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Abstract—Alzheimer’s disease (AD) is characterized by a
progressive deterioration of cognitive and behavioral functions
as a result of the atrophy of specific regions of the brain. It is
estimated that by 2050 there will be 131.5 million people affected.
Thus, there is an urgent need to find biological markers for its
early detection and monitoring. In this work, it is present an
analysis of textural radiomics features extracted from a gray
matter probability volume, in a set of individual subcortical
regions, from a number of different atlases, to identify subject
with AD in a MRI. Also, significant subcortical regions for AD
detection have been identified using a ReliefF relevance test.
Experimental results using the ADNI1 database have proven
the potential of some of the tested radiomic features as possible
biomarkers for AD/CN differentiation.

Index Terms—Alzheimer’s disease, Radiomics, Support vector
machines, Magnetic resonance imaging

I. INTRODUCTION

Alzheimer’s disease (AD) is a disease characterized by an

accumulation of beta-amyloid plaques and neurofibrillary tan-

gles that leads to a progressive deterioration of cognitive and

behavioral functions [1]. According to Alzheimer’s Disease

International (ADI) in its 2016 World Alzheimer’s Report,

only 50% of people with dementia are being diagnosed, a

figure that drops to 10% in less developed countries.

To this day, the diagnosis of Alzheimer’s disease remains

essentially clinical, meaning that it cannot be detected until

the first symptoms appear, or even later, when the neu-

ropathological damage is already significant. It is estimated

that the evolution of this disease normally takes between 20

and 30 years from its pre-clinical stage, until recognizable

and conclusive symptoms are presented for the diagnosis of

Alzheimer’s disease [2]. At an intermediate stage in this evo-

lution, the first cognitive symptoms appear, in which subjects

show only a slight deterioration in memory, but do not meet the

criteria for dementia [3]. This stage is called Mild Cognitive

Impairment (MCI) and, although not all patients with MCI

develop AD, studies show that between 10% and 15% of MCI

cases progress to AD per year [4]. Therefore, detection and

monitoring of Alzheimer’s disease from possible biomarkers

has become a necessity.

Among the set of possible biomarkers for Alzheimer’s

disease, those based on the analysis of the different modal-

ities of medical imaging of the brain have demonstrated a

considerable potential. Medical imaging offers the ability to

visualize degenerative histological and methabolical changes,

which occur long before the neurodegenerative disorder is

clinically detectable [5]. The commonly used imaging modal-

ities in dementia diagnosis include the magnetic resonance

imaging (MRI), positron emission tomography (PET), and

single-photon emission computed tomography (SPECT). As

a result, the use of medical imaging for early diagnosis of AD

has grown significantly in the last years, especially the use

of MRI, given its non-invasive nature, wide availability and

relative absence of discomfort for the patient.

There is a large amount of published research on possible

biomarkers for MRI neuroimaging-based computer-aided de-

tection of AD [6]. In general, most of these features are based

on variations in density of the whole brain [7] or use subtle

changes on thickness extracted at the vertex level on the corti-

cal surface [8]. In the last decade, radiomic approaches [9] to

the analysis of medical images have become widespread. The

concept of radiomics involves the conversion of digital medical

images into high-dimensional minable data, using a large panel

of phenotypic features, such as those based on shape, intensity

or texture. This characterization process can unveil information

in the biomedical image associated with possible underlying

pathophysiological anomalies. Although radiomic techniques

are primarily used in oncological studies, several types of

radiomic textural features have demonstrated their relevance

in the detection and quantification of Alzheimer’s disease, as

can be seen in [10] and [11].

Taking into account prior knowledge of the magnitude and

spatial pattern of the evolution of AD, it is possible to focus

studies on areas of the brain that have been shown to contain

discriminatory information related to AD (i.e. [12]). The main
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approach in these methods implies the use of biomarkers

extracted from the hippocampus [13] as volume, shape or

textural features. Work on other cerebral areas has been done

in [14], in which a diffeomorphometry study has been carried

out in a number of regions, including the right and left

hippocampus, thalamus, and lateral ventricles, in order to

perform a linear discriminant analysis for AD prediction.

