
Time-window SIQR analysis of COVID-19
outbreak and containment measures in Italy

Ermanno Cordelli, Matteo Tortora, Rosa Sicilia, Paolo Soda
Unit of Computer Systems and Bioinformatics, Department of Engineering
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Abstract—The COVID-19 disease caused by the coronavirus
SARS-nCoV2 is currently a global public health threat and Italy
is one of the countries mostly suffering from this epidemic. It is
therefore important to analyze epidemic data, considering also
that the government deployed laws limiting the societal activities.
We model COVID-19 dynamics with a SIQR (susceptible –
infectious – quarantined – recovered) model, where we take
into account the temporal variability of its parameters. Particle
Swarm Optimization is used to find out the best parameters
in the case of Italy and of Italian regions where the epidemic
has the greatest impact. The basic reproductive number is
estimated by a novel approach that averages out different PSO
fits computed considering different temporal time-windows and
reducing possible noise in the data. The results on data collected
from February 24 to April 24 show that our approach is able
to fit the data with low errors and that the basic reproductive
number is characterized by a descending trend in time from 3.5
to a value below 1.

Index Terms—COVID-19, Coronavirus, Basic reproductive
number, Particle Swarm Optimization, Italy

I. INTRODUCTION

COVID-19 is the widespread respiratory disease caused by

the novel SARS-nCov2 coronavirus, whose origin of is yet to

be figured out by the World Health Organization (WHO), but

it first influnced millions of citizens in Wuhan City of Hubei

province in China since last December 2019. In only 3 months

it reached such a global spread (more than 500000 cases) that

it was declared a pandemic by WHO on March 11, 2020.

Italy is currently one of the most affected Western countries,

accounting 192.994 cases so far. To contain the disease spread,

the government introduced at first the quarantine for the

infected people and then, as extreme measure, the complete

lockdown of the country on March 10, 2020. The containment

measures were increased on March 22 also interrupting any

service and productive activity that wasn’t a primary need for

the citizens, following the steps covered by China and many

other affected countries.

Despite all the efforts, the pandemic is still ongoing and re-

searchers are directing increasing efforts towards the compre-

hension of this disease dynamics by modelling its spread [1],

[2], [3], [4], [5], [6], [7], [8].

The basic model to describe epidemiological dynamics is

the Susceptible-Infected-Recovered (SIR), that exploits the

relationships between the three components listed in its name,

i.e. the subpopulation that is prone to get the disease (sus-

ceptible S), the subpopulation of the infected individuals

which spread the virus (infected I) and the set of individuals

recovered, deceased, or immune (recovered R). This deter-

ministic model has several alternatives that add components

to represent other phenomena in the dynamic. In the case

of COVID-19, the work in [1], [2], [3] exploits a variant of

the SIR model which introduces also the variable Q to take

into account the “quarantined” subpopulation, named SIQR

model [9]. In particular the contribution in [1] presents as

main case study the modelling of COVID-19 spread in Italy

between February 20 and March 10. They investigate the

effects of the initial mild restrictions imposed in the country

at the beginning of the virus spread, finding out that these

weren’t effective. Indeed, according to their estimates the

transmission coefficient (β) should be reduced at least of

the 65% to appreciate a significant drop in the number of

infectious individuals. However this model considers only the

first phase of the epidemic and it doesn’t take into account the

lock down interventions imposed by the Italian government

after March 10.

The work reported so far assume that the infection rate

of the disease is constant in time. However, the speed of

transmission can be changed through many measures, such

as personal protective measures, community-level isolation,

and lock down. On these grounds, we hereby present a

study on the COVID-19 spread in Italy modelling the disease

by a SIQR approach and searching for the optimal model

parameters by the PSO algorithm, that fits data on both the

number of fatalities/recovers and the quarantined populations.

Furthermore, to account for temporal variation of the infection

rate, model parameters estimation is performed by using a

time-windowing approach, which helps us discovering how

the spread of the disease evolves and and whether temporal

modifications are related to the strict lock down measures

taking effect since March 10.

