Costing Mixed Coxian Phase-type Systems in a given time interval
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Abstract

Previously we have introduced a modelling framework to
classify individuals in Mixed Coxian Phase-type Systems.
We here add costs and obtain results for moments of to-
tal costs in (0, t], for an individual, and a cohort arriving
at time zero. Based on data from the Belfast City Hospi-
tal Stroke Unit we use the overall modelling framework to
obtain results for total cost in a given time interval to fa-
cilitate planners who have limited time horizons for budget
planning.

1. Introduction

This paper extends our previous continuous-time
Markov modelling framework [9] that developed phase-
type (PH) models to describe lengths of stay (LOS) for indi-
viduals moving through a system (the transient states) prior
to departure to an absorbing state. The aim is to provide
moments of total costs for the system in a given time in-
terval, for individuals and a cohort entering the system at
time zero. When modelling and costing such systems it is
important to consider that an individuals LOS may be het-
erogeneous with respect to various covariates [9, 7]. There-
fore, the current framework considers a system comprising
of a mixture of PH models. The mixture components corre-
spond to classes of individuals having different phase-type
distributions (PHD) [9, 4, 10, 1, 8]. The individuals move
through the PH transient states, incurring differential costs
per unit time in each state; such transitions typically rep-
resent patient movements from acute, through diagnosis,
treatment and rehabilitation to long-stay. A number of ap-
proaches have been used to cluster LOS data and generate
patient classes [9]. We extend our previous work, which
clusters patients LOS using survival trees into PH (Markov)
models, to a cost model. Costing is specific to the particular
pathway an individual follows. The approach is then used to
model a stroke unit where patients are divided into classes,
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characterized by the covariates: gender, age, disease and di-
agnosis [7, 4, 1]. This can help provide better predictions of
the patient LOS, and future requirements for hospital beds
and other resources [4, 8]. Previously [9, 4], we have devel-
oped a mixture distribution for determining clinically mean-
ingful patient groups from a given dataset of patients’ LOS.
Costs can also be assigned to each stage of each group and
future costs estimated [10, 1]. Moments of costs of patient
care in future time periods can thus be estimated and used
for patient prognostication and health service planning. The
current paper also extends our previous result for the mean
numbers of patients in future states [5]. In this paper we
provide the Moment Generating Function (MGFs) of total
cost in time (0, t] for an individual and a cohort of patients
moving through a Mixed Coxian PHD. These functions are
beneficial to policy makers who have limited time horizons
for budgets, budget planning and provisioning for new in-
terventions, such as thrombolysis. In Section 2 we provide
background on Coxian PHDs and Mixed Coxian PHDs. In
Section 3, we define a mixed Coxian PH system and derive
novel expressions for the MGF of cost in (0, t] of an in-
dividual and a cohort moving through a mixed Coxian PH
system. In Section 4, the approach is used to cost stroke
patient care in the Stroke Unit of the Belfast City Hospi-
tal (BCH). Concluding remarks and a discussion of further
work are provided in Section 5.

2. Background
2.1. Coxian PHD

PHDs are a class of distributions in which a random
variable generated by one or more Markov stochastic pro-
cess(es) is modelled as an absorbing Markov chain having
k transient states and an absorbing state (Figure 1). Dura-
tions of PHDs are defined on the non-negative real numbers.
A PHD comprises a number of phases with sub-durations
which are exponentially distributed. An individual enters
a state of the system, moves between transients states until
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eventually absorption occurs. A special type of PHDs is the
Coxian PHD [2, 3], which provides a simple interpretation
of fit for the duration data and has many other advantages
over other types of PHDs [3]. A Coxian PHD process starts
in the first transient state and develops by either sequentially
passing through the transient states or moving to the absorb-
ing state; we here envisage such transitions as representing
phases of treatment and care. Each transient state can be
modelled by two parameters: rate of sequential transition
to the next state (\;) and rate of transition to the absorb-
ing state (u;). The probability density function of a Coxian
PHD with duration z is: fpyp(z) = pexpQzq, where Q
is the transition matrix and, for k transient states it is defined
as follows:

—(M + 1) Y 0 ... 0

0 —(A2 + p2) .

