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Abstract—Using the current state of the art in life science
publication search (e.g., PubMed), one can efficiently search for
resources containing particular key-words or their combinations.
It is impossible to search for abstract concepts and expressive
relations between them (e.g., type of, different from or part of),
though. Nevertheless, such a more expressive—semantic—search
could largely reduce the efforts related to finding appropriate
answers in biomedical articles. In this paper we identify chal-
lenges related to building a semantic publication search engine.
Then we describe the architecture and usage principles of a tool
tackling them. Eventually, we report on the tool’s deployment
on oncological literature data and preliminary tests with domain
experts.

I. INTRODUCTION

Although online publishing allows for very efficient global
knowledge dissemination, the search capabilities currently
offered by the state of the art tools (like PubMed, MEDLINE
or Elsevier ScienceDirect) are often insufficient. Essentially,
we produce the new data faster than we are able to interpret
them. As an illustration, let us imagine we want to get
more information on various types of the breast cancer and
study the publications that are relevant to such knowledge.
It is not possible to search for the type relationship per
se in the current search engines. One may try to use for
instance rather advanced full-text query ("type" OR "is
a") AND "breast cancer" (search for documents con-
taining either of the first two terms, and the last term at the
same time). However, even advanced full-text search results
are often practically useless: (1) They may be incomplete,
since the fact a concept is a type of another one is not
necessarily expressed only using the type or is a terms.
Moreover, breast cancer may be referred to by its synonyms
as well. (2) The results may contain a lot of irrelevant hits,
since the occurrence of the search terms does not mean there
are also any breast cancer sub-types present. (3) Detailed
manual analysis of the result set necessary to get the answers
is very often impossible. For instance, the given example query
retrieves more than 20, 000 publications on PubMed, which is
clearly too much even if one uses a result filtering.

The community of life science researchers and practitioners
demands more “semantic” solutions that would enable efficient
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answering of expressive queries on the biomedical data [10],
[16]. However, extraction of the necessary knowledge from
free text is hardly feasible in large scale if done purely
manually [3]. Methods for automated knowledge extraction
exist, however, their results are deemed to be to too noisy and
sparse to be exploited by the current state of the art without
significant manual post-processing [3]. In the following, we
show this is the major and largely unsolved problem even in
the case of cutting-edge solutions targeting more expressive
search in life science publications.

A. Related Work Overview
The state-of-the-art applications like ScienceDirect or

PubMed Central require almost no effort in order to expose
arbitrary life science publications for search (therefore we used
them as a base-line in the user-centric experiment reported in
Section IV). However, the benefit they provide is rather limited
when compared to cutting-edge approaches aimed at utilising
also the publication knowledge within the query construction
and/or result visualisation. Such innovative solutions may
require much more a priori effort in order to work properly,
though.

FindUR [15], Melisa [1] and GoPubMed [8] are ontology-
based front-ends to a traditional publication full-text search.
They allow either for effective restriction and intelligent visu-
alisation of the query results (GoPubMed), or for focusing the
queries onto particular topics based on an ontology (FindUR
and Melisa). FindUR and Melisa use a Description Logics [2]
ontology built from scratch and a custom ontology based
on MeSH (cf. http://www.nlm.nih.gov/mesh/), respectively.
GoPubMed dynamically extracts parts of the Gene Ontology
(cf. http://www.geneontology.org/) relevant to the query, which
are then used for restriction and a sophisticated visualisation
of the classical PubMed search results. None of the tools,
nevertheless, offers querying for or browsing of arbitrary
publication knowledge – terms and relations not present in the
systems’ rather static ontologies simply cannot be reflected in
the search.

Textpresso [16] enables searching for relations between
concepts in particular chunks of text (namely for gene-to-
gene interactions). However, the underlying ontologies and
their instance sets have to be provided manually. Moreover,
the system’s scale regarding the number of publications’ full-
texts and concepts covered is quite low.

B. Contributions and Structure
From the overview of the state of the art in the field, it

is obvious that the biggest challenge is a reliable automation
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of more expressive content acquisition. None of the related
systems addresses this problem appropriately, which makes
them either poorly scalable, or difficult to port to a new
domain. We have set to tackle this challenge with a proto-
type knowledge-based publication search engine – CORAAL
(COntent extended by emeRgent and Asserted Annotations of
Linked publication data). It can easily employ legacy domain
resources or even work without any human intervention.
The tool is based on a recently developed framework for
more efficient exploitation of automatically extracted knowl-
edge [17]. We combined the framework with a repository for
semantically inter-linked publications [12] in order to provide
for comprehensive combination of full-text and knowledge-
based search.