II. METHODS

The strategy used by several governments to reduce the

diffusion of the disease has introduced the quarantine, so

that sick people are forced to do not mix with others to

do not infect susceptibles. Depending to the disease severity,

quarantined people can stay at home or are hospitalised.
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This suggests us to model the dynamics of COVID-19 by

a SIQR model. This is a model where the total population

N(t) is divided into four compartments S(t), I(t), Q(t), and

R(t), with N(t) = S(t) + I(t) + Q(t) + R(t). S(t) denotes

the susceptibles that can become infected and move to the

infectious class I(t). Q(t) represents people in quarantine,

and R(t) is the number of persons that recover or die from

the disease. Furthermore, individuals in R class get permanent

immunity. The evidence that the SARS-nCov2 virus can be

transmitted in the absence of symptoms [10] suggests us to

exclude from the model the exposed status (E(t)), which

accounts for individuals who experience a long incubation

duration during which they are infected but not yet infectious.

Fig.1 shows the compartmental model used that is described

by the following ordinary differential equations (ODEs):

dS

dt
=
−βSI
N

+ δN + ρS

dI

dt
=

βSI

N
− (α+ η)I

dQ

dt
= ηI − γQ

dR

dt
= γQ+ ωI

where β denotes the infection rate (i.e. the rate of effective

contacts leading to a secondary case of infection), δ is the

birth rate, ρ stands for the natural death rate, α quantifies

the recovering rate of asymptomatic individuals, η is the

rate of detection of new cases, γ stands for the recovering

of quarantined individuals, and ω is the recovery rate of

infectious. Note that all these quantities are strictly positive.

As reported in section I, to the best of our knowledge, the

work that describe the CODIV-19 dynamic by SIQR model

assume that the infectious rate β and the other coefficients are

constant over time. While this is reasonable in the early days

of the epidemic, the government interventions have changed

people life style and this, in turns, has changed the speed of

transmission. To deal with this observation, in the ODEs we

can replace β by β(t), δ by δ(t), and so on for all the other

coefficients introduced above. Nevertheless, in order not to

burden the notation, hereinafter we omit to explicitly write

the time dependency.

Let us now discuss some further considerations on the

model. First, the birth rate is set equal to the death rate, which

is assumed not to be related to the infectious disease. This is

reasonable due the time horizon of the data and the disease

characteristics. Second, this ODEs model also assumes that the

hypothesis of well-mixed population holds, i.e. any infected

individual has a probability of contacting any susceptible

individual that is reasonably well approximated by the average.

Third, while in theory people can move from the I and Q
classes to the R class, there are no data available yet on the

number of recovered or deceased non-identified COVID-19

patients. For this reason we do explicitly not model this link

between I and R (i.e. ω = 0), whilst we introduce the rate α

Fig. 1: SIQR compartmental model. The meaning of the

symbols is described in section II.

with which patients from I become non-infectious, as also [1],

[2], [3] do.

We also introduce in the model previous findings on the av-

erage incubation time, which was estimated to be 5 days [11],

[12], and on the duration of the milder cases of disease,

ranging from 5 up to 10 days [10]. Assuming an average

time of duration from infection to recovery or fatality of

non-isolated cases of 10 days, that corresponds to a rate of

rd = 0.1/day, and denoting as ε the fraction of infectious

individuals tested positive and put in quarantine (Q), we obtain

α = rd(1−ε). Furthermore, η related to the time until patients

are tested positive and isolated, but also to the fraction of all

infectious individuals that are tested positive [1]. These are

mostly symptomatic patients, which we assume are isolated

soon after the incubation time is over and first symptoms

appear, i.e. after∼ 5 days, so that we have a rate ri = 0.2/day.

This results in η = riε.
According to all the considerations reported so far, the ODE

model can be re-written as:

dS

dt
=
−βSI
N

dI

dt
=

βSI

N
− [rd + ε(ri − rd)]I

dQ

dt
= riεI − γQ

dR

dt
= γQ

From this disease model we can derive the basic reproduction

number R0, defined as the expected number of secondary

cases produced by a single (typical) infection in a completely

susceptible population. It is a dimensionless number playing an

important role in helping to quantify possible disease control

strategies because it reflects the transmissibility of a virus

spreading under no control: indeed, a disease is likely to

decline and eventually disappear when R0 ≤ 1. This quantity

can be computed from an ODE compartmental model using

the next generation matrix G, as proposed in [13], [14]. G is a

square matrix where its ijth element is the expected number

of secondary infections of type i caused by a single infected

individual of type j, again assuming that the population of type

i is entirely susceptible. G has also some desirable properties

from a mathematical point of view and, in particular, it is a

non-negative matrix: this guarantees there will be a unique real

positive eigenvalue being strictly greater than all the others.
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This eigenvalue is R0, since R0 is the spectral radius of G.