The generation of biomarkers based on specific areas of the

brain relies on the partitioning of the original MRI volumes

in a set of cortical regions using an existing atlas template.

However, despite the existence of multiple atlases of the brain,

both anatomical and functional, there is no accepted standard

for the partitioning of the cortex and subcortical structures,

or for the assignment of labels to the resulting regions [15].

There is a considerable lack of agreement among the avail-

able parceling schemes [16], which represents a considerable

problem when it comes to selecting regions of interest in

the study of discriminatory features extracted from specific

cerebral regions.

This article deals with the analysis of textural radiomic

features on a set of individual subcortical regions, selected

for their relevance in distinguishing subjects with AD from

healthy subjects. Given the existing discrepancies between

atlases, a comparison will be made between the results ob-

tained from different brain parcelations. So far, radiomic

studies of Alzheimer’s disease have focused on extracting

features from the MRI volume intensity values. However,

the inherent variability of brain tissues [17] and the various

textural patterns resulting from the model and configuration

of the MRI hardware can significantly affect textural analyses

based on the intensities of the MRI volume [18].

As can be seen in [19] the result of a brain tissue seg-

mentation will tend to show poorly classified areas in regions

of the brain where the neuronal atrophy associated with AD

tends to manifest. This especially affects areas of grey matter,

where such atrophy is particularly apparent [20]. Much in the

same way as can be seen in [21], we will take advantage of

this fact. Therefore in this work, a volume that represents the

probability that, in a MRI, a voxel corresponds to grey matter

is used as a base for features extraction.

II. MATERIALS AND METHODS

In this work, we present an analysis of textural radiomics

features in a set of individual subcortical regions, from a

number of different atlases, selected for their relevance in

classifying subjects with Alzheimer’s disease from healthy

subjects. At the same time, a significance test has been carried

out to identify which areas in relation to which atlases and

features show significant differences between AD and CN

subjects. Unlike related studies, a volume representing the

probability that each voxel of an MRI volume corresponds

to grey matter will be used as a base for feature extraction.

The analysis process presented is divided into three stages.

In the first stage, the MRIs are processed in order to carry

out bias correction and spatial normalization of the data set,

using the Clinica software platform (version 0.1.0). Clinica

is a software platform developed by the ARAMIS lab1, for

research studies in clinical neurosciences, specialized in mul-

timodal data (neuroimaging, clinical and cognitive evaluations,

genetics, etc.). Also, at this stage, a segmentation of the

MRIs representing the probability of being white matter, grey

matter and cerebrospinal fluid is obtained. In the second stage,

from the volume of grey matter, a set of textural features

are extracted from the areas of interest. Finally, the resulting

vectors for each feature and atlas are used to train classification

models based on SVM. These vectors are tested to check the

relevance of each of the areas of interest selected in each atlas

by using a ReliefF test [22].

The subjects included in this study were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI).

A. ADNI dataset

Launched in 2003 as a public-private partnership and

led by Principal Investigator Michael W. Weiner, MD, the

Alzheimer’s Disease Neuroimaging Initiative2 is a project

aimed at testing whether different modalities of medical

imaging such as MRIs and PETs, image based biomarkers,

and clinical and neuropsychological evaluation data can be

combined to assess the progression of MCI and early AD.

The population of this study during the its three main phases

(ADNI1, ADNI GO and ADNI2) consists of 1650 subjects,

with a total of 3193 magnetic resonance images, of which

350 are control subjects (CN) 900 are MCI patients and the

remaining 400 subjects are diagnosed with AD.

B. MRI volume pre-processing

In the first stage, the dataset is processed in order to carry

out bias correction and spatial normalization, and to generate

a white matter/grey matter/cerebrospinal fluid segmentation.

To work with a standardized preprocessing workflow, com-

patible with multiple neuroimaging databases, volume prepro-

cessing and overall data set management is performed using

Clinica software platform. Clinica is developed with Python

and is designed, using Nipype, as a modular architecture.