The rest of the paper is organised as follows. Section II
describes the data used in the current CORAAL deployment,
as well as the tool’s architecture and underlying technical
principles. The user perspectives of the tool are covered in
Section III. Section IV reports on assessment of CORAAL
with oncology domain experts. We discuss the delivered work
and outline future directions in Section V.

II. DATA AND METHODS

A. Inputs and Outputs

1) Input: As of March 2009, we have processed 11,761 El-
sevier journal articles from the provided XML repositories that
were related to cancer research and treatment. The access to
the articles was provided within the Elsevier Grand Challenge
competition (cf. http://www.elseviergrandchallenge.com). The
domain was selected so due to the expertise of our sample
users and testers from Masaryk Oncology Institute in Brno,
Czech Republic. We processed articles evenly distributed
across the journals in the following list: 1) FEBS Letters;
2) Biochemical Pharmacology; 3) Cancer Genetics and Cyto-
genetics; 4) Cell; 5) Trends in Cell Biology; 6) Experimental
Cell Research; 7) Controlled Clinical Trials; 8) Molecular
Aspects of Medicine; 9) Advanced Drug Delivery Reviews;
10) Gene; 11) Trends in Genetics; 12) Genomics; 13) Leukemia
Research; 14) Journal of Microbiological Methods; 15) Trends
in Microbiology; 16) Journal of Molecular Biology; 17) Oral
Oncology; 18) European Journal of Pharmacology. From the
article repository, we extracted the knowledge and publication
metadata for further processing by CORAAL. Besides the pub-
lications themselves, we employed legacy machine-readable
vocabularies for the refinement and extension of the extracted
knowledge (currently, we use the NCI and EMTREE thesauri –
see http://www.cancer.gov/cancertopics/terminologyresources
and http://www.embase.com/emtree/, respectively).

2) Output: CORAAL exposes two data-sets as an output
of the publication processing:

• First, we used a triple store containing publication
meta-data (citations, their contexts, structural annotations,
titles, authors and affiliations) associated with respective
full-text indices. The resulting store contained 7, 608, 532
of RDF subject-predicate-object statements [14] describ-
ing the input articles. This included 247, 392 publication

titles and 374, 553 authors (both from full-texts and
references processed).

• Second, we employed a custom EUREEKA knowledge
base with facts of various certainty extracted and in-
ferred from the article texts and the seed life science
thesauri. Directly from the articles, 215, 645 concepts
were extracted (and analogically extended). Together with
the data from the initial thesauri, the domain lexicon
contained 622, 611 terms, referring to 347, 613 unique
concepts. The size of the emergent knowledge base was
4, 715, 992 weighed statements (ca. 99 and 334 extracted
and inferred statements per publication in average, re-
spectively). This number is significantly smaller than in
the case of the semifinal prototype. However, this is due
to a full integration of the knowledge from formerly
separate contexts, the data themselves are still the same.
The contextual meta-knowledge related to the statements
(like provenance information) amounts to more than
10, 000, 000 additional statements should it be expressed
in RDF triples.

Thanks to the improved knowledge representation back-end,
generation of the output data-sets from the input articles took
two days (as opposed to four days in the semifinal CORAAL
prototype). Query evaluation on the produced content takes
usually fractions and at most units of seconds1.

B. Architecture of our Solution

In order to support comprehensive search functionalities,
we propose to complement a standard (full-text) publication
search approach with advanced services catering for seman-
tic search. By semantic search we mean querying for and
browsing of expressive statements capturing relations between
concepts in the respective source articles.

Our particular solution—the CORAAL prototype—is built
on the top of the KONNEX framework (a semantically inter-
linked publication repository [12]) and the EUREEKA library
(enables integration and exploitation of automatically extracted
knowledge [17]). CORAAL runs in a client-server mode. In
order to work with the tool, one only needs a web browser.
Everything else is handled by the server, quite similarly to the
classical search engines (e.g., Google) from the user’s point
of view. The technical architecture of CORAAL is depicted
in Figure 1.

1These results were achieved on a single server machine (which is not ex-
clusively dedicated to CORAAL). There are still reserves regarding scalability
even with the current implementation, however, for processing data two and
more orders of magnitude larger, a distributed solution would be much better.
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Fig. 1. Architecture of our solution

EUREEKA provides for knowledge extraction from text
and other knowledge resources (e.g., ontologies or machine
readable thesauri like NCI and EMTREE) via the knowledge
extraction module. The extraction process possibly updates the
domain lexicon and produces new knowledge being processed
in the ACE pipeline (ACE stand for Addition, Closure, Exten-
sion; see Section II-E for examples). The pipeline caters for in-
cremental addition, expansion and refinement of the emergent
extracted knowledge within particular knowledge bases, which
may be multiple if we want to represent particular contexts
of the domain of interest separately. The knowledge bases are
exposed to consumers via a semantic query answering module,
optimising the retrieval and sorting the results using helper
indices on the stored data. KONNEX tackles the integration
of the extracted publication text and meta-data (in the form
of RDF graphs) in a triple store. Operations related to data
registration (inclusion and integration with the stored content),
repository maintenance, full-text query processing and indices
are handled by respective manager modules, possibly com-
posed of sub-modules handling particular data or query types.

