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Abstract 

 
For more than one decade, time series similarity 

search has been given a great deal of attention by data 
mining researchers. As a result, many time series 
representations and distance measures have been 
proposed. However, most existing work on time series 
similarity search focuses on finding shape-based 
similarity. While some of the existing approaches work 
well for short time series data, they typically fail to 
produce satisfactory results when the sequence is long. 
For long sequences, it is more appropriate to consider 
the similarity based on the higher-level structures. This 
is particularly true for medical time series, as they 
often are not perfectly aligned. In this work, we present 
a histogram-based representation for time series data, 
similar to the “bag of words” approach that is widely 
accepted by the text mining and information retrieval 
communities. We show that our approach outperforms 
the existing methods in clustering and classification on 
medical time series obtained from PhysioBank.  
 
1. Introduction 
 
Time series similarity search has been a major research 
topic for time series data mining for more than one 
decade. As a result, many time series representations 
and distance measures have been proposed [3, 6, 12, 
15, 17, 18]. There are two kinds of similarities: shape-
based similarity and structure-based similarity [13]. 
The former determines the similarity of two datasets by 
comparing their local shapes, whereas the latter 
determines the similarity by comparing their global 
structures. Most existing approaches focus on finding 
shape-based similarity. While some of these 
approaches work well for short time series data, they 
typically fail to produce satisfactory results with long 
time series data. This is particularly true for medical 
time series such as Electrocardiograms (ECG), as the 

data often are not perfectly aligned. To understand the 
need for a higher-level, structure-based similarity 
measure for long time series data, consider the scenario 
for textual data. If we are to compare two strings, we 
can use the string edit distance to compute their 
similarity. However, if we are to compare two 
documents, it is more meaningful to use a higher-level 
representation that can capture the structure or even 
semantic of the document. Below, we describe the two 
types of similarities in time series in more detail. 
Given two sequences Q and C, shape-based similarity 
determines how similar these two datasets are based on 
local comparisons. The most well-known distance 
measure in data mining literature is the Euclidean 
distance, for which sequences are aligned in the point-
to-point fashion, i.e. the ith point in sequence A is 
matched against the ith point in sequence B. While 
Euclidean distance works well in general, it does not 
always produce accurate results when data is shifted, 
even slightly, along the time axis. For example, the top 
and bottom sequences in Figure 1 (both are ECG data) 
appear to have similar shapes. In fact, the sequence 
below is the shifted version of the sequence above. 
However, the slight shifts along the time axis will 
result in a large distance between the two sequences. 

Another distance measure, Dynamic Time 
Warping (DTW) [12, 23], overcomes this limitation by 
using dynamic programming technique to determine 
the best alignment that will produce the optimal 
distance. The parameter, warping length, determines 
how much warping is allowed to find the best 
alignment. A large warping window causes the search 
to become prohibitively expensive, as well as possibly 
allowing meaningless matching between points that are 
far apart. On the other hand, a small window might 
prevent us from finding the best solution. Euclidean 
distance can be seen as a special case of DTW, where 
there is no warping allowed. Figure 1 demonstrates the 
difference between the two distance measures. Note 
that with Euclidean distance, the dips and peaks in the 



sequences are mis-aligned and therefore not matched, 
whereas with DTW, the dips and peaks are aligned 
with their corresponding points from the other 
sequence. While DTW is a more robust distance 
measure than Euclidean Distance, it is also a lot more 
computationally intensive than Euclidean Distance. 
Keogh [12] proposed an indexing scheme for DTW 
that allows faster retrieval. Nevertheless, DTW is still 
at least several orders slower than Euclidean distance. 

 
Figure 1. (Left) Alignment for Euclidean distance between 
two sequence data. (Right) Alignment for Dynamic Time 
Warping distance between two sequence data. 

Shape-based similarities work well for short time 
series or subsequences; however, for long sequence 
data, they produce poor results. To illustrate this, we 
extracted subsequences of length 2048 from six 
different records on PhysioNet [10], an online medical 
archive containing digital recordings of physiological 
signals. The first three datasets (#1-#3) are 
measurements on respiratory rates, and the last three 
datasets (#4-#6) are ECGs. As we can clearly see in 
Figure 2, these two types of vital signs have very 
different structures. Visually we can separate the two 
classes with no difficulty. However, if we cluster them 
using Euclidean distance as the distance measure, the 
result is disappointing. Figure 2 shows the hierarchical 
clustering results using Euclidean distance. The 
dendrogram illustrates that while datasets #5 and #6 
are correctly clustered (i.e. they share a common parent 
node), the rest are not.  
 