Before beginning the pre-processing process, Clinica performs

the conversion of the dataset to the BIDS format [23].

The Clinica software pre-processing pipeline involves the

SPM [24] segmentation procedure that performs all pre-

processing processes simultaneously, in a procedure known

as ”Unified Segmentation” [25]. The pipeline then calcu-

lates a group template by applying DARTEL (Diffeomorphic

Anatomical Registration Through Exponentiated Lie. Algebra

[26]) DARTEL is based on the idea of producing a bidirec-

tional ”flow field” as the nucleus for the ”deformation” of

the image in the image registration process. An example of a

pre-processed, segmented volume slice can be seen in 1.

Finally, the volumes are normalized using the space defined

by the Montreal Neurological Institute (MNI) template. Clinica

also offers a modular way to perform a classification based on

automatic learning by combining different inputs, algorithms

1www.clinica.run/www.aramislab.fr
2adni.loni.usc.edu
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Fig. 1: Example of tissue segmentation, from a volume part of the pre-processed ADNI dataset. Original MRI slice (left), grey

matter probabilities (center left), white matter probabilities (center right), cerebrospinal fluid (right)

and validation strategies. These modules are based on scikit-

learn [27].

The Clinica pre-processing pipeline has been modified to

generate the normalized atlases for each subject, in the form

of a volumetric image labelled with the different regions of

the parcelation.

C. Feature extraction

Taking into account the particularities of the volume of

grey matter probability, composed mainly of homogeneous

zones where tissue degeneration is presented as degradation in

intensity, 10 textural features have been selected. As general

textural features, from the grey level co-occurrence matrix

(GLCM), autocorrelation, cluster tendency, correlation, Sum

Average, Sum Entropy and Sum of Squares or Variance are

retrieved, from each region of interest. As specific textural fea-

tures for the evaluation of the homogeneity if the distribution

of intensities, using the grey-level size zone matrix (GLSZM),

the Small Area Low Grey Level Emphasis (SALGLE), the

Small Area High Grey Level Emphasis (SAHGLE), the Large

Area Low Grey Level Emphasis (LALGLE) and the Large

Area High Grey Level Emphasis (LAHGLE) are retrieved,

from each region of interest. An in-depth definition of these

features can be found in [28] and [29].

These features are extracted using the PyRadiomics [30]

platform. PyRadiomics provides a flexible analysis platform

with a simple and convenient back-end interface that allows

automation in data processing, feature definition and batch

management. PyRadiomics is also implemented in Python.

From the results presented in [5] and [12], 9 subcortical

regions (for right and left hemispheres) have been chosen

as regions of interest: the hippocampus, the parahippocampal

gyri, the amygdala, the middle temporal gyri, the superior

temporal gyri, the lateral orbital gyri, the medial orbital gyri,

the cingulate gyri and the precuneus.

Four anatomical atlases and one functional atlas will be

tested. Although these atlases cover the entire cortex and the

main subcortical structures, it is possible that some parce-

lations may not be present in some atlases, or may appear

over-parceled. As a result, the size of the vectors of extracted

features changes according to the atlas.

• AAL2 [31]: Anatomical atlas manually created from

volumes of a single subject. AAL2 is composed of 120

anatomical regions. In this atlas, it has not been possible

to identify the equivalents to the amygdala, the lateral

orbital Gyrus or the medial orbital Gyrus, so the feature

vectors for this atlas represent 12 partitions.

• Hammers [32]: Anatomical atlas created manually from

MRI volumes of 30 healthy subjects. This atlas is com-

posed of 69 regions. The feature vectors produced with

this atlas represent a total of 18 partitions.

• LPBA40 [33]: Anatomical atlas created manually from

volumes of 40 subjects previously transformed into MNI

space. LPBA40 consists of 56 regions. It has not been

possible to identify in this atlas the equivalents to the

amygdala or the medial orbital gyrus, so the feature

vectors for this atlas represent 14 partitions.

• Neuromorphometrics 3: Anatomical atlas created manu-

ally from MRI volumes of 30 healthy subjects, previously

transformed into MNI space. 140 regions have been

parcelated in this atlas. The feature vectors generated with

this atlas represent a total of 18 partitions.

