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Abstract— Comorbidities such as hypertension and lipid 

metabolism are often associated in diseases such as diabetes, and the 

early prediction of these is of great value when trying to manage 

progression. This is the start of a project to model multiple 

comorbidities in diabetes using dynamic Bayesian networks with 

latent variables in order to stratify patient cohorts. In this paper, we 

demonstrate some initial results on a dataset where the class 

imbalance problem poses an issue due to the rare occurrence of 

different individual comorbidities on a visit-by-visit basis. This is dealt 

with using a bootstrap technique that has been specifically designed 

for longitudinal data where the occurrence of the positive class occurs 

far less than the negative. 
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I.  INTRODUCTION 

 Type 2 Diabetes Mellitus (T2DM) is the most common form 
of diabetes, accounting for at least 90% of all cases of diabetes. 
The World Health Organization (WHO) estimates that by 2030 
there will be about 550 million people suffering from this 
disease [1]. Comorbidities associated with diseases such as 
diabetes can be complex and difficult to predict, especially 
when they may be closely coupled, and where interventions 
can impact their behaviour. A common problem with 
classifying comorbidities in longitudinal data is that there may 
be many more visits where the complication does not 
manifest itself compared to those where it does (due to 
careful management). This class imbalance problem for rarely 
occurring cases has been addressed typically by using resampling 
approaches such as oversampling and undersampling. Bootstrap 
approaches can also be used to identify the significant statistics 
from classifiers learnt from such data. In [2] the bootstrap was 
extended to longitudinal data by sampling consecutive time points, 
thus enabling the temporal nature of the data to be inferred. In this 
paper we explore the use of latent variable models for prediction 
and the early detection of these comorbidities from clinical follow-
ups of diabetic patients at the IRCCS Fondazione Maugeri (FSM) 
hospital of Pavia, Italy. We use Dynamic Bayesian Networks 
(DBNs), probabilistic graphical models that can model 
longitudinal data taking into account noise, missing data and 
uncertainty in the data collection process. We use a variant on the 
resampling approach in [3] whereby we bootstrap pairs of 
timepoints but bias the training data selection to ensure more states 
where the complication is present than in the original data.  

II. METHODS 

Here we use data that has been previously collected for clinical 
and management purposes from 2009 to 2013. The data is part of 
the MOSAIC project funded by the European Commission under 

the 7th Framework Program, Theme ICT--2011.5.2 Virtual 
Physiological Human (600914). Clinical data from the FSM 
hospital consisted of demographic information (gender, birth date, 
time from diagnosis) physical examinations (BMI, blood 
pressure), and laboratory data, including HbA1c measurements 
and lipid profile. This covers approximately 1000 patients. We 
focus on two comorbidities: Disorders of lipid metabolism and 
non-alcoholic chronic liver disease. These were selected as they 
occur most commonly within the data. We infer DBNs from the 
bootstrapped data using the REVEAL [4] algorithm. What is more, 
we include a latent variable that is connected to all data points and 
parameterized using the Expectation Maximisation algorithm [5]. 
It is envisaged that this latent process will capture some of the 
complex dynamics of the comorbidities and how they interact with 
the clinical variables. Resampling of the data involves a bootstrap 
process whereby the original training data is extended by adding 
bootstrapped pairs of timepoints, t-1 and t. These are selected with 
replacement where it is ensured that an increased number of 
positive cases for the chosen complication at time t are selected. 
The DBNs are trained on this bootstrapped data and tested on their 
ability to predict the complication at the following time-point, 
before the latent variables were explored. 

III. RESULTS 

 

 

Fig. 1. Classification Area Under Curve (AUC) Comparison for Liver 

Disease (top) and for Lipid Metabolism (bottom).  
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Figure 1 shows the prediction of the two comorbidities at the 
subsequent visit. These were based on DBN models that used the 
original imbalanced data (UB) and DBNs that were trained on the 
bootstrapped time-series data (BBS). As can be seen, the resulting 
ROCs varied dramatically for detecting false positives – whilst 
both methods are very similar for smaller number of true and false 
positives (bottom left of the ROCs), the DBN results trained on the 
original data are much closer to random (on the diagonal) for larger 
numbers of false positives, whereas this issue does not occur in the 
bootstrapped data. The area on the ROC curve (AUC), the 
sensitivity and specificity all reflect this issue (in Table 1). 

 

TABLE 1. ROC Statistics for the sensitivity analysis carried out on DBNs 

inferred on the original imbalanced data (UB) and on the balanced 

boostrapped data (BBS) 

 

Exploring the behaviour of the latent variable (Figure 2) 
illustrates a form of refactoring of the data has occurred. The latent 
variable appears in many cases to have captured a combination of 
clinical factors and comorbidities where an increase in the 
probability of latent state 1 (Latent) coincides with the increased 
likelihood of comorbidities (particularly Lipid Metabolism and 
Liver Disease comorbidities), and to a lesser degree it is associated 
with a change in BMI. Figure 2 shows how in two sample patients 
the probability of latent state 1 is correlated with these factors but 
with a time shift one visit earlier, highlighting how it can enhance 
prediction. 

IV. CONCLUSIONS 

In this short paper we have explored the combination of resampling 
to remove the bias of imbalanced data in time-series with latent 
variable dynamic Bayesian networks to predict the onset of 
comorbidities associated with diabetes. We have shown some 
preliminary results that indicate the resampling procedure can 
assist in the prediction, and the latent variables can factorise the 
data into an underlying hidden state that appears to improve the 
prediction accuracy. Future work will involve exploring the 
extension of these models with more latent variables to capture a 
greater variety of factors [6] that characterize key changes in the 
clinical and complication data. Finally, we intend to use these latent 
states to help us to identify different cohorts of patients who have 
different dynamics and therefore stratify them so that more can be 
understood about the different manifestations of the disease and its 
progress. 

 

Fig. 2. Latent variable examples for the two patients based upon the DBN 
inferred from the bootstrapped data to overcome class imbalance.  
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Lipid Metabolism Liver Disease

UB AUC: 0.5227 +- 0.04 0.6518 +- 0.05

BBS AUC: 0.5809 +- 0.04 0.7141 +- 0.04

UB Sensitivity: 0.775 0.996

BBS Sensitivity: 0.855 0.891

UB Specificity: 0.394 0

BBS Specificity: 0.178 0.373
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