There are several conceptually separate modules in
CORAAL, moreover, EUREEKA is written in the Python
programming language, while KONNEX in Java. Therefore
we utilise an inter-process communication layer implemented
using the D-BUS framework (cf. http://en.wikipedia.org/wiki/
D-Bus). On the top of the core-level EUREEKA and KON-
NEX APIs, a set of helper web services rests. These manage
the user requests and forward the data returned by the core
APIs to the web hub, which is a set of Java servlets handling
particular types of search. The servlets produce machine-
readable RDF representing answers to user queries. The RDF
has XSL style sheets attached in order to render the results in a
human-readable form by the web browser itself via the MIT’s
Exhibit faceted browsing front-end. This solution results in
CORAAL being a pure Semantic Web [4] application, as the
data-flow between the core infrastructure and the other mod-
ules is strictly based on RDF graphs. While being presented in
a human-readable form in the browser, the produced data can
be directly analyzed by an application or fetched by a crawler
as well.

C. Knowledge Extraction

The publications, their meta-data and full-text are stored and
indexed within the KONNEX framework for linked publica-
tion data processing [12]. After parsing the input XML article
representations, the XML meta-data and structural annotations
are quite straightforwardly integrated in the KONNEX RDF
repository. Full-text information regarding the articles’ con-
tent, titles, authors and references is managed using multiple
Lucene IR indices (cf. http://lucene.apache.org/java/docs/).

For extraction of knowledge in the form of subject-
predicate-object triples, we use a simple, yet already quite
productive NLP-based heuristics similar to the technique de-
scribed in [13]:

1) we identify sentences in the raw text and split them to
particular word tokens

2) we tag the words in sentences by a probabilistic part-of-
speech tagger

3) we chunk-parse the tagged sentences using a generic
probabilistic shallow parser; the resulting plain (i.e., non-
nested) chunks are of three types: NP (noun phrase –
noun sequences, possibly with modifiers and/or grouped
by coordinate conjunctions), V P (verb phrase – verbs
only), PP (prepositional phrase – prepositions only)

4) for every NP (PP NP )∗ V P PP? NP (PP NP )∗

chunk sequence2 present in a sentence, we assume that
the part preceding the verb phrase expresses a subject,
the succeeding part an object and the verb phrase itself a
predicate (i.e., property or relation holding between the
subject and object)

5) we use several additional heuristics in order to generate
the actual triple terms:
• the head verb of V P is used as the predicate term

(a preferred name based on WordNet [9] verb synsets
used if possible)

• if the predicate part of the chunk sequence is in the
V P PP form, the V P head verb with the respective
preposition are used as the predicate term; if V P with-
out a consequent PP is followed by NP (PP NP )+,
the head noun of the first NP and PP preposition are
attached to the predicate terms in order to form a more
specific predicate; an additional triple expressing the is
a relation between the specific and verb-only generic
predicate is generated

• the remaining NP (PP NP )+ sequences are merged
together to provide a basis for the subject and object
term construction

• if there are modifiers or other nouns attached to a head
noun, additional triple is generated in order to capture
the is a relationship between the modified noun and the
noun itself (based on heuristics discussed for instance
in [6])

• if there is an enumeration of terms in a noun phrase,
additional triples are generated in order to capture mu-
tual negative is a (not a) relationships (i.e., disjointness;
based on a heuristics explained for instance in [19]);

2∗, + and ? mean zero or more, one or more and zero or one repetitions
of the preceding expression, respectively.
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enumerations in either subject or object noun phrase
result in multiple basic triples, too

D. Knowledge Representation Principles
A compact representation of concepts and knowledge bases

we construct from the emergent extracted statements is given
by Definition 1. The compact representation consequently
allows for a straightforward specification of soft integration
and similarity notions, which enable publication knowledge
merging and its approximate querying in CORAAL.

Definition 1: Concept is a square matrix A with elements
ai,j ∈ [−1, 1], i, j ∈ I , where I is an index set. Let M be a set
of all concepts, L a set of lexical expressions that may refer to
concepts in M and L∗ a set of fuzzy sets [21] defined on the L
universe. We define lexical interpretation λ as a bijection λ :
M → L∗. Index assignment binding the concepts and indices
together is then a bijection ind : M → I such that ind(A) =
ind(B) iff λ(A) = λ(B). Regarding concept equivalence,
we call concepts strongly equal, A = B, iff ai,j = bi,j for
∀i, j ∈ I , and weakly equal, A ' B, iff ind(A) = ind(B).
Empirical knowledge base is a tuple (K, IK , LK , indK , λK),
where K ⊆ M, IK ⊆ I, LK ⊆ L and indK , λK are the
respective specific index assignment and lexical interpretation
mappings.

