
Finding Structurally Different Medical Data

Jessica Lin Yuan Li

Computer Science Department
George Mason University

jessica@cs.gmu.edu ylif@gmu.edu

Abstract

For more than one decade, time series similarity

search has been given a great deal of attention by data
mining researchers. As a result, many time series
representations and distance measures have been
proposed. However, most existing work on time series
similarity search focuses on finding shape-based
similarity. While some of the existing approaches work
well for short time series data, they typically fail to
produce satisfactory results when the sequence is long.
For long sequences, it is more appropriate to consider
the similarity based on the higher-level structures. This
is particularly true for medical time series, as they
often are not perfectly aligned. In this work, we present
a histogram-based representation for time series data,
similar to the “bag of words” approach that is widely
accepted by the text mining and information retrieval
communities. We show that our approach outperforms
the existing methods in clustering and classification on
medical time series obtained from PhysioBank.

1. Introduction

Time series similarity search has been a major research
topic for time series data mining for more than one
decade. As a result, many time series representations
and distance measures have been proposed [3, 6, 12,
15, 17, 18]. There are two kinds of similarities: shape-
based similarity and structure-based similarity [13].
The former determines the similarity of two datasets by
comparing their local shapes, whereas the latter
determines the similarity by comparing their global
structures. Most existing approaches focus on finding
shape-based similarity. While some of these
approaches work well for short time series data, they
typically fail to produce satisfactory results with long
time series data. This is particularly true for medical
time series such as Electrocardiograms (ECG), as the

data often are not perfectly aligned. To understand the
need for a higher-level, structure-based similarity
measure for long time series data, consider the scenario
for textual data. If we are to compare two strings, we
can use the string edit distance to compute their
similarity. However, if we are to compare two
documents, it is more meaningful to use a higher-level
representation that can capture the structure or even
semantic of the document. Below, we describe the two
types of similarities in time series in more detail.
Given two sequences Q and C, shape-based similarity
determines how similar these two datasets are based on
local comparisons. The most well-known distance
measure in data mining literature is the Euclidean
distance, for which sequences are aligned in the point-
to-point fashion, i.e. the ith point in sequence A is
matched against the ith point in sequence B. While
Euclidean distance works well in general, it does not
always produce accurate results when data is shifted,
even slightly, along the time axis. For example, the top
and bottom sequences in Figure 1 (both are ECG data)
appear to have similar shapes. In fact, the sequence
below is the shifted version of the sequence above.
However, the slight shifts along the time axis will
result in a large distance between the two sequences.

Another distance measure, Dynamic Time
Warping (DTW) [12, 23], overcomes this limitation by
using dynamic programming technique to determine
the best alignment that will produce the optimal
distance. The parameter, warping length, determines
how much warping is allowed to find the best
alignment. A large warping window causes the search
to become prohibitively expensive, as well as possibly
allowing meaningless matching between points that are
far apart. On the other hand, a small window might
prevent us from finding the best solution. Euclidean
distance can be seen as a special case of DTW, where
there is no warping allowed. Figure 1 demonstrates the
difference between the two distance measures. Note
that with Euclidean distance, the dips and peaks in the

sequences are mis-aligned and therefore not matched,
whereas with DTW, the dips and peaks are aligned
with their corresponding points from the other
sequence. While DTW is a more robust distance
measure than Euclidean Distance, it is also a lot more
computationally intensive than Euclidean Distance.
Keogh [12] proposed an indexing scheme for DTW
that allows faster retrieval. Nevertheless, DTW is still
at least several orders slower than Euclidean distance.

Figure 1. (Left) Alignment for Euclidean distance between
two sequence data. (Right) Alignment for Dynamic Time
Warping distance between two sequence data.

Shape-based similarities work well for short time
series or subsequences; however, for long sequence
data, they produce poor results. To illustrate this, we
extracted subsequences of length 2048 from six
different records on PhysioNet [10], an online medical
archive containing digital recordings of physiological
signals. The first three datasets (#1-#3) are
measurements on respiratory rates, and the last three
datasets (#4-#6) are ECGs. As we can clearly see in
Figure 2, these two types of vital signs have very
different structures. Visually we can separate the two
classes with no difficulty. However, if we cluster them
using Euclidean distance as the distance measure, the
result is disappointing. Figure 2 shows the hierarchical
clustering results using Euclidean distance. The
dendrogram illustrates that while datasets #5 and #6
are correctly clustered (i.e. they share a common parent
node), the rest are not.