According to [15], the next generation matrix can be computed

as G = FV−1, where F and V are square matrices defined as

follows. Formally, let x = (x1, x1, . . . , xn)
T be the number

of individuals in each of the n compartments, where the first

m < n contain infected individuals. Each one of the ODEs

can be therefore re-written as

dxi

dt
= Fi(x)− Vi(x), for i = 1, 2, . . . ,m (1)

where Fi(x) is the rate of appearance of new infections in

compartment i, and Vi(x) is the rate of other transitions

between compartment i and other infected compartments. It is

assumed that Fi and Vi ∈ C2 , and Fi = 0 if i ∈ [m+ 1, n].
In our SIQR model the infected individuals are in the I and

Q compartments and, hence, we can derive F and V as follows

FI =
βSI

N
FQ = riεI

VI = [rd + ε(ri − rd)]I VQ = γQ

F =

[
∂FI

∂I (x) ∂FI

∂Q (x)
∂FQ

∂I (x)
∂FQ

∂Q (x)

]
=

[
βS
N 0
riε 0

]

V =

[
∂VI

∂I (x) ∂VI

∂Q (x)
∂VQ

∂I (x)
∂VQ

∂Q (x)

]
=

[
rd + ε(ri − rd) 0

0 γ

]

where the subscripts I and Q refer the infectious and quaran-

tine classes. Note that F is entry-wise non-negative and V is

a non-singular M-matrix. It is straightforward that

V−1 =

[
1

rd+ε(ri−rd)
0

0 1
γ

]

and

G = FV−1 =

[
βS

N [rd+ε(ri−rd)]
0

η
rd+ε(ri−rd)

0

]

The eigenvalues of G are therefore 0 and βS
N [rd+ε(ri−rd)]

, with

the latter being R0. Because a relatively small fraction of the

population has been found positive for COVID-19, we are

in the early phase of the epidemic and we can assume that

S ∼ N , obtaining R0 = β
rd+ε(ri−rd)

.

In order to optimise the model parameters we use the

Particle Swarm Optimisation algorithm [16], a metaheuris-

tic algorithm based on the concept of swarm intelligence

appropriate to optimize nonlinear continuous functions well

appropriated in this settings. The available data, described in

section III, refer to quarantine (Q), to fatalities and recoveries

(R), while no information is available for the true number

of infectious I . This suggests a model optimization based

on Q and R and, hence, the PSO algorithm searches for

β, γ and ε by minimising the normalised residual sum of

squares error (NRSS, defined as in [17]), thus reducing also

the risk to overfit the data. To account for temporal variations

in speed of transmission we use a time window approach for

PSO fitting: to this end, the PSO works with consecutive

time-series data of length w and the time data blocks are

overlapped by a designated quantity o. Given data granularity,

both w and o are positive integers and they are measured in

days, with o < w. Furthermore, the initial conditions of each

time window are the (w − o)th variable values estimated by

the previous window, resulting in smooth transitions between

consecutive time windows. Straightforwardly, the first initial

conditions are the real data.

The use of this approach, further to consider the temporal

variations due to life style changes eventually given by leg-

islative initiatives, permits us also to attain a better estimate

of the basic reproduction number. Indeed, on the one side, the

use of single PSO fitting over the whole time-series may not

be able to catch the temporal variations resulting in a poor

estimate of the ODEs model and, hence, in a poor estimate of

the value of R0. On the other hand, if the PSO fits the data for

different combinations of w and o, it returns a time-series of

estimates for each ODE parameter with d−o
w−o elements, where

d is the number of days with available data. This, in turns,

provide a time-series of R0, one for each pair w and o.

We can now compute R∗0, that is the average value of

these different R0 attained for different (w, o), as described

in algorithm 1: this approach acts as a filter reducing random

noise due to acquisition data limitations given by the chal-

lenges the health system is coping with in this period, such

as the daily data fluctuations due to delays from symptoms

to swab execution, delays in laboratories for lack of reagents,

etc. In algorithm 1 we consider only the maximum o per w,

i.e. o = w − 1, so that we maximise the number of time

windows extracted from the time-series data. Consequently,

this results in a larger number of temporal windows inside

the whole period, maximising the number of ODEs parameter

time-series used, averaged out to estimate R∗0, having also

multiple parameters estimation per day.

