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Abstract — In brain machine interfaces (BMI) that are used to 

control motor rehabilitation devices there is the need to process 

the monitored brain signals with the purpose of recognizing 

patient’s intentions to move his hands or limbs and reject artifact 

and noise superimposed on these signals. This kind of processing 

has to take place within time limits imposed by the on-line control 

requirements of such devices. A widely-used algorithm is the 

Second Order Blind Identification (SOBI) independent component 

analysis (ICA) algorithm. This algorithm, however, presents long 

processing time and therefor it not suitable for use in the brain-

based control of rehabilitation devices. A rework of this algorithm 

that is presented in this paper and based on SCHUR 

decomposition results to significantly reduced processing time. 

This new algorithm is quite appropriate for use in brain-based 

control of rehabilitation devices. 
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I.  INTRODUCTION  

Motor rehabilitation devices, such as continuous passive 
motion machines (CPM), are used for rehabilitation in hospitals, 
clinics or general practices and they are important supplement to 
medical and therapeutic treatment. Their mode of operation is to 
move injured joint over a range of motion in a circular periodical 
way defined by the physician [1]. For example, in case of elbow 
and fist joints, these devices impose movement via 
flexion/extension and/or pronation/supination to the injured 
joint [2]. Although their indisputable contribution to 
rehabilitation [3], it is believed that the overall treatment time 
can be reduced and the overall rehabilitation could be improved 
if the patient interacts with these devices and their motion is 
determined according to patient’s will. 

These motor rehabilitation devices allow their easily 
connection with controllers which can make the devices to 
follow trajectories determined by processing the generated by 
the patient EEG brain signals in order to extract the patient’s 
intensions and will. The implementation of such an architecture 
requires fast recognition of the motor imagery movements of the 

joint in order to create the appropriate control signals. This can 
be done by manipulating the EEG data with the purpose of 
removing the noise and information that is not essential for 
creating the control signal in a fast and effective way. 

Independent component analysis (ICA) [4] is a special case 
of blind source separation and it is used widely not only for 
studying specific brain EEG activity and separating it from other 
non-brain activities [5] but also for separating artifacts from 
EEG data. ICA separates data from multi-channel signals the 
time courses of which are maximally independent from each 
other. The most common ICA algorithms used in EEG data 
analysis are Infomax ICA [6-7], SOBI [8], and FastICA [9]. All 
ICA algorithms have the same overall goal [10], and generally 
all of them produce near-identical results when applied to 
idealized (model) source mixtures. However, since EEG brain 
and non-brain source signals are not totally independent, 
sometimes different ICA algorithms may return slightly 
different results when applied to the same EEG data. 

In case of a BMI that process EEG data with the purpose to 
control motor imagery movements, the overall process time 
becomes critical. Therefore, Blind Source Separation (BSS) [11] 
algorithms must be fast enough to perform effective EEG 
decomposition [12]. So, they must run within the time limits 
imposed by the movement control requirements. 

In this paper, we demonstrate a new blind source separation 
technique based on SOBI algorithm. Reworking and substituting 
several steps of SOBI algorithm using Schur decomposition, we 
managed to improve the execution time of signal decomposition 
procedure. It is demonstrated experimentally that a significant 
computation time reduction is achieved using the rework SOBI 
against the typical EEG data decomposing technique. 

In section II the problem formulation is presented while basic 
assumptions of EEG signal and Schur decomposition are stated. 
Current SOBI algorithm steps are explained and the mentioned 
above proposed rework of SOBI technique is presented. In 
Section III the rework technique is tested with pre-recorded EEG 
data obtained from signals corresponding to motor imagery 
movements and overall conclusions are drawn which are 
presented in the Section IV. Section V proposes future work that 



can be undertaken towards further reduction of algorithm 
execution time. 

