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Abstract— The simultaneous presence of diseases worsens the 
prognosis of patients and makes their treatment difficult. 
Identifying the co-occurrence of diseases is key to improving the 
situation of patients and designing effective therapeutic 
strategies. On the one hand, the increasing availability of clinical 
information opens new ways to unveil hidden relationships 
between diseases. On the other hand, heterogeneous 
information networks have been used in recent years to discover 
novel knowledge from disease data, including symptoms, genes 
or drugs. The use of meta-paths allows the complex semantics of 
the relationships between the different types of nodes to be 
included in heterogeneous networks. In this study, we propose a 
system to predict disease comorbidities through the use of meta-
paths in a heterogeneous network of diseases and symptoms, 
built from textual sources of public access. The results obtained 
improve those of similar studies based on biological data, and 
the predictions calculated for diabetes and Crohn's disease are 
supported by medical literature. Both the used data and the 
obtained prediction model are publicly accessible. 

Keywords: disease comorbidity, heterogeneous disease 
networks, meta-paths, medical text mining, graph structure 
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I. INTRODUCTION 

The occurrence of one or more additional conditions, 
known as comorbidity, is widespread among the patients 
admitted at multidiscipline hospitals. For instance, obese 
patients often develop type-2 diabetes and hypertension. A 
number of clinical studies show that disease comorbidity not 
only causes additional suffering to patients, but also 
compromises the success of standard treatments compared to 
patients who have a single disease. In the US, 80% of 
Medicare spending is dedicated  to treating patients with 
multiple coexisting conditions [1]. For this reason, the 
accurate prediction of potential disease comorbidities is 
essential to design more efficient treatment strategies and 
improve the prognosis of patients. 

In recent years, the increasing availability of clinical data 
has boosted the investigation of unknown relationships 
between diseases. Given the variety of sources and data, 
heterogeneous information networks have become a crucial 
tool for extracting novel knowledge [2], [3]. The identification 
of new disease-disease relationships using link prediction 
methods has not only improved our understanding of their 
etiology and pathogenesis, but has also made it possible to 
reuse existing treatments in new diseases [4]. Meta-paths, 
sequences of semantic relationships between nodes of 



heterogeneous networks, provide a powerful mechanism for 
the training of link prediction models [5]. For example, two 
diseases can be connected via disease-gene-disease path, 
disease-gene-compound-drug-disease path, and so on. 
Intuitively, the semantics underneath different paths imply 
different similarities. Formally, a meta-path 𝑃  is a path 
defined on the graph of network schema 𝑇 = (𝐴, 𝑅) and is 

denoted in the form of 𝐴 →𝐴 →…→𝐴 , which defines a 
composite relation 𝑅 = 𝑅 ∘ 𝑅 ∘ …∘ 𝑅   between type 𝐴  
and 𝐴 , where ∘  denotes the composition operator on 
relations [6]. 

The use of meta-path often involves a two-step process to 
solve the link prediction problem in heterogeneous networks. 
In the first step, the meta-path-based feature vectors are 
extracted. In the second step, a regression or classification 
model is trained to compute the existence probability of a link. 
For example, Sun et al. proposed PathPredict to solve the 
problem of co-author relationship prediction following this 
approach [7]. In [8], Dong et al. present the Metapath2Vec 
model to maximize the likelihood of preserving both the 
structure and semantics of a given heterogeneous network and 
apply its latent embeddings to various network mining tasks, 
such as node classification, clustering, and link prediction. In 
contrast to conventional meta-path-based methods, the 
advantage of latent-space representation learning lies in its 
ability to model similarities between nodes that are not 
connected through meta-paths. Recent studies have used 
heterogeneous networks and meta-paths for the prediction of 
comorbidities from biological data. Jin et al. built a miRNA–
gene–disease network to uncover microRNA-mediated 

 
1 https://github.com/pantapps/cbms21 

disease comorbidities and potential pathobiological 
implications [9]. Their method presented an accuracy, 
measured with the area under the curve of the Receiver 
Operating Characteristic (AUC-ROC), of 0.65 when inferring 
the clinically reported disease–disease pairs.  

