3]-
[6]. This is attributed to the fact that at least one or few
of these diverse approaches are more likely to capture some
tampering traces even after an image has undergone multiple
transformations.

Although discovering manipulation traces is desirable,
adding more forensics output visualizations increases the
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complexity of a media verification tool that presents the
results, especially for non-expert users. The reason for this
is that each algorithm has a different output that requires
specific knowledge for proper interpretation. Consequently,
this quickly becomes overwhelming for the non-expert. As
a matter of fact, even forensics experts may provide wrong or
contradicting interpretations of these visualizations [7].

In this paper, we aim to overcome these limitations, which
often exclude non-expert users from the verification process
of suspicious online images. The main objective is to de-
velop a fully automatic fusion approach using deep learn-
ing, being able to leverage diverse forensics signals that are
complementary to each other, so as to improve the robust-
ness and reliability of the overall localization system. This
final visualization retains the most important features of the
individual algorithms and discards the noise. Additionally,
another important objective is to communicate the tampering
localization results to end users in a manner that is easier
to interpret and requires no additional specialized knowledge.
This outcome can empower non-experts in image forensics,
who are interested in image verification, e.g. fact-checkers and
journalists, to actively contribute to image verification tasks.

The work presented in this paper is conducted in the
context of the WeVerify project [8]], which aims to build an
open-source platform that engages communities and citizen
journalists alongside newsroom and freelance journalists for
collaborative and decentralized content verification, tracking,
and debunking. For the content verification task, we build on
the existing Image Verification Assistant [9]], which is a tool
that analyses the authenticity of images by visualizing the
outcomes of various tampering localization approaches. For
the purpose of WeVerify, we have extended this tool with new
state-of-the-art algorithms but also by adding the presented
fusion approach in order to enhance its usability by non-
experts, including fact-checkers, journalists, and citizens.

In this work, we make the following contributions. First,
we present a fully automatic deep learning-based approach
that learns how to combine diverse input signals into a more
accurate overall tampering localization visualization. Second,
the final output of our approach is easier to interpret and
requires no specialized knowledge by end users. Finally, the
evaluation results show that the proposed fusion approach
largely leads to better results compared to other approaches.



II. RELATED WORK

The field of media forensics has become increasingly pop-
ular in recent years [[10]. Several fusion approaches have been
proposed in the literature, aiming at combining diverse signals
that improve the overall robustness of the forensics localization
maps. The various approaches can be categorized based on
the level at which fusion is performed and the manipulation
traces that are taken into consideration. Frameworks proposed
for feature-level fusion often suffer from drawbacks related to
selecting and handling a large number of features [11]], [[12].
Additionally, authors in [4]] present a framework that fuses the
localization outputs of various forensics algorithms and further
refines the result based on statistical features. The drawback
of this method however is that it has hard-coded heuristics and
assumptions about the input tampering localization algorithms.

Approaches based on measurement-level fusion are best
suited for the tampering detection, and not localization, prob-
lem as they provide an overall result regarding forgeries being
present or not [3]], [5].

On the other hand, techniques proposed for pixel-level
fusion usually involve utilizing probability output maps and
a fusion model to refine the final output and improve the
localization of the tampered region [6]. In recent years,
deep learning shows great power in many research fields,
and methods based on deep Convolutional Neural Networks
(CNN) outperform traditional methods and achieve remarkable
success in solving computer vision problems. For instance, the
work in [13]] presents a fusion architecture that outperforms
traditional approaches. The difference of this approach is that
it fuses features from different patches of the same image to
produce the final localization map.

III. METHODOLOGY

The main objective of our work is to develop a fully auto-
matic fusion approach, able to exploit diverse forensics signals
from the Image Verification Assistant and generate a robust and
easy-to-interpret visualization. The current version of Image
Verification Assistant contains 11 forensics algorithms with
corresponding outputs.

To simplify the training and evaluation of our fusion models,
we select a subset of the forensics algorithms to be considered
for fusion. Also, to provide a direct comparison with another
fusion framework [[4], we adopt their algorithm selection based
on an evaluation of three publicly available datasets. These
datasets are: (i) The First IFS-TC Image Forensics Challenge
set [14], (ii) the synthetic dataset by Fontani et al. [3], and
(iii) the real cases of the Wild Web dataset [[15]]. Based on the
evaluation results, a set of five methods were selected as the
building blocks of the fusion model:

o« ADQI1 [[16] and DCT [17] that both base their detection
on analysis of the JPEG compression, in the transform
domain;

o BLK [18]] and CAGI [19] that base their detection on
analysis of the JPEG compression in the spatial domain;

o Splicebuster [20], a noise-based detector selected as a
complementary method due to its high reported perfor-
mance and good interpretability of its produced outputs.