• AICHA [34]: Functional atlas created using functional

magnetic resonance images from 281 subjects. AICHA

represents 345 regions. Many of the regions of interest

in this atlas appear over-partitioned, resulting in feature

vectors representing 78 partitions.

D. Classification and significance analysis

The regions of interest selected for this study have shown

their importance in the evolution of Alzheimer’s disease.

However, taking into account the differences in shape and

position of regions of interest between atlases, and the different

3Neuromorphometrics Inc, Building a Model of the Living Human Brain.
http://www.neuromorphometrics.com/
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stages of the evolution of AD, it is not possible to guarantee

the relevance of a specific region for a specific feature on a

specific atlas. In this work, the relevance of the association

between feature and region of interest is tested using the

ReliefF algorithm [22]. The ReliefF algorithm generates a

vector of weights for each feature in order to find the pos-

sible contribution of a feature to a classification, by finding

neighbors from the same class (near-hit) and from the other

class (near-miss) using the L1 norm. ReliefF algorithm do

not assume conditional independency of the attributes, takes

into account contextual information and is able to work with

problems with strong dependencies between attributes [35].

To perform the categorization of MRI volumes, in order to

separate Alzheimer’s disease patients from normal cognitive

patients (CN), a Support Vector Machine (SVM) [36] classifier

has been selected to generate the classification model. The

use of SVMs generally yields reliable models, robust against

biases or problems of variance in the data [37]. A linear kernel

with a cost parameter of 1 is used.

The models are constructed and examined using ten-fold

cross-validation. As performance measures, accuracy, negative

prediction value, positive prediction value, sensitivity, speci-

ficity, balanced accuracy and F-score are reported. A detailed

description of this measures can be found in [38]. Models

generation and testing is performed using WEKA; relevance

heatmaps and significance tests are carried on using MATLAB.

III. RESULTS

The experiments were carried out using the healthy subjects

and subjects diagnosed with Alzheimer’s disease of the ADNI1

phase of the ADNI dataset. After converting these ADNI1 data

to the BIDS standard, using the Clinica Software’s conversion

pipeline, the population is reduced to 72 subjects, 44 CN and

28 AD. This reduction may be due to multiple causes, from

corrupted images to duplicate or unrelated metadata in the

dataset.

Fig. 2 shows the heatmaps of subcortical brain region

relevance for each atlas and radiomic textural feature, where

each square represents the weight assigned to this specific

feature/subcortical region combination by ReliefF. In order

to maintain consistency between the different heatmaps, the

regions absent in some atlases (AAL2 and LPBA40) are

still shown (colored in grey) and, in the atlases with over-

partitioned regions (AICHA), it is displayed the mean of the

weights assigned by refiefF to each region. As can be seen,

among the regions, the hippocampus and the amygdala (where

it is present in an anatomical atlas) are the most dominant

regions for most radiomic features. This result is consistent

with previous studies [10]. To a lesser extent, the tempo-

ral, middle and parahippocampal gyri are also noteworthy,

especially in the case of the features of correlation, sum of

averages, and LAHGLE, although there is no full agreement

between the different atlases. This suggests that there are

substantial differences in how these regions have been defined.

The results of the classification experiments are summarized

in Table I. As a baseline, provided by Clinica, we show

the results obtained with a model generated from the mean

intensity of each region of the complete parcelation of the

brain, for each atlas. Among the set of tested features, the

features LAHGLE (for atlases AAL2, Hammers, LPBA40

and Neuromorphometrics), autocorrelation and sum averages

(for atlases AAL2, Hammers and Neuromorphometrics) show

significant improvements for most of the proposed evaluation

metrics (McNemar test p <0.05), compared to the baseline

classification model. Although these features also show im-

provements in relation to the baseline model in the rest of

the atlases, it is not possible to claim significance for these

results using the McNemar test. On the other hand, features

as SALGLE, SAHGLE, LALGLE and correlation result in

significantly worse classifiers models than those obtained with

the baseline features (McNemar test p <0.05) for many of

the tested atlases. The rest of the features (sum entropy, sum

squares and cluster tendency) generate models with similar or

worse results than the baseline model, although again is not

possible to claim significance.