Despite the growing number of clinical texts and their 
potential as a source of new knowledge, their exploitation in 
the prediction of comorbidities through heterogeneous 
networks is limited, partly due to limited access to electronic 
health records imposed by privacy laws. In this paper, we 
present a method for predicting comorbidities from public 
clinical data, based on meta-paths. First, we built a 
heterogeneous network of diseases and symptoms, and 
defined the meta-paths. Next, we applied the Metapath2Vec 
model to tackle link prediction as a supervised learning 
problem on top of the network embeddings. The AUC-ROC 
obtained when evaluating the model was 0.74. Finally, we 
applied the prediction model to type-2 diabetes and Crohn's 
disease, and found that the results were supported by the 
medical literature. Figure 1 summarizes the methods 
schematically. Both the data used and the results obtained are 
published as supplementary materials, for their validation and 
reuse1. 

II. METHODS 

A. Heterogeneous disease-symptom network 

We extracted data on associations between diseases and 
symptoms from DISNET, a database that integrates 
phenotypic characteristics of diseases from Wikipedia, 

Figure 1. Visual summary of the methods applied to generate the comorbidity prediction model described in this paper. 



PubMed and MayoClinic, among others [10]. DISNET 
snapshot 2020-12-15 contains 7,193 diseases associated with 
2,103 different symptoms. To extract the disease-disease 
relationships based on their co-occurrence in the same patient, 
we used the ShARe corpus published in SemEval / CLEF 
2013–2015 evaluations, which contains 300 clinical notes 
with 12,095 annotated disorders and their attributes [11].  

To connect the data from both sources, we used the Search 
API of the Unified Medical Language System (UMLS) to map 
the cross-referenced identifiers in DISNET to their Concept 
Unique Identifier (CUI) [12]. On the one hand, we only 
included DISNET diseases with a mapping in UMLS. On the 
other hand, we only selected diseases from the ShARe corpus 
that contain symptoms in DISNET. 

Finally, we used the Stellargraph python library to build 
the heterogeneous network. Of the total of 5,147 nodes, 3,251 
had disease type and 1,896 had symptom type. The 49,741 
links were annotated as disease-has_symptom-symptom 
(46,333) and disease-has_cooccurrence-disease (3,408), 
according to their nature. 

B. Link prediction model 

We used Metapath2Vec to learn the embeddings, 
maximizing the likelihood of preserving both the structure and 
semantics of the heterogeneous network [8]. First, we split our 
network into a training graph and a test graph. From each 
graph, we set aside a sample (10%) of positive and negative 
edges into a training edge set and a test edge set, respectively.  
Negative edges are sampled at random by selecting two nodes 
in the graph and then checking if these edges are connected or 
not. If not, the pair of nodes is considered a negative sample. 
Otherwise, it is discarded and the process repeats. 

Second, we applied uniform random walks to traverse the 
training graph and generate a corpus of sentences. A sentence 
is a list of node IDs, and each node ID is considered a unique 
word in a dictionary that has size equal to the number of nodes 
in the graph. The random walk is driven by meta-paths that 
define the node type order by which the random walker 
explores the graph. For example, the meta-path disease-
symptom-disease defines a rule for the random walk to 
traverse the graph starting from a disease node, passing 
through a symptom node to end on a disease node. All meta-
paths begin and end on disease type nodes. Figure 2 shows the 
node and edge types, and the meta-path schema applied for 
our random walk. 

 
Figure 2. Extraction of the meta-path schema passed to the random walk 

algorithm to traverse the heterogeneous disease-symptom network. 

Third, we fed the sentence corpus into a Word2Vec model 
to calculate an embedding vector for each node in the graph. 
Given a word (node ID), Word2Vec uses the skip-gram 
algorithm to predict the neighboring words within a specified 
window. This model gives more importance to words closer 
to the target word than to the distant ones [13].   