 
Figure 2.  Result of hierarchical clustering using 
Euclidean distance on raw data. In fact, using DTW 
produces the same result. 

One reason for the poor clustering result could be 
that the datasets within the same cluster are not 

perfectly aligned. In addition, the presence of 
anomalous points, as shown in the beginning of dataset 
#4, could also throw off the distances computed. 
Dynamic time warping can be used to mitigate the first 
issue to a certain extent. However, in this example, 
DTW does not seem to offer any improvement; 
clustering using DTW produces a similar dendrogram 
as the one shown in Figure 2. Furthermore, the high 
computational cost for dynamic time warping makes it 
a less than desirable choice of distance measure for 
large datasets. 

A more appropriate alternative to determine 
similarity between long sequences is to measure their 
similarity based on higher-level structures. Several 
structure- or model-based similarities have been 
proposed that extract global features such as 
autocorrelation, skewness, and model parameters from 
data [22, 25]. However, it is not trivial how to 
determine relevant features, and/or compute distances 
given these features.  

In this paper, we focus on finding structural 
similarities between time series data. Our method is 
robust and efficient, and it is inspired by the well-
known histogram-based, bag-of-words representation 
for text data. There are several advantages for our 
approach compared to existing structure-based method. 
First, since the overall representation is built from 
extracting the subsequences from data, we in fact take 
local structures into consideration as well as global 
structures. Furthermore, the incremental construction 
of the representation suggests that it can be used in the 
streaming data scenario. Our representation also allows 
users to understand the pattern distribution of the data 
by examining the resulting histograms. We show that 
our approach outperforms existing methods in the tasks 
of classification and clustering.  

The rest of the paper is organized as follows. In 
Section 2 we briefly discuss background and related 
work. Section 3 presents our methodology. In Section 
4, we show empirical results in clustering and 
classification. We conclude and discuss future work in 
Section 5. 
 
2. Background and Related Work 
 
In this section, we briefly discuss background and 
related work on time series similarity search. 
For concreteness, we begin with a definition of time 
series: 
 
Definition 1. Time Series: A time series T = t1,…,tm is 
an ordered set of m real-valued variables. 
 



Some distance measure Dist(C,M) needs to be defined 
in order to determine the similarity between time series 
objects. 
 
Definition 2. Distance: Dist is a function that has C 
and M as inputs and returns a nonnegative value R, 
which is said to be the distance from M to C.  
 
Each time series is normalized to have a mean of zero 
and a standard deviation of one before calling the 
distance function, since it is well understood that in 
virtually all settings, it is meaningless to compare time 
series with different offsets and amplitudes [15]. 

As mentioned, Euclidean distance and Dynamic 
Time Warping are among the most commonly used 
distance measures for time series. For this reason, we 
will use Euclidean distance for our new representation, 
and compare the results with using Euclidean distance 
and Dynamic Time Warping on raw data.  

In addition to comparing with well-known 
distance measures on the raw data, we also 
demonstrate that our method outperforms existing time 
series representations such as Discrete Fourier 
Transform (DFT) [1]. DFT approximates the signal 
with a linear combination of basis functions, and its 
coefficients represent global contribution of the signal. 
Another well-known representation is Discrete 
Wavelet Transform (DWT) [3]. Wavelets are 
mathematical functions that represent data or other 
functions in terms of the averages and differences of a 
prototype function, called the analyzing or mother 
wavelet. Contrary to DFT, wavelets are localized in 
time. Nevertheless, past studies have shown that DFT 
and DWT have similar performance in terms of 
accuracy.  

While there have been dozens of representations 
and distance measures proposed for shape-based 
similarity, there is relatively little work on finding 
structure-based similarity. Deng et al [4] proposed 
learning ARMA model on the time series, and using 
the model coefficients as the feature. This approach 
has an obvious limitation on the characteristics of input 
data. Ge and Smyth [8] proposed a deformable Markov 
Model template for temporal pattern matching, in 
which the data is converted to a piecewise linear 
model. However, this approach requires many 
parameters, and does not achieve better accuracy than 
Euclidean distance.  