Figure 2. Result of hierarchical clustering using
Euclidean distance on raw data. In fact, using DTW
produces the same result.

One reason for the poor clustering result could be
that the datasets within the same cluster are not

perfectly aligned. In addition, the presence of
anomalous points, as shown in the beginning of dataset
#4, could also throw off the distances computed.
Dynamic time warping can be used to mitigate the first
issue to a certain extent. However, in this example,
DTW does not seem to offer any improvement;
clustering using DTW produces a similar dendrogram
as the one shown in Figure 2. Furthermore, the high
computational cost for dynamic time warping makes it
a less than desirable choice of distance measure for
large datasets.

A more appropriate alternative to determine
similarity between long sequences is to measure their
similarity based on higher-level structures. Several
structure- or model-based similarities have been
proposed that extract global features such as
autocorrelation, skewness, and model parameters from
data [22, 25]. However, it is not trivial how to
determine relevant features, and/or compute distances
given these features.

In this paper, we focus on finding structural
similarities between time series data. Our method is
robust and efficient, and it is inspired by the well-
known histogram-based, bag-of-words representation
for text data. There are several advantages for our
approach compared to existing structure-based method.
First, since the overall representation is built from
extracting the subsequences from data, we in fact take
local structures into consideration as well as global
structures. Furthermore, the incremental construction
of the representation suggests that it can be used in the
streaming data scenario. Our representation also allows
users to understand the pattern distribution of the data
by examining the resulting histograms. We show that
our approach outperforms existing methods in the tasks
of classification and clustering.

The rest of the paper is organized as follows. In
Section 2 we briefly discuss background and related
work. Section 3 presents our methodology. In Section
4, we show empirical results in clustering and
classification. We conclude and discuss future work in
Section 5.

2. Background and Related Work

In this section, we briefly discuss background and
related work on time series similarity search.
For concreteness, we begin with a definition of time
series:

Definition 1. Time Series: A time series T = t1,…,tm is
an ordered set of m real-valued variables.

Some distance measure Dist(C,M) needs to be defined
in order to determine the similarity between time series
objects.

Definition 2. Distance: Dist is a function that has C
and M as inputs and returns a nonnegative value R,
which is said to be the distance from M to C.

Each time series is normalized to have a mean of zero
and a standard deviation of one before calling the
distance function, since it is well understood that in
virtually all settings, it is meaningless to compare time
series with different offsets and amplitudes [15].

As mentioned, Euclidean distance and Dynamic
Time Warping are among the most commonly used
distance measures for time series. For this reason, we
will use Euclidean distance for our new representation,
and compare the results with using Euclidean distance
and Dynamic Time Warping on raw data.

In addition to comparing with well-known
distance measures on the raw data, we also
demonstrate that our method outperforms existing time
series representations such as Discrete Fourier
Transform (DFT) [1]. DFT approximates the signal
with a linear combination of basis functions, and its
coefficients represent global contribution of the signal.
Another well-known representation is Discrete
Wavelet Transform (DWT) [3]. Wavelets are
mathematical functions that represent data or other
functions in terms of the averages and differences of a
prototype function, called the analyzing or mother
wavelet. Contrary to DFT, wavelets are localized in
time. Nevertheless, past studies have shown that DFT
and DWT have similar performance in terms of
accuracy.

While there have been dozens of representations
and distance measures proposed for shape-based
similarity, there is relatively little work on finding
structure-based similarity. Deng et al [4] proposed
learning ARMA model on the time series, and using
the model coefficients as the feature. This approach
has an obvious limitation on the characteristics of input
data. Ge and Smyth [8] proposed a deformable Markov
Model template for temporal pattern matching, in
which the data is converted to a piecewise linear
model. However, this approach requires many
parameters, and does not achieve better accuracy than
Euclidean distance.

Keogh et al. [16] proposed a compression-based
distance measure that compares the co-compressibility
between datasets. Motivated by Kolmogorov
Complexity [16, 18] and promising results shown in
similar work in bioinformatics and computational
theory, the authors devised a new dissimilarity
measure called CDM (Compression-based

Dissimilarity Measure). Given two datasets (strings) x
and y, their compression-based dissimilarity measure
can be formulated as follows:

!