II. PROBLEM FORMULATION 

A. Assumptions 

The basic ICA model that SOBI is based on is expressed as  

 x(t) = g(t) + n(t) = As(t) + n(t)  

where s denotes the source signals, x the signals we receive, n 
the noise factor and A is a mixing matrix. It is assumed that the 
source signal vector s(t) is either a deterministic ergodic 
sequence or a stationary multivariate process. In such a case, the 
autocovariance function is 

 E[s(t+τ)s(t)*] = diag[ρ1(τ),...,ρn(τ)] 

where superscript * denotes the conjugate transpose of a vector, 
and diag is the diagonal matrix formed with the elements of its 
vector valued argument 

 ρi(τ)=E[si(t+τ) si (t)*] (3) 

 The noise that exists in this algorithm is modeled as a 
stationary, temporally white, zero mean complex random 
process that is independent of the source signals. For simplicity, 
we also require to be spatially white, i.e., 

 E[n(t+τ)n(t)*] = σ2δ(τ)I (4)

where δ(τ) is the Kronecker delta, and denotes the identity 
matrix. Under the above assumptions, the covariance matrices of 
the array output take the following structure: 

 R(0) = E[x(t)x(t)*] =ARs(0)AH + σ2I  (5) 

 R(τ) = E[x(t+τ)x(t)*] =ARs(τ)AH , τ≠0  (6) 

The basic goal of every blind source separation algorithm is to 
identify the mixture matrix A and the source signals without any 
previous knowledge of the array manifold. This method 
guarantees that the source separation is unaffected by errors in 
the reproduction model or in array calibration. 

B. SCHUR decomposition 

SCHUR decomposition is a mathematical model that has 
been widely applied in many scientific areas such as Lie theory 
[13]. In this study, it is used to make important transformations 
to the blind source separation algorithm SOBI. According to 
SCHUR decomposition if A is an nxn square matrix with 
complex entries, it can be expressed as: 

 A = QUQ-1  (7) 

where Q is a unitary matrix and U is upper triangular. U is called 
a SCHUR form of A. U is similar to A (two matrices A and U are 
similar if U = PAP-1 for some invertible nxn matrix P) so it has 

the same set of eigenvalues. Since it is triangular those 
eigenvalues are the diagonal entries of U (since for any 
triangular matrix A the matrix λI-A, whose determinant is the 
characteristic polynomial of A, is also triangular, the diagonal 
entries of A give the multiset of its eigenvalues. An eigenvalue 
with multiplicity k occurs k times as a diagonal entry). This kind 
of decomposition is known to be computed by the QR algorithm 
or its variants. [14] 

C. SOBI Algorithm 

The algorithm works with the use of joint diagonalization on 
a set of partial covariance matrices. Other mathematical tools 
like whitening and theorems on unitary matrices are used as well 
but the basic concept is joint diagonalization. A basic 
assumption is that the signal vector s(t) is a multivariate process. 
SOBI algorithm consists of the following steps: 

1) Provided that Matrix R(0) has m eigenvalues, find the n 

largest data samples largest from a number of T data samples. 

Then compute the corresponding eigenvectors. 

2) Since the noise factor is temporally white, the noise 

variance will be estimated as the average of the rest m-n 

eigenvalues. 

3) The next step, called whitening, is basic and covers a big 

part of SOBI. This is used to transform the matrix x(t) (which is 

basically a vector of random variables with a known covariance 

matrix) into a matrix, of a new set of variables, whose 

covariance is the identity matrix. Practically, whitening changes 

the input vector into a white noise vector. The whitening matrix 

used in SOBI is computed as follows: 

a) The whitening signals g(t)=[g1(t),…,gn(t)]T  will be 

computed by the formula gi(t) = (λi-σ2)-(1/2)hi*x(t) for 

1≤i≤n. Equivalently, the whitening matrix is formed 

as: 

 W = [(λ1-σ2)-(1/2)h1,…,(λn-σ2)-(1/2)hn]H   (8) 

b) Since W is a whitening matrix, WA is a nxn unitary 

matrix such that WA = U. So, A can be factored as A = 

W#U where superscript # denotes the Moore-Penrose 

pseudo-inverse. The fact that WA is unitary arises as 

follows: In order to whiten g(t) we apply to it a 

whitening matrix W. 

 E[Wg(t)g(t)*WH] = WRg(0)WH = WAAHWH = I  (9) 

From (8) we obtain that WA(WA)H = I which proves 

that WA is unitary. The whitening of the data in SOBI 

is done directly using Singular Value Decomposition 

(SVD) [15-16]. 