Tested textural features show consistent behavior between

atlases; features that produce good results in one atlas produce

good results in others, and vice versa (with the exception

of SHAGLE). As can be seen from the analysis of the

performance measures, the classification errors have a bias

towards false negatives, for almost all features and atlases. In

general, the existence of relevant regions associated with a

feature indicates a good performance of the model generated

with it, although it is not a guarantee, as can be seen, for

example, for the feature ”correlation”.

IV. CONCLUSIONS

The results presented in this work show the potential of

some of the tested radiomic features (i.e LAHGLE) as possible

biomarkers in the detection of AD. As in previous studies,

it was found that the hippocampus and the amygdala are

the most dominant regions for MRI AD/CN differentiation.

Finally this works suggest that, taking into account only the

overall performance measures for the different features, both

Neuromorphometrics and Hammers have a slight advantage

over the rest as the best suited atlases for the Alzheimer’s

disease detection, although performance differences are, in

general, small.

The results obtained for some of the tested features suggest

the extension of the study to other cases, such as discrimination

between normal and mild cognitive impairment, as well as the

extension of the group of study subjects using other databases.

Also, the possibility of narrowing the set of used subcortical

regions is considered, as well as to improve the discrimination

capacity of the models using multi-features vectors.
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(a) Neuromorphometrics atlas (b) AAL2 atlas

(c) Hammers atlas (d) LPBA40 atlas

(e) AICHA atlas

Fig. 2: Heatmaps showing the relevance of the subcortical brain regions in relation to the radiomics textural features, for

each atlas and radiomic textural feature. Each square represents the weight assigned to this specific feature/subcortical region

combination by ReliefF. Regions absent are shown coloured in grey.
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TABLE I: Classification results showing a comparison between the evaluation metrics proposed for the different atlas and

radiomics textural features. The best results for each atlas are highlighted in bold.

Feature Accuracy Balance accuracy NPV PPV Sensitivity Specificity F-measure
AAL2

Mean (Clinica) 0.7909 0.7803 0.8165 0.7616 0.7222 0.8385 0.7418
Autocorrelation 0.8611 0.8579 0.9091 0.7857 0.8462 0.8696 0.8148

Cluster Tendency 0.7361 0.7230 0.8182 0.6071 0.6800 0.7660 0.6415
Correlation 0.6806 0.7222 0.9545 0.2500 0.7778 0.6667 0.3784

Sum Average 0.8611 0.8646 0.9318 0.7500 0.8750 0.8542 0.8077
Sum Entropy 0.7083 0.7321 0.9318 0.3517 0.7692 0.6949 0.4878
Sum Squares 0.7639 0.7519 0.8182 0.6786 0.7037 0.8000 0.6909

SALGLE 0.6944 0.6852 0.8636 0.4286 0.6667 0.7037 0.5217
SAHGLE 0.6806 0.6648 0.8409 0.4286 0.6316 0.6981 0.5106
LALGLE 0.7083 0.7857 0.9773 0.2857 0.8889 0.6825 0.4324
LAHGLE 0.93060 0.9296 0.9545 0.8929 0.9259 0.9333 0.9091

AICHA
Mean (Clinica) 0.8385 0.7927 0.8054 0.8415 0.6778 0.9077 0.7508
Autocorrelation 0.8333 0.8247 0.8636 0.7857 0.7857 0.8636 0.7857

Cluster Tendency 0.7778 0.7708 0.8636 0.6429 0.7500 0.7917 0.6923
Correlation 0.7361 0.7222 0.7955 0.6429 0.6667 0.7778 0.6545

Sum Average 0.8472 0.8407 0.8864 0.7857 0.8148 0.8667 0.8000
Sum Entropy 0.7778 0.7708 0.8636 0.6429 0.7500 0.7917 0.6923
Sum Squares 0.8056 0.8091 0.9091 0.6429 0.8182 0.8000 0.7200