Then we applied element-wise multiplication (Hadamard 
product) on the embeddings of the source and target nodes to 
calculate edge embeddings for positive and negative edge 
samples from the training edge set [14]. Finally, we trained a 
logistic regression classifier with the edge embeddings to 
predict a binary value indicating whether an edge between two 
nodes is expected to exist or not.  

The heterogeneous network edge list and the trained 
model are available in the supplementary materials. 

C. Model evaluation 

To evaluate our predictor, we used the test graph to 
compute test node embeddings, and then computed AUC-
ROC using the test edge set. In order to qualitatively evaluate 
its performance, we applied our model to predict the 
comorbidities of type-2 diabetes mellitus and Crohn's disease, 
and we contrasted the results with data available in the clinical 
literature [15]–[18]. 

III. RESULTS 

The computed comorbidity prediction model showed an 
AUC-ROC=0.74. Figure 3 represents the AUC-ROC visually. 

One of the advantages of using node embeddings in our 
approach is the possibility of representing the heterogeneous 
network in a low dimensional space, in which the graph 
structural information and graph properties are maximumly 
preserved. We used the t-Distributed Stochastic Neighbor 
Embedding (t-SNE) to visualize the embeddings computed 
for the nodes and edges, by giving each datapoint a location 
in a two-dimensional map [19]. Figure 4 shows the t-SNE 
projection for node embeddings (A) and edge embeddings 
(B). 
 

 
Figure 3. Area under the curve of the receiver operating characteristic 
obtained during the evaluation of the comorbidity prediction model. 



 
Figure 4. T-SNE 2D projection of the network embeddings. A) 

Embeddings of diseases (purple) and symptom (yellow) nodes; B) 
Embeddings of positive (blue) and negative (red) edges. 

Table I and Table II contain the top 20 predicted disease-
disease links (comorbidities) for type-2 diabetes mellitus and 
Crohn’s disease, respectively. In the tables, diseases are sorted 
by the probability of no co-occurrence (P0 column) in 
descending order.  

An extended version with the top 100 predicted links is 
available in the supplementary materials.  

IV. DISCUSSION 

Results show that the presented method allows predicting 
co-occurrences between diseases from public data on 
symptoms and diseases, with reasonable accuracy (see Figure 
3). The AUC-ROC of our model significantly improves that 
obtained by Jin et. by applying meta-paths to miRNA data, 
gene and proteins instead of symptom [9]. However, it is still 
lower than that of other more advanced models [20].  

TABLE I.  TOP 20 COMORBIDITIES PREDICTED FOR TYPE-2 DIABETES 
MELLITUS. P0 IS THE PROBABILITY THAT THE DISEASES ARE NOT CO-

OCCURRENT. 

UMLS CUI  Disease Name P0 

C0029408 Degenerative polyarthritis 2.10e-11 
C0032320 Pneumoperitoneum 4.36e-11 

C0009938 Mitral Valve Insufficiency 8.40e-11 
C0011581 Depressive disorder 1.31e-10 

C0016169 Urethral Stenosis 2.16e-10 

C0027543 Avascular necrosis of bone 2.26e-10 

C0026266 Chronic Kidney Insufficiency 2.86e-10 
C0003507 Aortic Valve Stenosis 5.55e-10 

C0001418 Adenocarcinoma 6.74e-10 
C0024633 Diabetic Retinopathy 8.27e-10 

C0006826 Malignant Neoplasms 8.99e-10 

C0262414 Acute Kidney Tubular Necrosis 1.03e-09 

C0264912 White Coat Hypertension 1.05e-09 
C1261287 Stenosis 1.91e-09 

C0751523 Corn of toe 1.93e-09 
C0021308 Infarction 4.51e-09 

C0040961 Tricuspid Valve Insufficiency 5.15e-09 

C0003855 Arteriovenous fistula 5.64e-09 

C0011881 Diabetic Nephropathy 6.47e-09 
 

TABLE II.  TOP 20 COMORBIDITIES PREDICTED FOR CROHN’S 
DISEASE. P0 IS THE PROBABILITY THAT THE DISEASES ARE NOT CO-

OCCURRENT. 