CDM(x,y) =
C(xy)

C(x) + C(y)

where C(xy) is the compressed size of the concatenated
string x+y, C(x) and C(y) are the compressed sizes of
the string x and y, respectively. In their paper, the
authors show superior results compared to other
existing structural similarity approaches. In this work,
we will compare our method with CDM, the best
structure-based (dis)similarity measure reported. We
will show that our approach is highly competitive, with
several additional advantages over existing methods.

3. Finding Structural Similarity

We propose a histogram-based similarity measure,
using a representation similar to the one widely used
for text data. In the Vector Space Model [24] for
textual data, each document can be represented as a
vector in the vector space. Each dimension of the
vector corresponds to one word in the vocabulary, and
the value of each component is the relative frequency
of occurrences for the corresponding word in the
document. As a result, an p-by-q term-to-document
matrix X is constructed, where p is the number of
unique terms in the text collection, q is the number of
documents, and each element X(i,j) is the frequency of
the ith word occurring in the jth document.

This “bag of words” representation works well for
documents. It is able to capture the structure or topic of
a document, without knowing the exact locations or
orderings of the word appearances. This suggests that
we might be able to represent time series data in a
similar fashion, i.e. as a combination of patterns from a
finite set of patterns.

There are two challenges if we represent time
series data as a “bag of patterns.” The first challenge
concerns with the definition and construction of the
patterns “vocabulary.” The second challenge comes
from the fact that time series data are composed of
consecutive data points. There is no clear “delimiters”
between patterns. Fortunately, a now widely used
symbolic representation for time series, Symbolic
Aggregate approximation (SAX) [18], provides
solutions to these challenges. The intuition is to
convert the time series into a set of SAX words, and
then construct a word-sequence matrix using these
SAX words. In the next section, we briefly discuss
how SAX converts a time series data into strings.

3.2 Symbolic Aggregate approximation

Given a time series of length n, SAX produces a
lower dimensional representation of a time series by
transforming the original data into symbolic words.
Two parameters are used to specify the size of the
alphabet to use (i.e. α) and the size of the words to
produce (i.e. w). The algorithm begins by using a
normalized version of the data and creating a
Piecewise Aggregate Approximation (PAA). PAA
reduces the dimensionality of a time series by
transforming the original representation into a user
defined number (i.e. w, typically w << n) of equal
segments. The segment values are determined by
calculating the mean of the data points in that segment.
The PAA values are then transformed into symbols by
using a breakpoint table. The breakpoints in the
breakpoint table are defined such that all the regions
have approximately equi-probability based on a
Gaussian distribution1. These breakpoints may be
determined by looking them up in a statistical table.
For example, Table 1 gives the breakpoints for values
of α from 3 to 5.

Table 1. A lookup table that contains the
breakpoints that divides a Gaussian distribution
into an arbitrary number (from 3 to 5) of
equiprobable regions.

 βi a

3 4 5

β1 -0.43 -0.67 -0.84
β2 0.43 0 -0.25
β3 0.67 0.25
β4 0.84

Figure 3 summarizes how a time series is

converted to PAA and then symbols, with parameters α
= 3 and w = 8.

Figure 3. Example of SAX for a time series. The
time series above is transformed to the string
cbccbaab, and the dimensionality is reduced from
128 to 8.

1 The Gaussian assumption is the default, since in [18] the

authors discover that most short time series subsequences
follow the Gaussian distribution. However, the breakpoints
can be adjusted based on the actual distribution of the data.

3.1 Bag-of-Words Representation for Time Series

Our algorithm works as follows. For each time
series, we use a sliding window and extract every
possible subsequence of length n (a user-defined
parameter). Each subsequence is normalized to have
mean of zero and standard deviation of one before it is
converted to a SAX string. As a result, we obtain a set
of strings, each of which corresponds to a subsequence
in the time series. As noted in [18], given a
subsequence Si, it is likely to be very similar to its
neighboring subsequences, Si-1 and Si+1 (i.e. those that
start one point to the left, and one point to the right of
Si), especially if Si is in the smooth region of the time
series. These subsequences are called trivial matches
of Si. To avoid over-counting these trivial matches as
true patterns, we need to perform numerosity
reduction. Since SAX preserves the general shape of
the sequence, in some cases we might see that multiple
consecutive subsequences are mapped to the same
string. In that case, we record only the first occurrence
of the string, and ignore the rest until we encounter a
string that is different. In other words, for each group
of consecutive identical strings, we record only the first
occurrence and count this group of occurrences only
once.