In this work, we adopt a deep learning-based fusion approach
for the following reasons. First, we aspire to develop a fully
automatic approach without the need for heuristic tuning or
manual intervention, as for instance in the case of [[4]]. Second,
the complex and diverse nature of the input signal calls for an
effective approach to automatically extract the most important
features, which deep learning excels at [21]]. Finally, the
availability of large-scale datasets, which are required by deep
learning approaches makes the training of a deep learning-
based model feasible.

For the fusion architecture, we initially consider two dif-
ferent deep learning architectures. The first model we adopt
is U-Net [22]. U-Net is a convolutional neural network that
was initially applied for semantic segmentation in a medical
context in order to localize tumors in the lungs or brain,
but nowadays, it has got a much broader application field.
The main idea is to supplement a usual contracting network
by successive layers, where pooling operations are replaced
by up-sampling operators. Hence these layers increase the
resolution of the output. A successive convolutional layer
can then learn to assemble a precise output based on this
information. One important feature in U-Net is that there are
a large number of feature channels in the up-sampling part,
which allow the network to propagate context information to
higher resolution layers. Consequently, the expansive path is
roughly symmetric to the contracting part and yields a U-
shaped architecture. The network only uses the valid part of
each convolution without any fully connected layers. The U-
Net architecture has a lot of variants. For the fusion task, we
use Eff-Unet [23]], a variant of U-Net architecture that uses
EfficientNet [24] as the encoder part. To adapt the Eff-Unet
to our fusion task, we use the EfficientNet-B4 variant as the
encoder. We refer to this model as Eff-B4-Unet.

The second model that we employ is a simple architecture
of neural networks that was proposed for the problem of
image restoration [25]]. It performs multiple operations in
parallel, which are weighted by an attention mechanism to
enable the selection of proper operations depending on the
input. The layer can be stacked to form a deep network,
which is differentiable and thus can be trained in an end-to-
end fashion by gradient descent. This architecture is suitable
for our problem because it uses attention to capture impor-
tant features by examining which operations are the most
beneficial, depending on the input signal. Another important
aspect of this architecture is that it can learn to attend low-
level features, which is important for the fusion task, as
semantic or high-level representations are often not relevant
or useful for the problem. The network includes operations
like, dilated convolutions, separable convolutions, and pooling
with various kernel sizes and rates, which are weighted by an
attention mechanism. To adapt this architecture to our needs,
we replaced dilated convolutions with simple convolutions
as the former are better suited for the image restoration
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Fig. 1. The architecture of adapted operation-wise attention layer, comprising an attention and operation layer, a concatenation operation, and 1 x 1 convolution.

task and exhibit lower validation performance in preliminary
experiments. Additionally, we reduce the number of stacked
Operation-wise Attention (OwA) layers from 10 to 4, in order
to avoid overfitting during training. Also, in our adaptation,
each operation-wise attention layer consists of one operation
layer, in contrast with the original implementation that stacks
4 consecutive operation layers. Figure |1| shows the modified
operation-wise attention layer. In the operation layer, we use
simple convolutions with filter sizes 1 x 1,3 x 3,5 x 5, 7 x
7, average and max pooling with a 3 x 3 receptive field. We
refer to this model as OwAF.

IV. EXPERIMENTAL STUDY

In this section, we compare these two deep learning ap-
proaches and we use the best performing in further evaluations,
in order to compare it with another fusion approach against
two publicly available image forensics datasets.

A. Training and evaluation setup

a) Training set: To train the deep learning models that
we describe in Section we need to use an image forensics
dataset for training. For the model training in the fusion task,
we generate a set of tampering localization outputs by applying
the forensics algorithms for each image in the dataset.

Currently, there are not many large-scale forensics datasets
available, and this is mainly due to the fact that their generation
is very time-consuming. On the other hand, it is easy to
generate synthetic forgeries in images. For this work, we use
the DEFACTO dataset [26]], which contains more than 150,000
images with synthetic forgeries and their corresponding ground
truth masks. The dataset contains four manipulation types,
including splicing, copy-move, object removal, and face mor-
phing. For our task, we use only images from the first three
manipulation types. We randomly compile 15,000 images for
training, 1000 for test, and 1000 for validation. For every input
image in each set, we produce a set of different tampering
localization maps obtained by the selected detection methods.
This means that the produced training set for the fusion
model consists of 15,000 x 5 tampering localization maps
and corresponding ground truth masks for every image. We

concatenate the forensics maps in the channel axis to generate
training samples.

b) Parameter selection: We use the Adam optimizer [27]]
with an initial learning rate of 0.001, and we minimize the
pixel-size binary cross-entropy loss. To achieve this, the final
layer of both architectures has a sigmoid activation function.
Ground truth masks are also in the [0,1] range, having zeros
for the pristine parts of the image and ones for the tampered
regions. The training batch size is set to 4. We train the model
for 20 epochs, and we save only the weights of the model
that has the lowest validation error. The validation error is
derived from the evaluation of the images in the DEFACTO
validation set. For faster training, we only use 300 images of
the validation set. We also reduce the learning rate by a factor
of 10 if the validation error does not improve for 5 epochs.