Q= 0 0 o0
: . Ak—1
0 0 0 —ug

The row admission vector p, represents the initial state
probability distribution and is defined as p = (1,0,...,0).
The column discharge vector q represents the absorption
probabilities and is defined as q = (1, o, - . ., ug)" Also,
-Q 'qg=e, where e = (1,,1)" is a kx1 column vec-
tor. For a non-defective PHD, starting from any transient
'I'r:m\'h\nt;'I'mmimtl Az Transient 45 i, Transient

—

State 1 State 2 " State3 State k

[ B

State k+1 (Absorbing Phase)

Figure 1: System described as a k state Coxian PHD.

state, absorption occurs with probability 1 [6]. The matrix
P(t) = P;;(t) = exp(Qt) is the matrix of transition proba-
bilities from transient state .S; to transient state S; in (0, t];
therefore, lim;_, ., exp(Qt) = 0. For non-defective PHDs,
the matrix Q is non-singular [6] and all possible paths start-
ing from a transient state lead to the absorbing state. This
is always true for a Coxian PH model with A\; + p; > 0 for
i = 1...,k (defining A\, = 0). Without loss of general-
ity we therefore assume that our PHD is non-defective and
hence Q is non-singular.

2.2. Mixed Coxian PHD

Here we use mixtures of Coxian PHDs, since they al-
low us to describe systems where individuals choose one
of the mixture components with a given probability; they
then follow a Coxian PHDs as illustrated in Figure 1, where
each mixture component may correspond to a Coxian with
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different parameters. We therefore define C' mixture com-
ponents, where there are k. phases (states) in class ¢, for
c=1,...,C phases (states) in all, and k = chzl ke.

Transitions occur from state 5§ (¢ = 1,. .., k._1) to state
S{yq with transition rate Af; and transition is never possible
between a transient state in any class and another transient
state in a different class. Also transition can occur from any
state S¢ of class c to the absorbing state S, with transition
rate pf 4, foréi = 1,... k., ¢ = 1,...,C. The admis-
sion vector p is now a row vector, partitioned into C sub-
vectors (the mixture components), p = (p1,-..,Pc). The
cth sub-vector p, has first element 7., which is the proba-
bility of entering phase 1 of the corresponding class, and the
remaining elements of p. are zeros, forc =1,...,C. Also,
q = (q1,-.-,qc) where the sub-vectors correspond to the
classes. Each of the Coxian PHDs are non-defective since
all possible paths, starting from a transient state in class c,
leads to an absorbing state. The transition matrix Q is now
given by:

Q 0 ... 0
Q= 0 Q@ - : where
()
0 ... 0 Q¢
—(Af +2uf)) A 0
0 —(A\§ +2pus))
Qc = 0 0
0 0 0

This mixed Coxian PH structure retains the advantages
of Coxian PHDs, including: the progression through suc-
cessive states, and the computational aspects. Therefore,
we can identify the mixture components using relevant co-
variates and fit the model to each component separately.

3. Costing mixed Coxian PH systems

We are interested in costing the mixed Coxian PH sys-
tem discussed in the previous section. We extend our mixed
Coxian PH models to a situation where there is a unit cost
for phase i of class cfori = 1,...,k.,,c=1,...,C. Also
we define:

B, 0 0
B_ 0 Bs

: . . 0

0 ... 0 B¢

where B¢ is the cost matrix for class C'. We define an ex-
pression for the MGF of total cost incurred in the transient
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states in (0, t] for an individual and then for a cohort of N
such individuals.

Theorem 1: The MGF of total cost C(¢) in (0, ¢] for an
individual entering a mixed PH system is given by:

Mc(6;1) = plexp(Q + §B)t — I}(Q + 6B) 'q
+p{exp(Q + 6B)t}e

Therefore; M{.(0;t) = E[C] = —p{I — exp(Qt)}Q 'Be
and ME(0:1) = E[C?] = 2p{I —exp(Q)}(Q 'B)’e
+2p{exp(Q)t}(Bt)Q ' Be

Proof:
t
Me(6;1) = E[*!]f] = / pexp((Q + 0B)s)ads
0

+/ pexp(Qs + 6Bt)qds
t

= p{exp(Q + 6B)t — I}(Q + 6B) 'q
+p{exp(Q + 6B)t}e

The mean cost is then obtained by differentiating and setting
6 = 0. Therefore,

E[C(1)] = M&(0:1) = —p{I - exp(Qt)}(Bo)e
p{exp(Qt) — 1}Q ' Be + plexp(Qt)} (Br)e
— —p{I— exp(Q1)}Q 'Be

By differentiating again and putting § = 0, we obtain:
12
EC(t)*]) = 2p{I - exp(Qt)}(Q 'B)e
+2p{exp(Qt)}(Bt)Q ™' Be

The MGEF for the total cost in (0, ¢] for a cohort of N indi-
viduals who all enter the system is given by:

Mc (0, N:t) = (Mc(6;1)Y = (—p{I - exp(Q1)}Q~'Ba)”™

Differentiating and putting § = 0 gives the moments, as:

E[Cn(t)] = N(—p{I - exp(Q#)}Q~'Bq) and
E[C%(t)] = N(N - 2)(—p{I - exp(Q1)} bfQ 'Be)+
N@2p{I - exp(Qt)}(Q'B)’e + 2p{exp(Q1)}(B)Q ' Be

Example 1: We consider a system with two classes each
with transient states .57 and S5 (Figure 2). These could rep-
resent drug therapy (S7) and no drug therapy (S2), where
patients are initially assigned to S; and Sy with probabili-
ties m; and 7o and are discharged from S; and So at rates
w1 and po, respectively.