After we obtain the set of strings for each time
series dataset, we can construct the word-sequence
matrix. Given α and w as the parameters for SAX, we
know the size of our entire collection of possible SAX
strings, or our “dictionary.” There are αw possible SAX
words. For example, for α = 4 and w = 4, our
dictionary size is only 256. Clearly, the size of the
dictionary increases exponentially with the increase of
w. Experimental results in previous work [18] indicate
that the choice of α does not critically affect the
performance. Typically, a value of 3 or 4 works well
for most time series datasets. In this paper, we choose
α = 4.

Having fixed α, we now have to determine the
value for w. While the best choice of w is data-
dependent, generally speaking, time series with smooth
patterns can be described with a small w, and those
with rapidly changing patterns prefer large w to capture
the critical changes. We choose w = 8 for our
experiments, with sliding window length of 100~200.

With α = 4 and w = 8, the resulting dictionary size
is αw = 48 = 65536, which might seem quite large.
However, as is the case for text documents, the matrix
is likely to be sparse. Therefore, we can eliminate the
words that never occur in the data, and/or store the
matrix in a compressed format such as the Compressed
Column Storage (CCS) format [5]. In our experiments,

we find that only about 10% of all words have some
subsequence mapped to it.

The construction of the temporal “bag of patterns”
matrix is straightforward. The matrix M is a word-
sequence matrix, where each row i denotes a SAX
word (i.e. a pattern) from the dictionary; each column j
denotes a time series dataset; and each Mi,j stores the
frequency of word i occurring in time series j. Within
each matrix cell Mi,j, we can also store a list of pointers
to the subsequence in time series j (typically on disk)
that are mapped to word i. The lists of pointers will
enable us to perform subsequence matching. However,
since we are focused on finding structural similarities
between time series data, we will contend ourselves
with storing just the frequency in the matrix for now.

 The matrix provides a summary of time series
data in terms of the frequency of occurrence for each
pattern. Once we build the matrix M, we can then use
any applicable distance measures or dimensionality
reduction techniques to computes the similarity
between different time series datasets. Figure 4 shows
a visual example of this representation. Like the bag-
of-words representation for documents, the orderings
of words are lost. However, for long time series data,
this level of details is exactly the reason why
conventional shaped-based approaches do not work
well.

Figure 4. A visual example of the bag-of-patterns

representation for time series. Each row denotes a SAX
word, and each column denotes a time series data. We could
also store, within each cell, pointers to corresponding
subsequences.

4. Empirical Evaluation

In this section, we present empirical evaluation of
our method on clustering and classification.

4.1 Clustering

For this part of experiments, we demonstrate the
effectiveness of our approach in clustering. We show
that our representation out-perform existing approaches
and produce more accurate clustering results.

4.1.1 Hierarchical Clustering

One of the most widely used clustering approaches
is hierarchical clustering [11]. Hierarchical clustering
computes pairwise distances of the objects (or groups
of objects) and produces a nested hierarchy of the
clusters. It has several advantages over other clustering
methods. More specifically, it offers great visualization
power with the hierarchy of clusters, and it requires no
input parameters. However, its intensive computational
complexity makes it infeasible for large datasets.

In Figure 2, we showed a simple example on
hierarchical clustering where both Euclidean Distance
and Dynamic Time Warping on the raw data fail to
find the correct clusters. In this part of experiment, as a
sanity check, we show the clustering result using our
bag-of-patterns approach. We use Euclidean distance
to compute the similarity between the histograms (i.e.
the column vectors). Figure 5 shows the resulting
dendrogram. Note we are now clustering on the
transformed time series, or the histograms of the
patterns. For clarity, we also plot the original,
corresponding time series to the left of the histograms.
We can see clearly from the histograms that the time
series clustered together have similar pattern
distribution.

Figure 5. New clustering result on the same data shown in
Figure 2. This time, we use our histogram-based, bag-of-
patterns approach, and combine it with Euclidean distance.
The two clusters are well separated.