c) Datasets: To evaluate the models, we use three
datasets. First, we evaluate the proposed deep learning models
against the DEFACTO test dataset that contains 1000 images.
Then, we choose the best of the two models and compare them
to another previously proposed model [4]. This comparison
is performed on two different forensics datasets. The first is
the IFS-TC Image Forensics Challenge dataset [[14f], which
contains 450 images with forgeries and is designed to serve
as a realistic benchmark. Focusing on splicing tampering
localization, we excluded cases that were produced by copy-
move operations resulting in a set of 306 forgery cases
produced through splicing operations only. Tampered images
in this dataset are accompanied by ground-truth maps. The
second dataset is the CASIA V2.0 dataset [28] that contains
5,123 realistically tampered color images of varying sizes.
This dataset does not come with ground truth maps. In order
for us to be able to perform localization tests, we take the
ground truth masks that were produced in another work
[4], where 2,195 reliable ground truth maps were manually
produced through semi-automated procedures involving image
differencing, thresholding, and morphological operations.

d) Evaluation metrics:: We use the F1 score, both the
macro average and the F1 for the tampered class, and the
average Intersection over Union (IoU) metric.
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Fig. 2. Various examples of tampering localization outputs using input images from the DEFACTO test dataset and fusion visualizations from the OWAF

model; GT column refers to ground truth masks.

B. Results

In the first experiment, we investigate the performance of
the two proposed fusion models. Table |I| shows the evaluation
results of the two proposed models in the DEFACTO test
dataset as well as results from all individual algorithms.

TABLE I
EVALUATION METRICS ON DEFACTO TEST DATASET FOR THE PROPOSED
FUSION MODELS AND THE INDIVIDUAL LOCALIZATION ALGORITHMS.
THE BINARIZATION THRESHOLD IS SET TO 0.5

[ Models [ Macro-F1 | FI (tampered) [ ToU |
BLK [18] 0.463 0.090 0.053
ADQI1 [16] 0.573 0.221 0.123
CAGI [19] 0.479 0.142 0.072
DCT [17] 0.509 0.186 0.101

Splicebuster [20] 0.554 0.153 0.087
Eff-B4-Unet 0.908 0.798 0.690
OwAF 0.912 0.829 0.707

We can see that the OwAF network outperforms the Eff-
B4-Unet in every evaluation metric. Evaluation results for
individual algorithms are very low when compared to the
fusion approaches. This can be attributed to the fact that
certain algorithms work well on specific manipulation types
and images. Also, the 0.5 binarization threshold may impair
the evaluation performance of many algorithms, as many
algorithms might operate on lower thresholds. Averaging the
results from many binarization ranges did not significantly
improve the evaluation results, nonetheless. The best perform-
ing individual model is ADQ1. Another important observation
is that the macro-averaged F1 score is higher compared to
the F1 score for the tampered class for all evaluations. This

means that the models can predict the pristine regions more
accurately than the tampered ones. In terms of intersection
over union (IoU) evaluation, we can see that the OwAF model
still outperforms Eff-B4-Unet.

Figure [2] shows random examples from the DEFACTO test
dataset. The first column includes the input images. The next
five columns show the outputs of the individual tampering
localization algorithms. The final two columns show the
ground truth mask, which reveals the actual location of the
forgery and the fusion result of the OwAF model that combines
the localization outputs, respectively. It is evident from these
examples that the fusion architecture learned to combine the
diverse signals in order to localize the tampered region. One
interesting observation is that for each input example, there are
usually different algorithms that better localize the forgery. It
seems that the fusion model learned to detect proper signals
that contribute to a correct localization. For example, in the
first row, Splicebuster and CAGI spot the tampering, but in
row three, ADQI1 and DCT do so. In both cases, the fusion
model has identified these signals and provides a correct result.

To further investigate the fusion performance, we compare
our best performing approach with another fusion framework
proposed by [4]. For evaluation, we use the two datasets
described above (CASIA v2 and IFS-TC) in order to examine
the generalization capabilities of the fusion model that was
trained with the DEFACTO dataset. CASIA v2 is the first
evaluation dataset we use. Table [l shows the evaluation
results. The binarization threshold is set to 0.5.

We can observe slightly better performance in every metric
from individual models compared to those in Table |I} This
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Fig. 3. Successful examples of tampering localization outputs from the OwAF model and visual comparisons with the individual methods and Iakovidou et
al. [[4]; for the first four rows, images are taken from the CASIA v2 dataset, for the last four rows from the First IFS-TC Image Forensics Challenge dataset.