III. MATERIALS

The dataset employed in this study collects the open source

information provided by the Italian Civil Protection Depart-

ment1. This data includes the daily updates on the number of

patients hospitalised with symptoms, in intensive care or at

home confinement, the total amount of current positive cases

(hospitalised patients plus those at home confinement), news

amount of current positive cases, the number of recovered, the

number of deaths, the total number of people tested and the

amount of tests performed. These details are available both for

the entire country and for each region.

For the purpose of this work we included the acquisitions

regarding the time frame from February 24 and April 24,

which is the date we are submitting this contribution. In

particular we considered the total amount of positive cases,

which accounts for the hospitalised and the home confined,

as the quarantined population Q, whereas the number of

recovered plus the number of deaths represents the recovered

population R of our model. Fig. 2 shows the variation in time

of the new cases and the cumulative count of infected, dead,

and recovered cases of our datasets, in the aforementioned

1The dataset is available at https://github.com/pcm-dpc/COVID-19.
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(a) Daily new COVID-19 cases. (b) Cumulative COVID-19 cases count.

Fig. 2: Variation in time of the number of new cases of COVID-19 in Italy as reported by the Civil Protection Department.

Panel (a) represents the number of new infected individuals per day, whereas panel (b) reports the cumulative amount of cases

highlighting also the recovered portion with the healed population in green and the deaths in red. The vertical continuous red

line indicates when lockdown starts in the country, which is followed by a dotted purple line that represents the end of the

incubation period of 14 days and the consequent appreciable effects of the containment measures.

Algorithm 1 Window-based R∗0 estimation algorithm

1: allDays is a vector of dates from 2020/02/24 to 2020/04/24

2: allWindowWidths is a set of equally spaced integer values

in [2,14]

3: NRSS(W) is the residual sum of squares computed for

the predicted values of a set of days contained in a time-

window W
4:

5: for i in allWindowWidths do
6: Wi is an array of collection containing all the time-

windows that can be extracted from the data (allDays) for

w = i and o = i− 1
7:

8: for j = 1 to length(Wi) do
9: Wi

j is the jth collection extracted from Wi

10: β∗[j] = argmin
β

(NRSS(Wi
j))

11: ε∗[j] = argmin
ε

(NRSS(Wi
j))

12: end for
13:

14: for d in allDays do
15: J = all the indeces s.t. d ∈Wi

j

16:

17: for j in J do
18: Ri

0[d] += β∗[j]/(rd + ε∗[j](ri − rd))
19: end for
20:

21: Ri
0[d] = Ri

0[d]/length(J)
22: end for
23:

24: R∗0 += Ri
0

25: end for
26:

27: R∗0 = R∗0/length(allWindowWidths)

Fig. 3: Box plot showing the sum of the NRSS values

computed on the estimates of R and Q provided by our model

when different combinations of window size w and overlap o
are used. For instance, the x-axis label w3 o2 indicates that

three days are in the window with two days of overlap with

the previous one.

timeframe. In particular in Fig. 2a and 2b a red line shows

when the lockdown starts in the country. Despite the desired

effect of this emergency measure, after March 10 there is still

an increase in the infected population. This does not imply that

the lockdown was unsuccessful, but its efficacy is just delayed

due to the incubation period of the virus. Indeed, the majority

of people starts showing symptoms at most after 14 days that

they’ve been infected [12]. These 14 days latency is marked

with a dotted purple line, which happens to corresponds to the

start of the decrease of the new cases number (Fig. 2a).

IV. EXPERIMENTAL SETUP AND RESULTS

As mentioned in section II, in order to take into account in

our model the variations in the infection rate, we fitted the PSO
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Fig. 4: Average value of the standard deviations of the NRSS

values for each window length wi. The gray shadow shows

the standard deviation of each value and the dotted red line

highlights the chosen value for w.

over consecutive sliding windows. This approach accounts for

two parameters to set: the window length w and the overlap o.

Fig. 3 reports a box plot of the normalised sum of the residual

sum of squares (NRSS) computed on the estimations of R

and Q provided by our model with different combinations of

window length and overlap. The average NRSS appears to

be lower for small window sizes, but with a larger standard

deviation. We deem this is related to the fact that there isn’t

enough data available to build a stable model, or rather that

any model could fit these few samples.