While the example shown above gives us a first
indication that our approach can find clusters while
shape-based approaches cannot, with only six datasets,
the example is too small and contrived to offer any
conclusive insight. Therefore, we perform more
hierarchical clustering experiments on larger medical
datasets. We compare our approach with the following
methods: (1) Euclidean distance on raw time series, (2)
Dynamic Time Warping on raw time series, (3)
Euclidean distance on DFT coefficients, and (4) CDM
proposed by Keogh et al [16].

We performed hierarchical clustering on the ECG
dataset presented in [16]. This dataset contains 20 ECG

records that form 4 clusters. Details on the datasets can
be found in [16]. Each record is of length 15,000. We
will call this dataset ECG1. Our results are comparable
to that reported in [16]. Regardless of the high level of
noises in the data, all 4 clusters are correctly identified.

Clustering result using the Bag-of-Patterns approach

Figure 6. Clustering result on 20 ECG datasets, using

our bag-of-patterns approach. Each record is 15,000
points long.

While CDM produces similar results, our approach
offers several advantages. With our approach, we
cluster on the pattern histograms. We can see the
distribution of patterns from these histograms, and
understand the underlying structures of the data.
Furthermore, since we extract subsequences and use
them to build the final representation, our approach is
potentially suitable for streaming data. For clarity, we
also plot the original, corresponding time series next to
the histograms.

Next, we compare our results with the three other
methods that we mentioned. Figure 7 shows the
clustering results using Euclidean distance on the raw
data.

Clustering result using Euclidean Distance on raw data

Figure 7. Clustering result on raw ECG1 data using
Euclidean Distance. Only 9 datasets are correctly
clustered (#11, #12, #14, #15, #16-#20)

When we repeat the experiment using DTW, we
had to sample down the data (20:1), due to its high
computational cost. Our machine simply could not
handle it. With DTW on the shorter datasets, the result
is similar to that of Euclidean distance on the full
datasets. To show that this poor result is not just due to
the loss of data from sampling, we re-ran the
experiment using our bag-of-patterns representation on
the sampled, shorter datasets, and obtained the same
result as shown in Figure 6.

For the final comparison, we convert the time series
by DFT, and cluster the data on the DFT coefficients.
One of the advantages of DFT is that it offers
dimensionality reduction. As demonstrated in [1], most
“energy” concentrates on the first few DFT
coefficients. Therefore, we can use only a few DFT
coefficients to approximate the data, while still
preserving the general shape of the data. If we use all
the coefficients, then we get back the original
sequence. In this experiment, we used 100 coefficients
(compared to 15,000 data points in the raw data).
Similar to using the raw data, only 8 pairs of data are
cleanly clustered. Figure 8 shows the result.

Clustering result using Discrete Fourier Transform (DFT) and Euclidean Distance

Figure 8. Clustering result on ECG data using 1000 DFT
coefficients

4.1.2 Partitional Clustering

Although hierarchical clustering is a good sanity
check from its visualization power, it has limited
utility due to its poor scalability. The most commonly
used data mining clustering algorithm is k-means [2,
20, 21]. We performed k-means using the Euclidean
distance on the raw data, and on our bag-of-patterns
representation. The basic intuition behind k-means
(and in general, iterative refinement algorithms) is the
continuous reassignment of objects into different
clusters, so that the intra-cluster distance is minimized.
We performed k-means using the Euclidean distance
on the raw data, and on our histogram-based

representation. CDM is not included in this
experiment, as it’s unclear how to define the centroid
of a cluster [16].

For this experiment, we extracted 250 records
from the PhysioNet archive. Each record contains 2048
points. These records are extracted from various
databases containing different vital signs, or patients
with different heart conditions. We separated the
records into 5 classes, and labeled them according to
the databases that they are extracted from. We will call
this dataset ECG2. Figure 9 shows one example from
each of the 5 classes in ECG2 dataset.

Examples from each of the 5 classes of ECG2 data

Figure 9. One example from each of the 5 classes in ECG2
dataset.

We ran k-means algorithm 10 times, and recorded the
clustering labels obtained from the run with the
smallest objective function (i.e. sum of intra-cluster
distances). We then compare our cluster labels with the
true labels, and compute the clustering quality using
the evaluation method proposed by [7]. The evaluation
method compares the similarity between two sets of
cluster labels, and returns a number between 0 and 1
denoting how similar they are. Ideally, we would like
the number to be as close to 1 as possible. Our
approach achieves the best clustering quality (0.7133
vs. 0.4644). The results are shown in Table 2.