Note that we do not distinguish between “classes” and
“individuals” in the traditional sense (i.e., sets and elements in
a domain universe, respectively). A concept can be empirically
considered to be an “individual” as long as it has no sub-types,
but it can suddenly become a “class” when a sub-type concept
is newly introduced to it. Therefore everything is just a concept
and finer-grained ontological distinctions are left to particular
applications of the basic principles.

The sets M,L∗, I can be understood as the conceptual,
symbolic and real world domain, respectively, in the semiotic
triangle [18] perspective (considering I as a set of unique
identifiers of entities existing in universe). The λ, ind map-
pings (and their inverses) can then be understood along the
symbolisation and reference relations in the triangle. The
intuition behind the fuzzy character of λ is the fact that
concepts are usually referred to by more than one lexical
expression. Moreover, these expressions have uneven degrees
of relevance w.r.t. the particular concept (e.g., the expression
“a reasoning erected primate” is perhaps a bit more relevant
to the “human” concept than the expression “a bipedal animal
without feathers”, while the “human” expression is one of the
most relevant).

The introduced matrix notation for concepts is convenient
due its conciseness, however, we can use also a more human-
readable and explanatory statement notation, closely following
the standard RDF(S) terminology [5]. A concept A can be
expanded as a conjunction

<s : p1 : o1>
ap1,o1 AND <s : p2 : o2>

ap2,o2 AND . . .AND
<s : pn : on>

apn,on

of particular subject : predicate : object statements3. s =
ind(A) and n is the number the of non-zero elements in

3Note that without loss of generality, URIs may serve as concept indices
in the statements. Consequently, ind−1 de facto plays a role of the URI
dereference. To facilitate readability, we provide simply lexical terms instead
of indices or URIs in the examples throughout the paper, though.

A. pi, oi are the row and column indices, respectively, of the
particular non-zero matrix element. The element values api,oi

represent the degrees of certainty about the fact that the actual
relation ind−1(pi) holds (or does not hold for api,oi

< 0)
between ind−1(s) and ind−1(oi).

Example 1: Consider for instance the concept T-cell
leukemia, being certainly a type of the concept
disease and certainly not a type of (i.e., different from)
the concept infection according to a human expert. The
respective concept matrix A may look like this (omitting the
zero elements):

SAMPLE-URI#1 SAMPLE-URI#3 SAMPLE-URI#4

SAMPLE-URI#2 1.0 -1.0

The corresponding statement notation would be:
<SAMPLE-URI#1 : SAMPLE-URI#2 : SAMPLE-URI#3>1.0 AND
<SAMPLE-URI#1 : SAMPLE-URI#2 : SAMPLE-URI#4>−1.0

The SAMPLE-URI#2, SAMPLE-URI#3 and
SAMPLE-URI#4 indices correspond to matrices B,
C and D, respectively, regarding the ind mapping.
The lexical interpretation λ is defined as follows
then: λ(A) = (S1, µ1), λ(B) = (S2, µ2), λ(C)
= (S3, µ3), λ(D) = (S4, µ4), where (S1, µ1), (S2, µ2),
(S3, µ3) and (S4, µ4) are fuzzy sets such that
µ1(T-cell leukemia) = 1, µ2(type of) = 1,
µ3(disease) = 1, µ4(infection) = 1.

The interpretation of the element values in the concept
matrices is deliberately left unrestricted, since the degrees
are meant to capture heuristic confidence bound to emergent
statements. The confidence may be based on statistics, how-
ever, it may also be based on arbitrary measures assigned
either by people, or by various knowledge extraction algo-
rithms, therefore no particular mathematical formalism can
be used for the degree interpretation in general. Users can,
however, impose a specific semantics on degrees later on when
consuming the data stored in an empirical knowledge base.
The most straightforward approach is interpreting the absolute
values bound to the positive and negative facts as membership
degrees, following the fuzzy sets formalism [21]. Intuitionistic
fuzzy sets [7] can be used for more straightforward interpre-
tation of positive and negative degrees as membership and
non-membership measures, respectively.

Concepts stored in a knowledge base can arbitrarily change
in the emergent settings, which is supported by the following
operation (note that the possible updates of the indK , λK
mappings are technical issues dependent on the particular
implementation and thus omitted in the definition).