In this example, p is the admission vector so p = (71, m2),
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Figure 2: System with two classes, each containing one transient
phase.
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Figure 3: System with one class, containing two transient phases.

Q is the transition matrix given by:

_( —m 0
Q_( 0 —Mz)

and the rate at which patients leave each state is q =
(111, 2)’. We also have costs for each transient state, where
there is a cost by per unit time in transient state S7 and by in
transient state Sy and B is given by:

(b0
5=(% 1)
We can then calculate the mean cost in (0, ¢]. So,

E[C(t)] = —p{I - exp(Qt)}Q 'Be
= (b1 (1 — ™)) (1) + (bama (1 — e7"2")) (2)

and E[C(t)?] = 2p{I - exp(Q1)}(Q'B)’e
+2p{exp(Q)t}(Bt)Q 'Be
=m (1 —e M) 01) (7)) + m2(1 — e72) (b3)/ (13)
—2me " (b1t) /(1) — 2mae ™24 (b5) / (n2)
Example 2: We illustrate the theory using a system with
one class which consists of two transient states S; and Ss
(Figure 3). These states could represent acute hospital care
(S1) and long-stay hospital care (S), where patients move
from S; to So at a rate \ and leave S7 and Sy at rates pq
and 9, respectively.

In this example, p is the admission vector so p = (1,0),
Q is the transition matrix given by:

Q- ( —()\(4)'/11) 722 >

and the rate at which patients leave each state is q =
(11, 2)’. We also have costs for each transient state, where
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there is a cost by per unit time in transient state .S; and b
in transient state .So and B is the same as in Example 2. We
then calculate the mean cost in (0, t] given by:

E[C(t)] = —p{I - exp(Q1)}Q " 'Be
= b1 /(A + p1) + Aba /(A + pa)po

which we interpret as the unit cost in phase 1 (b;) multi-
plied by the mean duration in phase 1 (1/(\+ 1)) plus the
probability of progressing to phase 2 (A/(A + 1)) multi-
plied by unit cost in phase 2 (b2) and the mean duration in
phase 2 (1/p2).

4. A Healthcare Application

Our healthcare application is extracted from the Patient
Administration System (PAS) and consists of all patients
admitted to the BCH between 1 January, 2003 and 31 De-
cember 2007 with a diagnosis of stroke. Stroke patient care
in BCH is provided by a Stroke Unit where the patient un-
dergoes a period of acute care followed by a period of reha-
bilitation, if required, prior to discharge. The LOS distribu-
tion of each class was modelled using a PH model, starting
with one state (exponential) and progressively increasing
the number of states until, using a penalized likelihood ap-
proach, an optimal number of phases was determined. For
our proposed PH model one or two phases were sufficient.
The costs were 164.80 per day for acute care (state 1) and
114.8 per day for long-term care (state 2). The matrix B
is therefore a diagonal 34x34 matrix with alternative ele-
ments 164.80 and 114.8 respectively. Results for mean co-

Maan cost (in GBP)

Figure 4: Mean cohort costs by time.

hort costs in (0, ¢] are presented in Figure 4 for ¢=0 to 1000
days and cohort sizes 1 to 10 patients. We see that the cost
is mainly incurred at the start of the period when most of
the discharges occur. As t increases, increasingly less new
costs are incurred as most patients have been discharged.

5. Conclusion and Future Work

Our current approach uses mixed Coxian PH systems
to derive new expressions for MGFs and moments of cost,

372

both for the individual and for cohorts who are admitted at
time zero. Here, we focus on the Coxian mixture model as
it allows us to tackle the problem of heterogeneity of dura-
tions in different states. Such a mixture analysis is an ef-
fective approach to prediction of costs in Markov systems
where groups of individuals follow heterogeneous path-
ways. It is thus a powerful method for determining the rela-
tionship between input covariates and outcome. Currently
we are extending our model to capacity and resource plan-
ning in a stroke care unit with Poisson admissions.
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