4.2 Classification

Classification of time series has attracted much interest
from the data mining community [10, 22, 23, 24]. For
the classification experiments, we will consider the
most common classification algorithm, nearest
neighbor classification. To demonstrate the
effectiveness on 1-nearest-neighbor classification, we
use the same ECG2 dataset. We use the leave-one-out
cross validation, and count the number of correctly
classified objects, cc. The accuracy is the ratio of cc
and the total number of objects (i.e. 250). For this
experiment, we also add Dynamic Time Warping

(again, with reduced length). The accuracy results are
show in Table 2. The improvement is astounding. For
our approach, the accuracy of 0.996 means that there is
only 1 misclassified object, out of 250 objects.

Table 2. Accuracy of our approach on
clustering and classification compared to other
methods. Our approach achieves the best
accuracy for all tasks. All numbers are between
0 and 1.

 Euclidean DT
W

Bag-of-Patterns

k-means 0.4644 N/A 0.7133
NN 0.44 0.728 0.996

5. Conclusion

Most existing work on time series similarity search
focuses on finding shaped-based similarity. While
these shape-based approaches work reasonably well for
short time series data, the accuracy typically degrades
if the sequences are long. For long time sequences, it is
more appropriate to measure the similarity by looking
at their higher-level structures, rather than point-to-
point, local comparisons. The need for structure-based
representation is similar to that for textual data: if we
are to compare two documents, it’s more meaningful to
use a higher-level representation instead of comparing
strings using edit distance.

In this work, we proposed a histogram-based
similarity measure. Similar to the bag-of-words
representation for textual data, our approach counts the
number of occurrences of each pattern in the time
series. We then compare the frequencies (or the
histograms) of patterns in the time series to obtain a
similarity measure.

Our experimental result show that our approach is
superior to existing approaches in the tasks of
clustering and classification. Furthermore, our
approach has several advantages over existing
structure-based similarity measures. Specifically, our
approach considers local structures as well as global
structure, by using subsequences to build our final
representation. Our representation allows users to
understand the pattern distribution by examining the
histograms. Furthermore, our representation is suitable
for streaming data, since the histogram vectors are built
incrementally.

We would like to note that since our approach
determines similarity based on structures of the data,
the input sequences should be reasonably long, or long
enough such that the structures (or lack of structures)
can be meaningfully captured and summarized. For

short time series, off-the-shelf distance measures such
as Dynamic Time Warping or Euclidean distance or
dimensionality reduction techniques work reasonably
well. In our experiments, the datasets are at least 1000
in length.

For future work, we will consider using the
representation to index the subsequences of time series
to allow fast subsequence search. This can be done by
extending our representation and storing the
subsequence pointers in the matrix, in addition to the
frequencies of words.

6 References

1. Agrawal, R., Faloutsos, C. & Swami, A. (1993).
Efficient Similarity Search in Sequence Databases. In
proceedings of the 4th Int'l Conference on Foundations
of Data Organization and Algorithms. Chicago, IL, Oct
13-15. pp 69-84.

2. Bradley, P., Fayyad, U., & Reina, C. (1998). Scaling
Clustering Algorithms to Large Databases. In
proceedings of the 4th Int'l Conference on Knowledge
Discovery and Data Mining. New York, NY, Aug 27-
31. pp 9-15.

3. K. Chan and A. W. Fu. Efficient Time Series Matching
by Wavelets. In proceedings of the 15th IEEE Int'l
Conference on Data Engineering. Sydney, Australia.
Mar 23-26, 1999. pp. 126-133

4. K. Deng, A. Moore, and M. Nechyba, "Learning to
Recognize Time Series: Combining ARMA models
with Memory-based Learning," IEEE Int. Symp. on
Computational Intelligence in Robotics and
Automation, Vol. 1, 1997, pp. 246 – 250.

5. A. Ekambaram and E. Montagne, “An Alternative.
Compressed Storage Format for Sparse Matrices”,
ISCIS. XVIII - Eighteenth International Symposium on
Computer and Information Sciences.

6. C. Faloutsos, M. Ranganathan, and Y. Manolopulos.
Fast Subsequence Matching in Time-Series Databases.
SIGMOD Record. vol. 23. pp. 419-429. 1994.