4) Compute sample covariance matrices R(τ) of g(t) for a 

set of time lags τ∈ { τj│ j=1,…,L} that is fixed. 

5) The “off” of an nxn matrix M with entries Mij is defined 

as the sum of all the entries, squared, that do not belong to the 

diagonal. Mathematically this is expressed as 



 off(M) := ∑ |𝑀𝑖𝑗2 |1≤𝑖≠𝑗≤𝑛  (10) 

To diagonalize a matrix M unitarily is equivalent to zeroing 
off(VHMV). V must be unitary. The key point of this algorithm is 
that if a matrix can be written in the form 

 M = UDUH  (11) 

where D is diagonal and U is unitary with district diagonal 
elements, then it can be unitarily diagonalized. In addition, it can 
be unitarily diagonalized only by unitary matrices that are 
essentially equal to U. So, if off(VHMV)=0 then V is essentially 
equal to U. 

If a matrix is normal (MMH=MHM) it is unitarily 
diagonalizable. That is equal to the existence of a unitary matrix 
U and a diagonal matrix D such that (11) is true for this matrix. 

For a set of matrices e.g. R(τ), τ∈ {τj│ j=1,…,L} a joint 
diagonalizer is a unitary matrix that minimizes the sum of all the 
off functions of the sum: off(VRVH). If each of these matrices 
R(τ) can be written in the form R(τ)= UDUH then obviously V = 
U and the sum (10) is equal to zero. U is called the joint 
diagonalizer of the set. In this step of the algorithm a unitary 
matrix U is used as joint diagonalizer for the set {R(τj)│ 
j=1,…,L}. 

6) The source signals can now be estimated as s(t) = 

UHWx(t) and the mixing matrix A is computed as A = W # U. 

D. SOBI using SCHUR Implementation 

The part of SOBI that is going to be modified in this paper is 
the way {R(τj)│ j=1,…,L} is diagonalized. In general, any 
whitened covariance matrix is diagonalized by the unitary 
transform U. [17] As mentioned above obtaining the unitary 
factor U is equal to obtaining a unitary diagonalizing matrix of 
the whitened {R(τj)│ j=1,…,L}. SOBI obtains U as a joint 
diagonalizer of the set {R(τj)│ j=1,…,L} using Given’s rotation. 
[18-19]  

Given’s rotation is a method used to diagonalize nxn 
matrices though multiplying them with matrices that are 
computed with a specific formula [19]. Practically it is a rotation 
in the plane spanned by two cooedinates axes. In every step of 
this method an entry is zeroed until the array is diagonalized. 
The basic con of this formula is that most of the times a large set 
of matrices has to be created(one matrix for every entry that has 
to be zeroed), which makes the algorithm slower and consumes 
a lot of memory. Especially in EEG experiments where the 
amount of the observations is large (correlation matrices are 
large) Given’s rotation is a slow process. 

Another way to execute SOBI is through a variant of the QR 
algorithm. QR is an eigenvalue algorithm based on SCHUR 
decomposition. The basic advantage of SOBI using SCHUR 
decomposition is that this way no external matrices (like the 
matrices used in Given’s Rotation) have to be computed. The 
only matrix this algorithm works with is the matrix that has to 
be diagonalized This method saves time and a lot of memory as 
well. Practically, it calculates eigenvalues and eigenvectors of a 
matrix. The idea is to write a matrix as a product of an orthogonal 
matrix and an upper triangular. In this algorithm, the 
diagonalization is computed as follows: 

Samples of {R(τj)│ j=1,…,L} have already been formed on 
the previous step of SOBI. Generally, if a unitary factor U 

diagonalizes one of these samples it diagonalizes the rest as well. 
The first step of the new algorithm is computing the SCHUR 
form of the first sample. That means that R(τ1) is equal to 

 R(τ1) = QBQH (12) 

with Q being a unitary matrix and B an upper triangular. 
A very crucial part of this algorithm is noticing that since B 

and R(τ1) are similar (R(τ1)=P-1BP, for some invertible P) they 
have the same multiset of eigenvalues and since B is triangular 
those eigenvalues are the diagonal entries of B. Since all of the 
matrices R(τj) have a set of district eigenvalues, B has a set of 
district entries on its diagonal. This can be shown as follows: 

 (bii-λ)  (13) 

With bii≠bjj for  i≠j so every eigenvalue has multiplicity 1. 
So, B is diagonalizable. Matrix B can be written as B=VDV- 1(V 
is unitary so V-1 = VH) and R(τ1) = QVDVHQH = (QV)D(QV)H. 
The unitary matrix that can diagonalize the matrix R(τ1) is 
unique. This is the reason why V-1 = VH. 