Keogh et al. [16] proposed a compression-based 
distance measure that compares the co-compressibility 
between datasets. Motivated by Kolmogorov 
Complexity [16, 18] and promising results shown in 
similar work in bioinformatics and computational 
theory, the authors devised a new dissimilarity 
measure called CDM (Compression-based 

Dissimilarity Measure). Given two datasets (strings) x 
and y, their compression-based dissimilarity measure 
can be formulated as follows: 
 

! 

CDM(x,y) =
C(xy)

C(x) + C(y)
 

 
where C(xy) is the compressed size of the concatenated 
string x+y, C(x) and C(y) are the compressed sizes of 
the string x and y, respectively. In their paper, the 
authors show superior results compared to other 
existing structural similarity approaches. In this work, 
we will compare our method with CDM, the best 
structure-based (dis)similarity measure reported. We 
will show that our approach is highly competitive, with 
several additional advantages over existing methods. 
 
3. Finding Structural Similarity 
 

We propose a histogram-based similarity measure, 
using a representation similar to the one widely used 
for text data. In the Vector Space Model [24] for 
textual data, each document can be represented as a 
vector in the vector space. Each dimension of the 
vector corresponds to one word in the vocabulary, and 
the value of each component is the relative frequency 
of occurrences for the corresponding word in the 
document. As a result, an p-by-q term-to-document 
matrix X is constructed, where p is the number of 
unique terms in the text collection, q is the number of 
documents, and each element X(i,j) is the frequency of 
the ith word occurring in the jth document.  

This “bag of words” representation works well for 
documents. It is able to capture the structure or topic of 
a document, without knowing the exact locations or 
orderings of the word appearances. This suggests that 
we might be able to represent time series data in a 
similar fashion, i.e. as a combination of patterns from a 
finite set of patterns.  

There are two challenges if we represent time 
series data as a “bag of patterns.” The first challenge 
concerns with the definition and construction of the 
patterns “vocabulary.” The second challenge comes 
from the fact that time series data are composed of 
consecutive data points. There is no clear “delimiters” 
between patterns. Fortunately, a now widely used 
symbolic representation for time series, Symbolic 
Aggregate approximation (SAX) [18], provides 
solutions to these challenges. The intuition is to 
convert the time series into a set of SAX words, and 
then construct a word-sequence matrix using these 
SAX words. In the next section, we briefly discuss 
how SAX converts a time series data into strings.  



3.2 Symbolic Aggregate approximation 

Given a time series of length n, SAX produces a 
lower dimensional representation of a time series by 
transforming the original data into symbolic words.  
Two parameters are used to specify the size of the 
alphabet to use (i.e. α) and the size of the words to 
produce (i.e. w).  The algorithm begins by using a 
normalized version of the data and creating a 
Piecewise Aggregate Approximation (PAA). PAA 
reduces the dimensionality of a time series by 
transforming the original representation into a user 
defined number (i.e. w, typically w << n) of equal 
segments.  The segment values are determined by 
calculating the mean of the data points in that segment. 
The PAA values are then transformed into symbols by 
using a breakpoint table. The breakpoints in the 
breakpoint table are defined such that all the regions 
have approximately equi-probability based on a 
Gaussian distribution1. These breakpoints may be 
determined by looking them up in a statistical table. 
For example, Table 1 gives the breakpoints for values 
of α from 3 to 5. 
 

Table 1. A lookup table that contains the 
breakpoints that divides a Gaussian distribution 
into an arbitrary number (from 3 to 5) of 
equiprobable regions. 

 
  βi       a 
 

3 4 5 

β1 -0.43 -0.67 -0.84 
β2 0.43 0 -0.25 
β3  0.67 0.25 
β4   0.84 

 
Figure 3 summarizes how a time series is 

converted to PAA and then symbols, with parameters α 
= 3 and w = 8. 

 

 
Figure 3. Example of SAX for a time series. The 
time series above is transformed to the string 
cbccbaab, and the dimensionality is reduced from 
128 to 8. 

                                                             
1 The Gaussian assumption is the default, since in [18] the 

authors discover that most short time series subsequences 
follow the Gaussian distribution. However, the breakpoints 
can be adjusted based on the actual distribution of the data. 