7. Gavrilov, M., Anguelov, D., Indyk, P., Motwahl, R.
Mining the stock market: which measure is best? Proc.
of the 6th ACM SIGKDD, 2000

8. Ge, X. & Smyth, P. Deformable Markov model
templates for time-series pattern matching. In
proceedings of the 6th ACM SIGKDD. Boston, MA,
Aug 20-23, 2000. pp 81-90.

9. P. Geurts. Pattern Extraction for Time Series
Classification. In proceedings of the 5th European
Conference on Principles of Data Mining and
Knowledge Discovery. Freiburg, Germany. 2001. pp.
115-127

10. Goldberger, A.L., Amaral, L., Glass, L, Hausdorff, J.M.,
Ivanov, P.Ch., Mark, R.G., Mietus, J.E., Moody, G.B.,
Peng, C.K., Stanley, H.E.. PhysioBank, PhysioToolkit,
and PhysioNet: Circulation 101(23):e215-e220.
Discovery, 1(3), 1997.

11. Johnson,S.C. 1967, "Hierarchical Clustering Schemes"
Psychometrika, 2:241-254.

12. Keogh, E. 2002. Exact indexing of dynamic time
warping. In Proceedings of the 28th international
Conference on Very Large Data Bases (Hong Kong,
China, August 20 - 23, 2002).

13. Keogh, E. 2004. Tutorial in SIGKDD 2004. Data
Mining and Machine Learning in Time Series
Databases.

14. Keogh, E. & Folias, T. The UCR Time Series Data
Mining Archive. Riverside CA. 2002.
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.html].

15. Keogh, E. & Kasetty, S. (2002). On the Need for Time
Series Data Mining Benchmarks: A Survey and
Empirical Demonstration. In proceedings of the 8th
ACM SIGKDD International Conference on Knowledge
Discovery. Edmonton, Alberta, Canada. pp 102-111.

16. Keogh, E., Lonardi, S., and Ratanamahatana, C. A.
2004. Towards parameter-free data mining. In
Proceedings of the Tenth ACM SIGKDD international
Conference on Knowledge Discovery and Data Mining
(Seattle, WA, USA, August 22 - 25, 2004). KDD '04.

17. E. Keogh, K. Chakrabarti, and M. Pazzani. Locally
Adaptive Dimensionality Reduction for Indexing Large
Time Series Databases. In proceedings of ACM
SIGMOD Conference on Management of Data. Santa
Barbara. May 21-24, 2001. pp. 151-162

18. Li, M. & Vitanyi, P. An Introduction to Kolmogorov
Complexity and Its Applications. Second Edition,
Springer Verlag, 1997.

19. Lin, J., Keogh, E., Li, W. & Lonardi, S. (2007).
Experiencing SAX: A Novel Symbolic Representation
of Time Series. Data Mining and Knowledge Discovery
Journal.

20. Lin, J., Vlachos, M., Keogh, E., & Gunopulos, D.
(2004). Iterative Incremental Clustering of Time Series.
IX Conference on Extending Database Technology
(EDBT). March 14-19, 2004.

21. McQueen, J. (1967). Some Methods for Classification
and Analysis of Multivariate Observation. L. Le Cam
and J. Neyman (Eds.), In proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, CA. Vol. 1, pp 281- 297.

22. Nanopoulos, A., Alcock, R., and Manolopoulos, Y.
2001. Feature-based classification of time-series data. In
information Processing and Technology, N. Mastorakis
and S. D. Nikolopoulos, Eds. Nova Science Publishers,
Commack, NY, 49-61.

23. Ratanamahatana, C.A. & Keogh, E. Making Time-
series Classification More Accurate Using Learned
Constraints. In proceedings of SIAM International
Conference on Data Mining (SDM '04), Lake Buena
Vista, Florida, April 22-24, 2004.

24. Salton, G., Wong, A., and Yang, C. S. 1975. A vector
space model for automatic indexing. Commun. ACM 19,
11 (Nov. 1975), 613-620.

25. Wang, X., Smith, K., and Hyndman, R. 2006.
Characteristic-Based Clustering for Time Series Data.
Data Min. Knowl. Discov. 13, 3 (Nov. 2006), 335-364.