Definition 2: Concept change ∆u,v : M2 → M,u, v ∈
[0, 1] is a parametrised binary operation such that ∆u,v(A,B)
= C, where ci,j = νu,v(ai,j , bi,j). νu,v : [−1, 1]2 → [−1, 1] is
a so called element change function defined as follows: (1),
for x 6= 0, νu,v(x, 0) = x; (2), for y 6= 0, νu,v(0, y) = y;
(3), for x, y 6= 0, νu,v(x, y) = F (ux, vy), F being an ordered
weighted averaging (OWA) operator4.

4Defined in [20] as F (a1, . . . , an) =
Pn

j=1 wjbj , where bj is the j-th
largest of the ai and wj are a collection of weights (also called a weight
vector) such that wj ∈ [0, 1] and

Pn
j=1 wj = 1. Note that we use the

additional u, v weights in order to explicitly capture the relative relevance of
the ∆u,v first and second argument independently from their relative sizes.
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The change operation can be understood as a simple, yet
useful formal model of cognitive learning and attitude change
as studied in psychology [11], i.e., acceptance, rejection or
modification of the attitude on a topic—a relation between two
concepts in our case—according to the current content of the
knowledge base and persuasive emergent facts. The purpose
of the u, v parameters is to reflect the “persuasion potential”
(weight) of particular knowledge sources being incorporated
w.r.t. the already known content. For instance, they may be
set as u = 1, v = 1 for presumably correct and equally trusted
knowledge from manually created ontologies, u = 0.9, v = 1
for input knowledge from a resource more trusted than the
actual content, or u = 1, v = 0.75 for less trusted learned
data.

Using an appropriate selection of the F operator (see [20]
for details on possible choices), one can model various types
of concept change. Possible practically relevant choices are,
e.g., maximum (strict preference of positive or more certain
facts) or weighted arithmetic mean (using u, v as the respective
weights).

Example 2: Imagine that we learn from a natural lan-
guage text that T-cell leukemia is different from acute
granulocytic leukemia with confidence 0.8, and that
T-cell leukemia is a type of infection with con-
fidence 0.2. Assuming the 0.8 relevance for the learning
algorithm when compared to the 1.0 relevance of human
expert, the T-cell leukemia concept from Example 1
has to be updated using ∆1.0,0.8 regarding the new findings.
The changed concept is described as follows then (degrees
computed using the dynamic weighted mean OWA operator):

<T-cell leukemia : type : disease>1.0 AND <T-cell
leukemia : type : acute granulocytic leukemia>−0.8

AND <T-cell leukemia : type : infection>−0.46̄

Besides direct concept incorporation by the change op-
eration, one has to be able to aggregate multiple concepts
evenly as well. This is particularly useful for instance when
merging concepts from multiple equally trusted sources before
their actual incorporation into the known content, or when
aggregating intermediate inference results.

Definition 3: Concept aggregation is a function © :
2M → 2M , ©(X) = {�(Sl)|Sl ∈ S}, where S is a set of the
equivalence classes on X w.r.t. '. � : 2M →M is a function
aggregating weakly equal matrices A1, . . . ,An into a matrix
B with elements bi,j = F (x1, . . . , xk), where x1, . . . , xk are
the respective non-zero ai,j values among A1, . . . ,An and F
is an OWA operator.

Example 3: An aggregation of the T-cell leukemia
concept updated in Example 2 with the following concept of
the same relevance (e.g., learned, too, but from different data)

<T-cell leukemia : type : acute granulocytic
leukemia>−0.5 AND <T-cell leukemia : type :
infection>−0.8

would result in this update (degrees computed using arithmetic
mean OWA operator):

<T-cell leukemia : type : disease>1.0 AND <T-cell
leukemia : type : acute granulocytic leukemia>−0.65

AND <T-cell leukemia : type : infection>−0.63̄

Crucial for the basic inference services in our approach is
the notion of similarity. We formalise it using metrics on M .

Definition 4: Semantic metrics class Ω is a set of
parametrised functions δH : M2 → R+

0 for all ∅ ⊂ H ⊆ I2

such that: (1), δH is a metric on M ; (2), in order to compute
δH(A,B), only elements ai,j , bi,j with (i, j) ∈ H are taken
into account. We can define a partial ordering � on Ω,
such that δH1 � δH2 iff H1 ⊆ H2. Dually to distance,
we define graded concept similarity5 as σH : M2 →
(0, 1], σH(A,B) = 1

1+δH(A,B) . A partial ordering v on the
set of all similarities can be defined as σH1 v σH2 iff
δH1 � δH2 .