3.1   Bag-of-Words Representation for Time Series 

Our algorithm works as follows. For each time 
series, we use a sliding window and extract every 
possible subsequence of length n (a user-defined 
parameter). Each subsequence is normalized to have 
mean of zero and standard deviation of one before it is 
converted to a SAX string. As a result, we obtain a set 
of strings, each of which corresponds to a subsequence 
in the time series. As noted in [18], given a 
subsequence Si, it is likely to be very similar to its 
neighboring subsequences, Si-1 and Si+1 (i.e. those that 
start one point to the left, and one point to the right of 
Si), especially if Si is in the smooth region of the time 
series. These subsequences are called trivial matches 
of Si. To avoid over-counting these trivial matches as 
true patterns, we need to perform numerosity 
reduction. Since SAX preserves the general shape of 
the sequence, in some cases we might see that multiple 
consecutive subsequences are mapped to the same 
string. In that case, we record only the first occurrence 
of the string, and ignore the rest until we encounter a 
string that is different. In other words, for each group 
of consecutive identical strings, we record only the first 
occurrence and count this group of occurrences only 
once. 

After we obtain the set of strings for each time 
series dataset, we can construct the word-sequence 
matrix. Given α and w as the parameters for SAX, we 
know the size of our entire collection of possible SAX 
strings, or our “dictionary.” There are αw possible SAX 
words. For example, for α = 4 and w = 4, our 
dictionary size is only 256. Clearly, the size of the 
dictionary increases exponentially with the increase of 
w. Experimental results in previous work [18] indicate 
that the choice of α does not critically affect the 
performance. Typically, a value of 3 or 4 works well 
for most time series datasets. In this paper, we choose 
α = 4.  

Having fixed α, we now have to determine the 
value for w. While the best choice of w is data-
dependent, generally speaking, time series with smooth 
patterns can be described with a small w, and those 
with rapidly changing patterns prefer large w to capture 
the critical changes. We choose w = 8 for our 
experiments, with sliding window length of 100~200. 

With α = 4 and w = 8, the resulting dictionary size 
is αw = 48 = 65536, which might seem quite large. 
However, as is the case for text documents, the matrix 
is likely to be sparse. Therefore, we can eliminate the 
words that never occur in the data, and/or store the 
matrix in a compressed format such as the Compressed 
Column Storage (CCS) format [5]. In our experiments, 



we find that only about 10% of all words have some 
subsequence mapped to it. 

The construction of the temporal “bag of patterns” 
matrix is straightforward. The matrix M is a word-
sequence matrix, where each row i denotes a SAX 
word (i.e. a pattern) from the dictionary; each column j 
denotes a time series dataset; and each Mi,j stores the 
frequency of word i occurring in time series j. Within 
each matrix cell Mi,j, we can also store a list of pointers 
to the subsequence in time series j (typically on disk) 
that are mapped to word i. The lists of pointers will 
enable us to perform subsequence matching. However, 
since we are focused on finding structural similarities 
between time series data, we will contend ourselves 
with storing just the frequency in the matrix for now. 

 The matrix provides a summary of time series 
data in terms of the frequency of occurrence for each 
pattern. Once we build the matrix M, we can then use 
any applicable distance measures or dimensionality 
reduction techniques to computes the similarity 
between different time series datasets. Figure 4 shows 
a visual example of this representation. Like the bag-
of-words representation for documents, the orderings 
of words are lost. However, for long time series data, 
this level of details is exactly the reason why 
conventional shaped-based approaches do not work 
well.  

 
Figure 4. A visual example of the bag-of-patterns 

representation for time series. Each row denotes a SAX 
word, and each column denotes a time series data. We could 
also store, within each cell, pointers to corresponding 
subsequences. 
 
4. Empirical Evaluation 
 

In this section, we present empirical evaluation of 
our method on clustering and classification.  

4.1   Clustering 

For this part of experiments, we demonstrate the 
effectiveness of our approach in clustering. We show 
that our representation out-perform existing approaches 
and produce more accurate clustering results. 

 
4.1.1 Hierarchical Clustering 
 

One of the most widely used clustering approaches 
is hierarchical clustering [11]. Hierarchical clustering 
computes pairwise distances of the objects (or groups 
of objects) and produces a nested hierarchy of the 
clusters. It has several advantages over other clustering 
methods. More specifically, it offers great visualization 
power with the hierarchy of clusters, and it requires no 
input parameters. However, its intensive computational 
complexity makes it infeasible for large datasets. 

