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Abstract—In this paper, we revisit the data of the San Antonio
Heart Study, and employ machine learning to predict the future
development of type-2 diabetes. To build the prediction model, we
use the support vector machines and ten features that are well-
known in the literature as strong predictors of future diabetes.
Due to the unbalanced nature of the dataset in terms of the
class labels, we use 10-fold cross-validation to train the model
and a hold-out set to validate it. The results of this study show
a validation accuracy of 84.1% with a recall rate of 81.1%
averaged over 100 iterations. The outcomes of this study can help
in identifying the population that is at high risk of developing
type-2 diabetes in the future.

Index Terms—Disease Prediction, support vector machine, type
2 diabetes.

I. INTRODUCTION

The global incidence of diabetes was estimated at 422 million

in the year 2014, and its prevalence among the adult population

has seen in increase from 4.7% in 1980 to 8.5% in 2014 [1].

In 2015 alone, an estimated 1.6 million deaths worldwide were

directly attributed to diabetes. In addition, a diabetic patient is

at a greater risk of developing cardiovascular disease, visual

impairment and undergo limb amputations, as compared to

a non-diabetic person. Due to the substantial socio-economic

burdens not only to the effected families but the local health-

care system as well, the early detection, intervention and

prevention of diabetes has become a paramount global concern

related to health.

Impaired glucose tolerance (IGT) determines the abnormal

insulin response in the body, and is considered one of the most

important risk factors, both by the World Health Organization

(WHO) [2] and the American Diabetes Association (ADA) [3],

for detecting diabetes in its early stage, known as pre-diabetes.

The IGT can be quantified by the glucose clamp technique,

however, such an experiment is risky and requires highly

qualified personnel, which limits its use in clinical practice

or large epidemiological studies. A less invasive technique

to quantify the IGT involves an oral glucose tolerance test

(OGTT) in which the blood concentrations of glucose and

insulin are assessed, in response to a standardized glucose

dose taken orally before two hours of the measurement, after

an overnight fasting state [4].

Studies have shown that only 50% of the cases that exhibit

the IGT go on to develop diabetes in future [5], [6]. On

the other hand, 40% diabetic subjects do not show any IGT

in the initial screening. Previous studies have shown that

extended the OGTT, that assesses the blood glucose and

insulin intermittently during the 2 h time period can better

predict the future risk of type-2 diabetes [7]. In this paper,

we extract the extended OGTT data from a population-based,

epidemiological study, the San Antonio Heart Study (SAHS)

[8], [9], and use a machine learning model to predict the future

risk of diabetes. We use ten features that include a subject’s

demographic information and glucose characteristics derived

from the OGTT measurements. The features are well-known

as strong predictors of future diabetes in the literature. Here,

we first describe the background and of the SAHS, after which

we illustrate the machine learning technique used in this study.

The results obtained during the training and validation phases

are reported in terms of the accuracy, recall and specificity of

the classifier models. Since the aim is to identify the high-risk

subjects, we optimize the training models so that the recall

(true positive rate) is maximized.

II. METHODOLOGY

A. San Antonio Heart Study

We extracted the dataset from an epidemiological population

study of risk factors related to diabetes and cardiovascular

diseases, known as the San Antonio Heart Study (SAHS) [8],

[9]. The study comprised of 5,158 men and non-pregnant

women of Mexican-American and non-Hispanic white eth-

nicity, aged between 25 and 64 years and residing in San

Antonio, Texas. All the protocols applied in the study were

approved by the University of Texas Health Science Center,

San Antonio institutional review board. Blood samples of all

the participants that went through an overnight fast, were

drawn after orally administering a 75 g dose of glucose. After

an average follow-up period of 7.5 years, the same participants

were subjected to another round of OGTT. The participants

in the SAHS study were enrolled in 2 stages, the first from

January 1979 to December 1982, and the second, from January

1984 to December 1988 [10]. The reassessment during the

follow-up period took place from October 1987 to November
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1990 for the first phase, and October 1991 to October 1996
for the second phase. For this paper, we analyzed a subset of