An example metrics is δH(A,B) =
∑

(i,j)∈H |ai,j − bi,j |,
or a normalised alternative δH(A,B) = 1

|H|
∑

(i,j)∈H |ai,j −
bi,j |. The dependence on the H set allows for graded mod-
elling of specific distances, influenced only by certain re-
lations instead of all relations possible. The specificness of
the particular distances (or the dual similarities) is directly
related to the � ordering, i.e., if δH1 � δH2 , then δH1 is
more specific than δH2 . Specific similarities are particularly
useful when we want to retrieve content from a knowledge
base – e.g., all concepts being type of a disease and treated by
radiological methods. We can form a respective query concept
and check the knowledge base for matrices with specific
similarity regarding the two query properties higher than a
given threshold. Comparison regarding all possible properties
would possibly retrieve much smaller set of appropriate answer
concepts for large knowledge bases with many properties
present, which is not the intuitively expected behaviour.

We can distinguish certain prominent types of similarity
functions according to the H parameter. First, let σ(A,B) =
σI2(A,B) be a similarity between A and B (a general
comparison). Second, let ←−σ (A,B) = σ{(i,j)|bi,j 6=0}(A,B)
and −→σ (A,B) = σ{(i,j)|ai,j 6=0}(A,B) be a similarity of B
to A and A to B, respectively (a specific comparison of
either B to A, or A to B, based on the respective non-zero
elements). Third, let σ(A,B) = σ{(i,j)|ai,j 6=0∧bi,j 6=0}(A,B)
be an intersection similarity between A and B (a comparison
based only on the elements A and B have in common). Quite
clearly, σ v −→σ v σ, σ v ←−σ v σ.

Example 4: The similarity −→σ of the following concept
(with the subject indicating a variable)

<?X : type : disease>1.0 AND <?X : type : acute
granulocytic leukemia>−1.0

to the concept
<T-cell leukemia : type : disease>1.0 AND <T-cell
leukemia : type : acute granulocytic leukemia>−0.65

AND <T-cell leukemia : type : infection>−0.63̄

is about 0.851 when using the δH(A,B) =
1
|H|

∑
(i,j)∈H |ai,j − bi,j | distance as a basis for the

similarity computation. The respective σ similarity between
the concepts is about 0.753 then. Note that both similarities
are relatively high, suggesting that T-cell leukemia
might be an instance of ?X to a certain degree.

The gradual concept similarities are employed by light-
weight inference services of two basic types: 1) retrieval of
similar concepts (quite straightforward); 2) fixed-point rule-
based materialisation of implicit relations, complex querying

5The duality w.r.t. the distance is ensured by the conformance to two
intuitive conditions – inverse proportionality and equality to 1 when the
distance is 0.
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(similarity as a basis for soft variable unification and for ap-
proximate fixed-point computation). The inference algorithms
have anytime behaviour and it is possible to programmatically
adjust their completeness/efficiency trade-off. Proper elabora-
tion of the inference is out of scope here, however, we cover it
in a technical report [17], which addresses also implementation
details of the knowledge base storage.

E. CORAAL Workflow Example

In the following we exemplify how the extracted knowledge
is processed in CORAAL. Initially we extract triples, en-
coding three types of ontological relations between concepts:
taxonomical—is a/type—relationships, difference of concepts
(i.e., negative is a/type relationships) and generic relations
(e.g., part of or plays role in). We extend the extracted triples
to quads by attaching scores based on term frequencies in the
input corpus. An example of a sentence and part of respective
extracted knowledge follows6:

The rate of T-cell leukemia, acute granulocytic leukemia and
other hematologic disorders in the studied sample was about three
times higher than average.  (T-cell leukemia, is a,
leukemia, 1.0), (T-cell leukemia, is a, acute
granulocytic leukemia, -0.6), (T-cell leukemia, is
a, hematologic disorder, -0.6), . . .

There is one obvious mistake in the extracted knowledge –
T-cell leukemia actually is a hematologic disorder. However,
CORAAL can remedy that. The seed knowledge base imported
from the NCI and EMTREE domain thesauri contains the
following knowledge (crisp, therefore with 1.0 degrees only):

(leukemia, is a, Hematopoietic and Lymphoid Cell
Neoplasm, 1.0), (Hematopoietic and Lymphoid Cell
Neoplasm, is a, Hematologic and Lymphocytic
Disorder, 1.0), (Hematologic and Lymphocytic
Disorder, same as, hematologic disorder, 1.0)

Thus, thanks to the EUREEKA inference engine that is
currently employing a modification of RDFS general-purpose
entailment rules [5], we know that (leukemia, is a,
hematologic disorder, 1.0) according to domain
experts. Therefore, the T-cell leukemia, a type of leukemia,
should also be a hematologic disorder. The automatically
extracted noisy knowledge has much lower relevance than
the presumably precise domain resources, and CORAAL
can make use of it when aggregating new content into
its emergent knowledge base. Assuming the opinion of ex-
perts who created the thesauri is five times more relevant
than the extracted knowledge in case of conflicts, the even-
tually incorporated statement computed by concept aggre-
gation is (T-cell leukemia, is a, hematologic
disorder, 0.73). The erroneous emergent fact stating
that T-cell leukemia actually is not a hematologic disorder has
been automatically repaired to large extent.