In Figure 2, we showed a simple example on 
hierarchical clustering where both Euclidean Distance 
and Dynamic Time Warping on the raw data fail to 
find the correct clusters. In this part of experiment, as a 
sanity check, we show the clustering result using our 
bag-of-patterns approach. We use Euclidean distance 
to compute the similarity between the histograms (i.e. 
the column vectors). Figure 5 shows the resulting 
dendrogram. Note we are now clustering on the 
transformed time series, or the histograms of the 
patterns. For clarity, we also plot the original, 
corresponding time series to the left of the histograms. 
We can see clearly from the histograms that the time 
series clustered together have similar pattern 
distribution. 

 
Figure 5. New clustering result on the same data shown in 
Figure 2. This time, we use our histogram-based, bag-of-
patterns approach, and combine it with Euclidean distance. 
The two clusters are well separated. 

While the example shown above gives us a first 
indication that our approach can find clusters while 
shape-based approaches cannot, with only six datasets, 
the example is too small and contrived to offer any 
conclusive insight. Therefore, we perform more 
hierarchical clustering experiments on larger medical 
datasets. We compare our approach with the following 
methods: (1) Euclidean distance on raw time series, (2) 
Dynamic Time Warping on raw time series, (3) 
Euclidean distance on DFT coefficients, and (4) CDM 
proposed by Keogh et al [16]. 

We performed hierarchical clustering on the ECG 
dataset presented in [16]. This dataset contains 20 ECG 



records that form 4 clusters. Details on the datasets can 
be found in [16]. Each record is of length 15,000. We 
will call this dataset ECG1. Our results are comparable 
to that reported in [16]. Regardless of the high level of 
noises in the data, all 4 clusters are correctly identified. 

 
Clustering result using the Bag-of-Patterns approach 

 
Figure 6. Clustering result on 20 ECG datasets, using 

our bag-of-patterns approach. Each record is 15,000 
points long.  

While CDM produces similar results, our approach 
offers several advantages. With our approach, we 
cluster on the pattern histograms. We can see the 
distribution of patterns from these histograms, and 
understand the underlying structures of the data. 
Furthermore, since we extract subsequences and use 
them to build the final representation, our approach is 
potentially suitable for streaming data. For clarity, we 
also plot the original, corresponding time series next to 
the histograms. 

Next, we compare our results with the three other 
methods that we mentioned. Figure 7 shows the 
clustering results using Euclidean distance on the raw 
data. 
 

Clustering result using Euclidean Distance on raw data 

 
Figure 7. Clustering result on raw ECG1 data using 
Euclidean Distance. Only 9 datasets are correctly 
clustered (#11, #12, #14, #15, #16-#20) 

 

When we repeat the experiment using DTW, we 
had to sample down the data (20:1), due to its high 
computational cost. Our machine simply could not 
handle it. With DTW on the shorter datasets, the result 
is similar to that of Euclidean distance on the full 
datasets. To show that this poor result is not just due to 
the loss of data from sampling, we re-ran the 
experiment using our bag-of-patterns representation on 
the sampled, shorter datasets, and obtained the same 
result as shown in Figure 6. 

For the final comparison, we convert the time series 
by DFT, and cluster the data on the DFT coefficients. 
One of the advantages of DFT is that it offers 
dimensionality reduction. As demonstrated in [1], most 
“energy” concentrates on the first few DFT 
coefficients. Therefore, we can use only a few DFT 
coefficients to approximate the data, while still 
preserving the general shape of the data. If we use all 
the coefficients, then we get back the original 
sequence. In this experiment, we used 100 coefficients 
(compared to 15,000 data points in the raw data). 
Similar to using the raw data, only 8 pairs of data are 
cleanly clustered. Figure 8 shows the result. 

 
Clustering result using Discrete Fourier Transform (DFT) and Euclidean Distance 

 
Figure 8. Clustering result on ECG data using 1000 DFT 
coefficients  

 
4.1.2 Partitional Clustering 
 

Although hierarchical clustering is a good sanity 
check from its visualization power, it has limited 
utility due to its poor scalability. The most commonly 
used data mining clustering algorithm is k-means [2, 
20, 21]. We performed k-means using the Euclidean 
distance on the raw data, and on our bag-of-patterns 
representation. The basic intuition behind k-means 
(and in general, iterative refinement algorithms) is the 
continuous reassignment of objects into different 
clusters, so that the intra-cluster distance is minimized. 
We performed k-means using the Euclidean distance 
on the raw data, and on our histogram-based 



representation. CDM is not included in this 
experiment, as it’s unclear how to define the centroid 
of a cluster [16]. 