data from the second phase, with plasma glucose and insulin

levels of 1,496 participants measured at 0, 30, 60 and 120
minutes at baseline. At the follow-up assessment (average

follow-up time of 7.5 years), the participants were classified as

having type-2 diabetes (T2D), cardiovascular disease (CVD)

or normal. For the T2D diagnosis, the WHO criteria, defining

fasting glucose level ≥126mg/dL or 2-hour glucose level

≥200mg/dL was followed [11]. Any participant reportedly

taking anti-diabetic medications was also classified as diabetic.

For the CVD classification, any cardiovascular event such as a

heart attack, stroke or angina reported by the participant, was

considered as an identifier. Table I outlines the distribution of

patient classification used in this study. In order to construct

a binary classifier, we have combined labels, T2D and both (a

total of 171 participants) indicating diabetes.

Healthy DMI CVD Both

1,281 161 44 10
85.63% 10.76% 2.94% 0.67%

TABLE I: The classification of the SAHS data-set with a total

of 1496 participants.

B. Feature Selection

We selected 10 features for our prediction model consisting

of socio-demographic variables such as age and ethnicity,

and physiological factors that were either directly measured

or derived from the OGTT. These features have individually

been used in previous T2DM prediction studies [7], [12]. A

complete list of features used is shown in Table II. Subjects

having any missing feature values or labels were excluded

before the model generation. We used Matlab to develop the

machine learning routines and data processing. The area under

the 2 h glucose curve (AuG0−120) was calculated using the

trapezoidal rule, while the Matsuda index (M) was used as

defined in [13]. The insulin sensitivity, ΔI/ΔG0−120, where

x = 30, 120 was calculated using the measured insulin and

glucose values at time x during the OGTT.

Socio-demographic Physiological

Measured Derived

Age BMI AuG0−120

Ethnicity PG0 Matsuda Index (M)
PG120 ΔI/ΔG0−120

ΔI/ΔG0−30 ×M
ΔI/ΔG0−120 ×M

TABLE II: Features used in this study

C. Machine Learning

In this study, we employed the linear SVM kernel by

utilizing the Matlab’s svmtrain function. The training data

was first scaled to have a unit standard deviation. The mis-

classification cost was configured by setting the value of the

boxconstraint parameter to a high value of 100, which

would cause a stricter partitioning of the data with respect to

the class labels.

To predict the future risk of type-2 diabetes, we defined a

positive class (occurrence of diabetes at the follow-up) and a

negative class (healthy). As illustrated in Table I, the OGTT

data used in this study is heavily unbalanced. With 171 positive

class instances as compared to 1281 that of the negative

class, the size of class labels is unbalanced with the ratio of

positive-to-negative instances of 1:8. To avoid the problem of

overfitting to the majority class during the learning phase of

the technique, we under-sampled the majority class (healthy)

to the size of the minority class (diabetic) by a randomly se-

lecting equal number of samples. During the prediction model

generation, we employed 10-fold cross-validation framework

in which 90% of the training data, consisting of 360 samples

was used for training and the remaining 10% was used to

test the model. To validate the trained models, we used a

holdout data set with the same unbalanced ratio of negative-

to-positive classes in the original data, i.e., 11 samples of the

positive class, and 88 samples of the negative class. We started

our experiments using one feature at a time, and then more

number of features were incrementally added. This exercise

assists in discovering any feature dependencies. In total, we

performed 1,023 classification experiments. Each of these

experiments was trained as a 10-fold cross-validation (CV)

and, to minimize the effect of random selection of samples

from the majority class, 100 iterations were performed for each

experiment. Owing to the small sample size of the holdout

dataset, this strategy ensures the unbiased reporting of the

classifier performance. To maximize reliability of the model to

predict diabetes events, we maximized the recall metric during

the training phase, which is defined as,

Recall =
TP

TP + FN
, (1)

where TP and FN are the true-positives and false-negatives

respectively. During the validation phase, we tracked the

confusion matrices for all the models yielding the maximum

training recall for all the feature combinations.