TABLE 11
EVALUATION RESULTS OF THE CASIA v2 AND FIRST IFS-TC IMAGE
FORENSICS CHALLENGE DATASETS. THE BINARIZATION THRESHOLD FOR
THE METRIC CALCULATION IS SET TO 0.5

individual algorithms that frequently appear in the DEFACTO
dataset. For example, the DEFACTO dataset contains synthetic
manipulations on specific objects such as traffic signs, birds,
airplanes, humans (Figure [2). Yet, the proposed approach is

[ Dataset | Models | Macro-F1 | F1 (tampered) [ IoU | ) pegter than individual algorithms and also outperforms the
BLK [18] 0.509 0.140 0.089 : :
ADO [T6] 0573 0517 0130 fusion framework of [4] in terms of both F1 score and IoU.
CASIA CACGI [119] 82% 8}8% 811)9‘; Evaluation results on the First IFS-TC Image Forensics
DCT [17] . § 11 .
v2 Splicebuster [20] 0576 0163 0.093 Chgllepge dataset are al§0 reported in Table|[[I} In the§e r'e§ults,
Takovidou et al. [4] 0.598 0.253 0.166 a significant decrease in the performance of the individual
OwAF 0.611 0.270 0.172 | algorithms can be observed. One exception is the Spicebuster
BLK 18] 0459 0.092 0.063 |  performance, which increased compared to previous evalua-
ADQI [16] 0.485 0.115 0.076 . Spliceb £ both fusi h
CAGITI0] 0506 0135 0001 | tions. Splicebuster even outperforms both fusion approaches.
IFS-TC DCT (7] 0.467 0.106 0.065 Iakovidou et al. [4]] also achieve marginally better performance
Splicebuster [20] 0.560 0.199 0.129 | than our fusion model in this dataset. One possible explanation
Takovidou et al. [4] 0.549 0.171 0.112 is that fusi del 1 d to f the indi
OWAF 0529 0140 0q06| is that our fusion model learned to focus more on the indi-

means that this dataset contains images with manipulations
that can be localized better by the individual algorithms.
ADQI1 and DCT are still the best performing individual
approaches. Regarding the fusion methods evaluation, we
can see that our approach outperforms the competing fusion
framework [4]. One notable observation is that the perfor-
mance of OwWAF is significantly worse than the evaluation
results that are reported in Table I This is a clear indication
that our trained models have overfitted to the training set
manipulations. The fusion model possibly learned to localize
specific forgeries, like shapes and patterns from the outputs of

vidual localization maps that achieved better performance in
the training set, namely the ADQ1 and DCT. This can also be
verified from the CASIA v2 evaluation results, where ADQI1
and DCT are still the best individual approaches, and our
approach outperforms all others. On the contrary, in the First
IFS-TC Image Forensics Challenge case, the best performing
individual algorithm is Splicebuster and this possibly justifies
the poor performance of OwAF.

Figure [3] shows some successful examples of tampering
localization outputs produced by the fusion model and the
individual methods from the two evaluation datasets. In most
examples, ADQ1 and DCT visualization better localize the
tampering. There are also cases where Splicebuster and CAGI
better localize the forgeries. Additionally, in these specific



examples, we can see that the visual result from the method
of Takovidou et al. [4]] is very poor for the CASIA v2 samples
(first four). The qualitative results are improved for the IFS-
TC samples (last four), which is expected as this approach
overall performs better in this dataset.

From our experiments, it is evident that the main challenge
of the proposed approach stems from overfitting to the training
data. Although OwAF can outperform individual forensics
algorithms or other fusion models, we observe a lack of
generalization to unseen manipulations. Namely, we get poor
predictions for datasets that have different types of manipula-
tions compared to those that appeared in the training dataset.
Additionally, the low evaluation performance of individual
models is a major indication that the forgery localization
problem is very difficult and is even more challenging to
design a general fusion solution for images in the wild. These
observations are also reported by other researchers [2].

V. CONCLUSIONS

The main objective of our work has been to develop a
fully automatic fusion approach, able to exploit diverse signals
from various forensics algorithms. The fusion outcome would
communicate the tampering localization results to end users in
a manner that is easier to interpret and requires no additional
specialized knowledge.

The reported experimental results are promising and in
many cases outperform the individual forensics techniques and
a competing fusion approach. An important limitation of this
work is the generalization ability of the fusion model and
stems from the general limitations of the underlying supervised
learning scheme and the insufficient representativeness of the
dataset that was used for training.

In the future, we plan to work on these generalization
limitations. To this end, we will try to increase the size
of the training dataset and include different manipulations
from other synthetic datasets. Additionally, we will experiment
with task-specific regularization techniques, like feature map
dropout. Finally, another interesting research direction is to
experiment with multi-stream fusion architectures that besides
the forensics localization maps, will extract features from the
input image itself.
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