For this experiment, we extracted 250 records 
from the PhysioNet archive. Each record contains 2048 
points. These records are extracted from various 
databases containing different vital signs, or patients 
with different heart conditions. We separated the 
records into 5 classes, and labeled them according to 
the databases that they are extracted from. We will call 
this dataset ECG2. Figure 9 shows one example from 
each of the 5 classes in ECG2 dataset. 
 

Examples from each of the 5 classes of ECG2 data 

 
Figure 9. One example from each of the 5 classes in ECG2 
dataset. 

 
We ran k-means algorithm 10 times, and recorded the 
clustering labels obtained from the run with the 
smallest objective function (i.e. sum of intra-cluster 
distances). We then compare our cluster labels with the 
true labels, and compute the clustering quality using 
the evaluation method proposed by [7]. The evaluation 
method compares the similarity between two sets of 
cluster labels, and returns a number between 0 and 1 
denoting how similar they are. Ideally, we would like 
the number to be as close to 1 as possible. Our 
approach achieves the best clustering quality (0.7133 
vs. 0.4644). The results are shown in Table 2. 

4.2   Classification 

Classification of time series has attracted much interest 
from the data mining community [10, 22, 23, 24]. For 
the classification experiments, we will consider the 
most common classification algorithm, nearest 
neighbor classification. To demonstrate the 
effectiveness on 1-nearest-neighbor classification, we 
use the same ECG2 dataset. We use the leave-one-out 
cross validation, and count the number of correctly 
classified objects, cc. The accuracy is the ratio of cc 
and the total number of objects (i.e. 250). For this 
experiment, we also add Dynamic Time Warping 

(again, with reduced length). The accuracy results are 
show in Table 2. The improvement is astounding. For 
our approach, the accuracy of 0.996 means that there is 
only 1 misclassified object, out of 250 objects. 
 

Table 2. Accuracy of our approach on 
clustering and classification compared to other 
methods. Our approach achieves the best 
accuracy for all tasks. All numbers are between 
0 and 1. 

 Euclidean DT
W 

Bag-of-Patterns 

k-means 0.4644 N/A 0.7133 
NN 0.44 0.728 0.996 

 
 
5. Conclusion 
 
Most existing work on time series similarity search 
focuses on finding shaped-based similarity. While 
these shape-based approaches work reasonably well for 
short time series data, the accuracy typically degrades 
if the sequences are long. For long time sequences, it is 
more appropriate to measure the similarity by looking 
at their higher-level structures, rather than point-to-
point, local comparisons.  The need for structure-based 
representation is similar to that for textual data: if we 
are to compare two documents, it’s more meaningful to 
use a higher-level representation instead of comparing 
strings using edit distance. 

In this work, we proposed a histogram-based 
similarity measure. Similar to the bag-of-words 
representation for textual data, our approach counts the 
number of occurrences of each pattern in the time 
series. We then compare the frequencies (or the 
histograms) of patterns in the time series to obtain a 
similarity measure.  

Our experimental result show that our approach is 
superior to existing approaches in the tasks of 
clustering and classification. Furthermore, our 
approach has several advantages over existing 
structure-based similarity measures. Specifically, our 
approach considers local structures as well as global 
structure, by using subsequences to build our final 
representation. Our representation allows users to 
understand the pattern distribution by examining the 
histograms. Furthermore, our representation is suitable 
for streaming data, since the histogram vectors are built 
incrementally. 

We would like to note that since our approach 
determines similarity based on structures of the data, 
the input sequences should be reasonably long, or long 
enough such that the structures (or lack of structures) 
can be meaningfully captured and summarized. For 



short time series, off-the-shelf distance measures such 
as Dynamic Time Warping or Euclidean distance or 
dimensionality reduction techniques work reasonably 
well. In our experiments, the datasets are at least 1000 
in length. 

For future work, we will consider using the 
representation to index the subsequences of time series 
to allow fast subsequence search. This can be done by 
extending our representation and storing the 
subsequence pointers in the matrix, in addition to the 
frequencies of words. 
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