To get a deeper insight on this phenomenon, Fig. 4 reports

the average standard deviation for each window size with the

related standard deviation (grey area). For values w < 4 and

w > 5 the NRSS shows an unstable behaviour, with more

fluctuations. For small size windows this happens for the

aforementioned reasons of lack of data for a proper fitting,

whereas for w > 5 this is probably due to the presence of

noise in the data. It is clear, now, that the best compromise

lies with w = 5 which allows to have lower values for NRSS

standard deviation and also a grater amount of data to fit the

model. Consequently the overlap value is o = 4, which is the

maximum one and allows the to gain the smallest granularity

in parameters estimation, as mentioned in section II.

Fig. 5 shows in black and blue the values estimated by our

model setting w = 5 and o = 4 with respect to the real values

of Q and R. The qualitative inspection of the figure indicates

that the proposed SIQR-PSO windowing approach is able to

follow the real values trend, and this is also corroborated by the

NRSS, equal to 1.4e−10 (95% C.I. [1.1e−10; 1.7e−10]). The

same figure shows in purple and red the Q and R estimates

attained fitting the data without the time-window approach, i.e.

assuming that the coefficients of the SIQR model are constant

over time. Straightforwardly, the results in this latter case are

not satisfactory (NRSS = 1.9e−5).

Fig. 6 reports the time variation of the basic reproduction

Fig. 5: SIQR predicted and real Quarantined and Recovered

with and without the windowing approach.

Fig. 6: Time evolution of the basic reproduction number R∗0,

computed according to algorithm 1.

number R∗0 computed with the procedure in presented in algo-

rithm 1. The curve trend drops after the lockdown, confirming

its efficacy. It is worth noticing that the first estimated of R∗0
is equal to 3.5, coherently with previous work that found R0

falling between 2 and 4 [1], [4], [5], [6], [7], [8]. In the specific

case of the Italian situation, the work in [1] found R0 = 2.78
fitting a SIQR model, too. However, our approach significantly

differs from [1] because we use a global optimisation strategy

to fit the data, and because we analyse the epidemic for a

longer period. Indeed, differently from what presented here,

in such a work the authors first solved the SIQR model under

some assumptions; then they fit an exponential model on Q+R
using log-transformed data, whilst γ was estimated by linear

regression on step-wise unitary differences on R [1].

As a further observation still referring to Fig. 6, the basic

reproduction number drops after the lockdown (red line) and

reaches the threshold value (R∗0 = 1) 14 days after, due to

the incubation time of the virus. After this threshold the basic

reproduction number assumes values lower than 1, meaning
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(a) Piemonte (b) Lombardia (c) Veneto

Fig. 7: Basic reproduction number estimation over time on three Italian regions. All plots show both the lockdown (red line)

and the threshold R0=1 (green line) under which the disease is likely to disappear (R0<1).

that the disease is likely to decline and eventually disappear.

Although these results seem to indicate that Italy should be out

of this emergency situation, the overall evaluation on the whole

country does not take into account the lack of homogeneity of

the real situation in the Italian regions. To get a closer look

into this phenomenon, we performed the same analysis on the

regional data provided by the Civil Protection Department.

Fig. 7 shows the basic reproduction number over time of

the three regions most affected by the virus, i.e. Piemonte,

Lombardia and Veneto. As it is possible to notice in these

cases, R∗0 fluctuates around the threshold. This indicates that

these regions still need to stick to the containment measures

to further reduce the disease impact.

V. CONCLUSION

In this work we presented an analysis of the COVID-

19 pandemic, modelling the spread dynamic on the Italian

territory. We used a SIQR model fitted exploiting a global

optimisation strategy and a time windowing approach. This

takes into account the variability over time of the SIQR model

parameters, due to the change in people habits and societal

behaviour introduced by the lockdown containment measures.

The results show a satisfactory fitting of the model and an

interesting trend of the basic reproduction number, which

differs from the entire country to the specific regions. Indeed,

on the one hand, the overall Italian R0 falls under 1 after

14 days since the lockdown; on the other hand, for some of

the most affected Italian regions it is still over the desired

threshold.

To further investigate this phenomenon a step forward for

this work could be the prediction of future model parameters

trends, applying a regressive approach on the reconstructed

time varying data. This could provide insights about the future

dynamics of the disease and the regions which are out of

danger or rather at greater risk, building an country heatmap.

Moreover, we plan to apply our approach to other countries.
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