III. RESULTS

The aim of this paper is to devise a machine learning scheme

that can identify healthy subjects that are at an increased risk

of developing type-2 diabetes. For this, the data used here is

a subset of the SAHS that includes the OGTT data of 1,496

healthy subjects at baseline, out of which 171 were labeled

as diabetic at the follow-up assessment and 1,281 maintained

their healthy status. To determine the performance of our pre-

diction models, we use accuracy, recall and specificity of the

models. During the training, we emphasized on maximizing

the recall of the classifier which in other words, maximizes

the identification rate of high-risk diabetes. Using the strategy

described in the previous section, we show the performance

results that are averaged over 100 iterations.
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A. Training

We trained ten prediction models with an increasing number

of features. Each of the SVM classifiers was trained through

a 10-fold cross-validation. The trained model was obtained by

selecting the one that yielded the maximum accuracy averaged

over 100 iterations. As an example, the feature, AuG0−120

provided a mean accuracy of 72% which was greater than the

accuracy given by all the other one feature models. The model

obtained using a combination of two features (AuG0−120 and

PG120) generated 84% accuracy. In the meantime, the recall

increased from 94% to 97% by adding one feature. The max-

imum average accuracy during the training was obtained when

four features (AuG0−120, PG120, age, and ethnicity) were used

(see Table III). The performance did not improve with further

increments in the number of features. This suggests that the

newly added features may not be independent to the existing

ones.

Features Accuracy Specificity Recall

1 0.72 0.50 0.94
2 0.84 0.75 0.97
3 0.86 0.75 1
4 0.89 0.78 1
5 0.86 0.72 1
6 0.86 0.75 1
7 0.89 0.78 0.97
8 0.89 0.81 0.97
9 0.86 0.78 0.91

10 0.81 0.78 0.81

TABLE III: The averaged performance of the trained models

demonstrating maximum recall and their corresponding accu-

racy and specificity.

B. Validation

To validate the trained models, we used a holdout data set

with the same unbalanced ratio of positive-to-negative class.

Due to the small sample of the minority class and in order

to avoid overlapping with the training set, only 11 diabetic

samples were used. Figure 1 shows the box plots for the

validation recall, accuracy and the specificity of the models

that were trained to maximize the recall rate of the classifier.

The same trends observed during the training were also seen

in the validation phase. The combination of the four features

that yielded the best training performance also produced the

highest median recall rate. Adding more number of features

resulted in slight improvement in the median accuracy. A

worsening trend in the performance was observed when the

number of features was more than seven. Figure 1 shows the

validation performance of the models with maximized recall

during the training.

IV. DISCUSSION

Development of the classifiers on an unbalanced dataset poses

a typical machine learning problem that results in he trained

models being biased towards the majority class. In this study,

we balanced the two classes with the aim to get unbiased
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Fig. 1: The validation performance of the models with maxi-

mized training recall. The box plots were obtained after 100

iterations of running the classifier.
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models in the training. The classification threshold that con-

trols the probability of a sample belonging to a certain class,

can be varied to maximize the true positive rate (recall) of the

classifier. Validation on the holdout data, on the other hand

provides an independent assessment of the classifier.

V. CONCLUSIONS

Diabetes prediction models identify the high-risk population

so that a timely population-based intervention could prevent

future complications. In this paper, we used the linear support

vector machines to construct a prediction model of future

development of type-2 diabetes.

The outcomes of the study show that high values of glucose

observed at the 2 h mark during the OGTT may strongly

indicate the potential risk of future development of type-2

diabetes. In a possible extension of this study, the prediction

models may be applied on other similar datasets that include

the OGTT measurements.
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