Now the matrix R(τ1) is diagonalized. As it was explained 
any matrix that diagonalizes R(τ1) is essentially equal to the 
unitary factor U from (12) so we obtain that U=QV.  The final 
step of this algorithm is to compute the source signals and the 
mixing matrix A from equation (1). The source signals are 
estimated as s(t)=UHWx(t) and the mixing matrix A as A=W #U. 

III. EXPERIMENTAL RESULTS  

In order to evaluate the computational time and effectiveness 
of the proposed reworked SOBI algorithm, several experiments 
were conducted using prerecorded EEG datasets. These 
prerecorded datasets were created and contributed to PhysioNet 
[20] database by the developers of the BCI2000 instrumentation 
system [21]. Datasets includes different sessions of over 1500 of 
one and two-minute EEG recordings that correspond to 109 
volunteers. The volunteers performed different motor/imagery 
tasks while 64-channel EEGs were recorded. Over 90% of 
randomly selected sessions from the above database where used, 
where each session contains 14 recordings of EEG data. For each 
session and recording, the execution time of the reworked SOBI 
algorithm was compared with the execution time of the typical 
SOBI approach. Experiments were conducted using EEGLAB 
Toolbox [22] for MATLAB, run on an Intel Core i7 – 2600K at 
3.70GHz machine, with 16 GB of RAM.  

In all cases, reworked SOBI presents a reduction in 
execution time comparing to execution time of the typical SOBI 
algorithm. Table I presents respectively the five best results 
while Table II the five worst results in our experiments. 

TABLE I.  EXECUTION TIME OF REWORKED AND TYPICAL SOBI BLIND 

SOURCE SEPARATION ALGORITHM, IN SECONDS – FIVE BEST RESULTS 

Best 

Result 

Execution Time in sec Time Reduction 

in sec Rework SOBI Typical SOBI 

1 1.84 11.66 9.82 

2 1.81 11.51 9.70 

3 1.84 10.37 8.53 

4 1.60 9.79 8.19 

5 1.73 9.80 8.07 



TABLE II.  EXECUTION TIME OF REWORKED AND TYPICAL SOBI BLIND 

SOURCE SEPARATION ALGORITHM, IN SECONDS – FIVE WORST RESULTS 

Worst 

Result 

Execution Time in sec Time Reduction 

in sec Rework SOBI Typical SOBI 

1 5.02 9.33 4.31 

2 5.22 9.87 4.65 

3 5.69 10.52 4.83 

4 4.78 10.22 5.44 

5 4.45 11.12 6.67 

IV. CONCLUSIONS 

This paper introduces an improved variant of SOBI 
algorithm, which is used as an ICA filter during  brain signal 
processing. It is based on the joint diagonalization of a capricious 
set of covariance matrices and SCHUR decomposition. It allows 
the separation of Gaussian sources as the original SOBI 
algorithm does.  However, compared to the original SOBI 
algorithm it presents a significantly lower processing time, 
robustness and less memory consumption. In specific, the 
reduction in the processing time is well below the limits imposed 
by the control of the motor imagery movements, a feature that 
makes this algorithm quite appropriate for use in the control of 
arm or limb rehabilitation devices. 

  

V. FUTURE WORK 

Although the most time-consuming part of the algorithm 
processing is the diagonalization, there are still many other parts 
that can be modified in order to reduce further he execution time. 
The basic changes that can be made are: 

1) The number of correlation matrices to be diagonalized. 

If this number can be further geuced, without having the source 

signals differentiated in the end, the algorithm will become 

faster. This is obvious since the number of the matrices to be 

processed will be reduced. 

2) There are many ways of whitening data in signal 

processing. Although SVD is a basic formula it can get quite 

complex. The definition of a less complex whitening matrix 

from (8) could reduce the processing time. 
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