UMLS CUI  Disease Name P0 

C0016169 Pathologic Fistula 2.41e-06 

C0032320 Pneumoperitoneum 5.24e-06 

C0024633 Mallory-Weiss Syndrome 9.95e-06 
C0011881 Multiple Sclerosis 1.18e-05 

C0027543 Avascular necrosis of bone 1.20e-05 
C0029408 Degenerative polyarthritis 1.61e-05 

C0011581 Depressive disorder 2.22e-05 

C0009938 Malignant tumor of colon 2.57e-05 

C0040961 Tricuspid Valve Insufficiency 2.60e-05 
C0003855 Arteriovenous fistula 3.88e-05 

C0013481 Ebstein Anomaly 4.72e-05 
C0021308 Infarction 5.81e-05 

C0026266 Mitral Valve Insufficiency 6.01e-05 

C0009324 Ulcerative Colitis 6.04e-05 

C0156272 Enterovesical Fistula 6.76e-05 
C0003507 Aortic Valve Stenosis 8.60e-05 

C0019326 Ventral Hernia 1.39e-04 
C0014175 Endometriosis 1.47e-04 

C0264912 Left anterior fascicular block 1.74e-04 

 
When applying the model to type-2 diabetes mellitus (see 

Table I), we obtained results that coincide with the most 
common comorbidities reported in the clinical literature, such 
as hypertension, chronic kidney diseases, cardiovascular 
diseases and visual problems [15], [16]. Other cases, such as 
degenerative polyarthritis, pneumoperitoneum, avascular 
necrosis of bone or corn of toe are not among the most 
common comorbidities, but are reported in the medical 
literature [21]–[24]. The extended results show numerous co-
occurrences of diabetes with fractures (e.g., fracture of 
cervical spine, fracture of second cervical vertebra, rib 
fractures). The relationship between diabetes and bone 
fragility has also been studied [25].  

In the case of Crohn's disease, the most common 
comorbidities are intestinal diseases (colon cancer, rectal 
cancer), respiratory diseases, vascular diseases, and arthritis. 
The results shown in Table II include diseases of these types 
[17], [18]. As in the case of diabetes, we find very specific 
cases such as pathologic fistula, Mallory-Weiss Syndrome 
and multiple sclerosis, described in the clinical literature [26], 
[27]. 

Notwithstanding the aforementioned results, our study 
presents some limitations. On the one hand, the number of 
diseases with a significant probability of comorbidity (> 0.95) 
is high, representing 17.32% and 11.05% for type-2 diabetes 
mellitus and Crohn's disease, respectively. This suggests that 
the classification is not specific enough. On the other hand, 
the data set contains common and/or unspecified diseases 
such as carcinoma, cancer or vitamin deficiency, which could 
affect the results. A pre-filtering of the data set to eliminate 
these types of entries could potentially improve the specificity 
of the system.  



V. CONCLUSIONS 

Improving our knowledge about disease comorbidities can 
improve the treatment of patients, saving not only suffering 
but also healthcare resources. In this paper, we propose the 
exploitation of data from open clinical texts through a meta-
path-based network analysis to predict the probability of co-
occurrence of two diseases. Both the used data and the 
obtained results are publicly available. 

The main advantage of our approach is its good 
complexity-performance ratio. Methods based on meta-paths 
with random walks are intuitive and simple, describing the 
relationships between data in a semantic and interpretable 
way. However, they are less powerful than more complex 
methods, such as those based on graph neural networks 
(GNNs). GNNs are able to incorporate both latent and explicit 
features of the graph, demonstrating state-of-the-art 
performance on numerous problems, including link prediction 
[28]. 

As future work, we propose to apply methods based on 
GNNs to the prediction of comorbidities from textual data and 
compare the results with those obtained in the present study, 
considering the complexity-performance relationship. 
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