Besides the emergent knowledge refinement, CORAAL
is also able to extend the extracted concepts by additional
relations using light-weight analogical reasoning. For instance,

6The degree values are illustrative. The negative degree corresponds to
negation of the respective relation. The difference in absolute values of the
positive and negative degrees (i.e., 1.0 vs. −0.6) corresponds to different
confidence measures provided by the algorithms responsible for the extraction
of particular statements. The confidence in correctness of disjointness is
usually lower in practice since the respective algorithms are less precise than
those for extraction of sub-type relationships.

it is able to find that acute granulocytic leukemia is related
to myeloproliferative disorders and myelomonocytic leukemia.
The abstract, yet already quite useful associations are directly
based on the concept similarities.

III. USING CORAAL
For the user interface of our system, we employed

the MIT’s state-of-the-art Exhibit framework (cf. http://
www.simile-widgets.org/exhibit/). It supports faceted brows-
ing (cf. http://en.wikipedia.org/wiki/Faceted browser) of the
knowledge-based search results, letting users to conveniently
focus on the relevant answers. Similarly, we allow for faceted
browsing of the classical full-text search results that are tightly
integrated with the knowledge extracted or inferred from the
respective articles.

Examples of particular queries possible in CORAAL for
various types of search are as follows:
• publication knowledge search:

– concepts – use just the concept name, i.e., respec-
tive term(s). Examples: lymphoblastic leukemia,
chemosensitizer

– statements – use the S : P : O syntax, where S, P, O
are subject, predicate, object expressions, respectively. The
expressions may be either in the form of a concept name, or
in the form of a variable (anything starting with ?, possibly
even ? alone The only limitation is that there may be at
most one variable in a query statement. Checks for con-
cepts satisfying a feature, or for relations between concepts.
Example: ? : is a : breast cancer, p53 : ?
: early carcinogenic events, rapid antigen
testing : part of : ?

– conjunctive statements – use the St1 AND St2 AND
...AND Stn syntax, where St1, ..., Stn are
statements. At most one variable identifier (either in subject
or in object positions) is allowed to appear in a conjunctive
query. Checks for concepts satisfying multiple features.
Examples: rapid antigen testing : part of
: ? AND ? : is a : clinical study, ? :
blocks : binding site AND ? : mediator of
activation : reactive oxygen metabolite

– negative statements – use the NOT St syntax, where
St is a statement. The NOT key word may be used
even inside the statement. Checks for concepts explicitly
satisfying a negative feature. Examples: NOT ? : is a:
penicillin, acute granulocytic leukemia :
NOT is a : chronic neutrophilic leukemia

– complex queries combining the above. Examples: ? : NOT
is a :mouse AND ? : is a : animal, ? : as
: complementary method AND ? : NOT type :
polymerase chain reaction

• publication text, title and author full-text search:
– terms in the traditional full-text search syntax, i.e., term

names plus wild-cards like * or ? and boolean key-words
like AND, OR or NOT. Examples: "breast cancer",
carci*, "breast cancer" AND p53

CORAAL itself can be accessed at http://coraal.deri.ie:
8080/coraal/. The following browsers have been tested with
CORAAL and are known to work on most desktop configura-
tions and operating systems: (1) Firefox (versions 2.x, 3.x and
newer); (2) Internet Explorer (versions 7.x and newer; in most
cases only on Windows Vista, though); (3) Opera (versions 9.6
and newer); (4) Safari (versions 3.1 and newer); (5) Google
Chrome (all versions).
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After pointing a browser to the URL, the main search
interface will appear as shown in Figure 2. The tabs correspond
to the particular types of search – the Knowledge tab serves
for publication knowledge search using the query language
specified above, while the Text, Title, Authors tabs realise full-
text search for the respective publication (meta)data. Figure 2
shows how a query for knowledge is constructed simply by
typing it into the search box.

Fig. 2. Asking a query – direct

CORAAL can also assist the user when asking a query.
After clicking on the Knowledge Query Builder link, one can
use a form with auto-completion capabilities providing for
guided query build-up on the actual content of the underlying
knowledge base (Figure 3).

Fig. 3. Asking a query – assisted

The answers are displayed as particular statements provided
with several types of meta-information: (1) source provenance
– articles relevant to the statement; (2) context provenance
– sub-domain of life sciences the statement relates to (deter-
mined according to the main topic of the journal that contained
the articles the statement was extracted from); (3) certainty
– how certain the system is that the statement holds and is
relevant to the query (values in [0, 1]); (4) inferred – whether
the statement was inferred or not (i.e., directly extracted).