SALGLE 0.6389 0.6171 0.7273 0.5000 0.5385 0.6957 0.5185
SAHGLE 0.7639 0.7518 0.7955 0.7143 0.6897 0.8140 0.7018
LALGLE 0.6528 0.6305 0.8409 0.3571 0.5882 0.6727 0.4444
LAHGLE 0.8611 0.8539 0.8864 0.8214 0.8214 0.8864 0.8214

Hammers
Mean (Clinica) 0.7909 0.7940 0.8652 0.7193 0.8111 0.7769 0.7625
Autocorrelation 0.9028 0.9000 0.9320 0.8571 0.8889 0.9111 0.8727

Cluster Tendency 0.8472 0.8455 0.9091 0.7500 0.8400 0.8511 0.7925
Correlation 0.7639 0.7536 0.8409 0.6429 0.7200 0.7872 0.6792

Sum Average 0.8889 0.8880 0.9318 0.8214 0.8846 0.8913 0.8519
Sum Entropy 0.8611 0.8539 0.8864 0.8214 0.8214 0.8864 0.8214
Sum Squares 0.8611 0.8646 0.9318 0.7500 0.8750 0.8542 0.8077

SALGLE 0.7361 0.7363 0.8864 0.5000 0.7368 0.7358 0.5957
SAHGLE 0.8194 0.8111 0.8636 0.7500 0.7778 0.8444 0.7636
LALGLE 0.7083 0.7321 0.9318 0.3571 0.7692 0.6949 0.4878
LAHGLE 0.9028 0.8962 0.9091 0.8929 0.8621 0.9323 0.8772

LPBA40
Mean (Clinica) 0.8545 0.8513 0.8856 0.8463 0.8333 0.8692 0.8398
Autocorrelation 0.9028 0.9068 0.9545 0.8214 0.9200 0.8936 0.8679

Cluster Tendency 0.8056 0.8021 0.8864 0.6786 0.7917 0.8125 0.7308
Correlation 0.7500 0.7723 0.9318 0.4643 0.8125 0.7321 0.5909

sum Average 0.8750 0.8851 0.9545 0.7500 0.9130 0.8571 0.8235
sum Entropy 0.8472 0.8407 0.8864 0.7857 0.8148 0.8667 0.8000
sum Squares 0.8056 0.8021 0.8864 0.6786 0.7917 0.8125 0.7308

SALGLE 0.6944 0.7167 0.9318 0.3214 0.7500 0.6833 0.4500
SAHGLE 0.7222 0.7222 0.8864 0.4643 0.7222 0.7222 0.5652
LALGLE 0.7222 0.7667 0.9545 0.3571 0.8333 0.7000 0.5000
LAHGLE 0.9444 0.9416 0.9555 0.9286 0.9286 0.9545 0.9286

Neuromorphometrics
Mean (Clinica) 0.8136 0.8064 0.8510 0.8016 0.7667 0.8462 0.7838
Autocorrelation 0.8889 0.8880 0.9330 0.8214 0.8846 0.8913 0.8519

Cluster Tendency 0.7917 0.7815 0.8409 0.7143 0.7407 0.8222 0.7273
Correlation 0.7361 0.7596 0.9318 0.4286 0.8000 0.7193 0.5581

Sum Average 0.8611 0.8646 0.9318 0.7500 0.8750 0.8542 0.8077
Sum Entropy 0.8611 0.8579 0.9091 0.7857 0.8462 0.8696 0.8148
Sum Squares 0.8194 0.8095 0.8409 0.7857 0.7586 0.8605 0.7719

SALGLE 0.7361 0.7230 0.8182 0.6071 0.6800 0.7660 0.6415
SAHGLE 0.8333 0.8333 0.9091 0.7143 0.8333 0.8333 0.7692
LALGLE 0.6667 0.6576 0.8864 0.3214 0.6429 0.6724 0.4286
LAHGLE 0.9028 0.9000 0.9318 0.8571 0.8889 0.9111 0.8727
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