One can filter the answer statements based on their par-
ticular elements (subjects, properties and objects), associated
meta-information and their negativity. Using a particular filter-
ing, one can quickly focus only on statements of a particular
interest. Such a specific focus can be seen in Figure 4. Note
that the HAS PART relation has rather general semantics in
the knowledge extracted by CORAAL, i.e., its meaning is not
strictly mereological in the physical sense, it can refer also to,
e.g., conceptual parts or possession of entities. Similarly for
the PART OF relation.

Fig. 4. Answer display – focused
Article provenance summaries of particular statements can

be displayed in-line as shown in Figure 5.

Fig. 5. Answer display – in-line provenance info summary
The results of the traditional full-text search can be filtered

by the associated knowledge, too, in CORAAL. For instance,
Figure 6 shows list of authors corresponding to the “Lin” name
filtered only to those who have written an article concerned
with the “gene amplification abnormality” topic. This feature
of CORAAL can be used for instance for finding candidate
experts on certain topics.

Fig. 6. Filtering author search

IV. PRELIMINARY TESTS WITH DOMAIN EXPERTS

During the CORAAL prototype development, we continu-
ally collaborated with several biomedical experts, who formed
a committee of sample users and evaluators. Before the final
stages of the Elsevier Grand Challenge, we prepared five tasks
to be worked out with CORAAL and a base-line application
(ScienceDirect or PubMed). Our hypothesis was that users
should perform better with CORAAL than with the base-line,
since the tasks were focused rather on structured knowledge
than than on a plain text-based search7.

7For instance, the users were asked to find all authors who sup-
port the fact that the acute granulocytic leukemia and T-cell
leukemia concepts are disjoint, or to find which process is used as a
complementary method, while being different from the polymerase
chain reaction, and identify publications that support their findings.
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The average level of evaluation tasks’ direct similarity to
the day-to-day agenda of users was approximately 4 on the
1 − 6 scale (from least to most relevant), meaning that the
tasks had tangible relation to the practice. The success rate
of task accomplishment was 60.7% and 10.7% when using
CORAAL and the base-line application, respectively. This
clearly confirms our hypothesis.

Besides evaluating the users’ performance in sample
knowledge-based search tasks, we were interviewing them
regarding the overall usability of the CORAAL interface. The
most critical issue was related to the query language – half
of the sample users were not able to construct appropriate
queries directly sometimes. However, CORAAL offers also the
form-based query builder that assists the user as illustrated in
Section III. Using this feature, users performed up to six-times
faster and 40% more efficiently than with purely manually
constructed queries.

The expert users also had slight problems with too general,
obvious or irrelevant results when presented only with a plain
non-interactive unsorted list of answer statements provided by
CORAAL. These concerns are addressed by the following
particular features in the user interface: (i) relevance-based
sorting of concepts and statements [17] – the proportion
of relevant statements present among the results increases
towards the top of the answer list; (ii) intuitive faceted
browsing functionality – support for fast and easy reduction
of the displayed results to a sub-set with certain features
(i.e., statements having only certain objects or authors writing
about certain topics). The solutions were considered as mostly
sufficient regarding the sample users’ concerns (an average 4.6
score on the 1− 6 scale going from least to most sufficient).

V. CONCLUSIONS AND FUTURE WORK

We have presented the architecture and usage principles of
CORAAL – a unique combination of a semantic publication
repository [12] and a framework for automated exploitation
of the knowledge contained in publication texts [17]. We
deployed CORAAL on a sample oncological literature data
and showed that the experts were able to perform much better
with the tool than with state of the art publication search
engines. We also reported on how we have reflected the
evaluators’ feedback in the recent agile development aiming
at improved user experience.

The key strength of CORAAL is its ability to perform with
straightforwardly imported legacy vocabularies (e.g., biomed-
ical thesauri), or even without them if necessary. The knowl-
edge from textual resources is extracted and processed purely
automatically and can be easily queried in an expressive, yet
intuitive way. The faceted browsing of the results allows for
fast focus on statements of particular interest, which ensures
usability despite of some remaining noise in the automati-
cally acquired knowledge. CORAAL can be cost-efficiently
deployed wherever expressive querying of knowledge scattered
across vast amounts of unstructured textual data is required
(e.g., patient records, to name one example). None of the
similar tools we know of can be deployed and used in such
an easy and intuitive way across arbitrary domains.

In future, we are going to extend the scalability of the
tool to millions of publications and beyond, utilising federated
knowledge storage and querying. We also want to provide
user-friendly and reliable means for exploitation of the wisdom
of the crowds. This will in effect enable for filtering out most
of the imprecision possibly present in the emergent knowledge
handled by CORAAL.
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