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Abstract—In this article we discuss the development of prog-
nostic Machine Learning (ML) models for COVID-19 progres-
sion: specifically, we address the task of predicting intensive
care unit (ICU) admission in the next 5 days. We developed
three ML models on the basis of 4995 Complete Blood Count
(CBC) tests. We propose three ML models that differ in terms
of interpretability: two fully interpretable models and a black-
box one. We report an AUC of .81 and .83 for the interpretable
models (the decision tree and logistic regression, respectively),
and an AUC of .88 for the black-box model (an ensemble). This
shows that CBC data and ML methods can be used for cost-
effective prediction of ICU admission of COVID-19 patients: in
particular, as the CBC can be acquired rapidly through routine
blood exams, our models could also be applied in resource-limited
settings and to get fast indications at triage and daily rounds.

Index Terms—eXplainable AI, Machine Learning, COVID-19,
Prognosis, Complete Blood Count

I. INTRODUCTION

One year after its appearance, the SARS-CoV-2 coronavirus

has infected more than 100 million people and has resulted

in almost three million deaths worldwide. To mitigate this

unprecedented pandemic spread, the use of AI techniques to

develop tools that are supportive of clinicians in various tasks

has attracted increasing interest. Despite promising results for

the diagnostic task [1]–[3] (i.e., the detection of COVID-19),

the development of prognostic models, either to predict ICU

admission or other outcomes (including death) or to stratify

patients by risk, has so far lagged behind: recent surveys report

important limitations (in terms of bias or risk of overfitting)

in the existing solutions [4], [5].

To address these limitations, in this work we report a

retrospective study aimed at developing prognostic Machine

Learning (ML) models to predict ICU admission, which can be

seen as a proxy of disease severity or an outcome of worsening

conditions. A large dataset of hematologic parameters has

been collected from COVID-19 patients admitted to one of

the largest teaching hospitals in Lombardy (Northern Italy),

which was one of most severely affected regions during the

first wave of the pandemic.

More specifically, we used and processed one of the most re-

liable datasets made available so far for COVID-19 analysis [1]

(which is shared on the European open-access repository

Zenodo1), motivated by the promising results regarding the

1https://zenodo.org/record/4081318#.X 1UDxYo-Uk

strong association between blood tests data and COVID-19

prognosis [6], [7]. From this dataset, we extracted a small

set of features regarding routine blood exams that are both

inexpensive and quick to get, the so-called Complete Blood

Count - CBC, for its wide application in a number of diagnos-

tic and monitoring tasks. To the best of our knowledge, this

is the first work using ML algorithms to perform COVID-

19 prognosis only on the basis of CBC parameters. To this

aim, we present three models, which have been conceived as

complementary decision support tools. One model, which is

based on the ensembling of 3 models, has been selected for its

high accuracy, despite its low clinical interpretability because

of the black-box nature. The other two models, i.e. a decision

tree and a logistic regression, have been selected because of

their explainability, despite their lower accuracy with respect

to the ensemble model mentioned above. Indeed, these models

can provide clinicians with more interpretable indications that

can help them in their decision-making during the management

and treatment of COVID-19 patients.

II. METHODS

The study protocol (BIGDATA-COVID19) was approved by

the Institutional Ethical Review Board in agreement with the

World Medical Association Declaration of Helsinki.

In what follows, we report the data characteristics re-

garding the model development according to the MINIMAR

guidelines [8], which were recently proposed to increase the

understandability and reproducibility of Machine Learning

studies in medical settings.

The dataset used for this retrospective study encompasses

the results of routine blood tests of 1218 patients, regularly

admitted to the hospital Emergency Department for COVID-

19 of the San Raffaele Hospital (OSR), Milan (Italy). The

data collection was performed between February 19, and May

31, 2020, i.e. at the height of the first wave of the epidemic

in Italy. In that period, healthcare facilities in Northern Italy

were under unprecedented pressure, especially the intensive

care units [9], which on the 3rd of April peaked at 133% of

their nominal capacity with 1381 inpatients. In the collected

records, the average age of the patients was 63.5 ± 0.85

(mean and 95% confidence interval), and the distribution of

biological sex was 70.8% males (vs. 29.2% females). For each

patient, with at least 24 hours of hospitalization, multiple
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TABLE I
COMPLETE LIST OF PREDICTIVE COVARIATES USED FOR THE MODEL

DEVELOPMENT

Feature Unit of Measure Missing rate (%)
Sex Male/Female 0
Age Years 0

White Blood Cells (WBC) 109/L 0.4

Red Blood Cells (RBC) 1012/L 0.4
Hemoglobin (HGB) g/dL 0.4
Hematocrit (HCT) % 0.4

Mean Corpuscular Volume (MCV) fL 0.4
Mean Corpuscular

Hemoglobin (MCH)
pg/Cell 0.4

Mean Corpuscular
Hemoglobin Concentration (MCHC)

g Hb/dL 0.4

Erythrocyte Distribution
Width (RDW)

CV% 0.5

Platelets (PLT) 109/L 0.4
Mean Platelet Volume (MPV) fL 3.5

Neutrophils Count (NE—NET) % — 109/L 8.4

Lymphocytes Count (LY—LYT) % — 109/L 8.4

Basophils Count (BA—BAT) % — 109/L 8.4

Eosinophils Count (EO—EOT) % — 109/L 8.4

Monocytes Count (MO—MOT) % — 109/L 8.4

observations (approximately one for each day of hospital

stay) were considered. In total, the dataset encompasses 4995

observations: for each instance (that is, one day of hospital

stay for each given patient), the target corresponds to whether
the given patient would be admitted to the ICU within the next
5 days (starting from the date of the observation).

The data exploration revealed an imbalance with respect to

the target variable, skewed in favor of the negative class: the

number of observations for which the patient was admitted

to the ICU (within the 5 days time interval) was 1359 (27%

of the total observations). We addressed this imbalance by

means of the SMOTE re-sampling procedure (see below) and

by considering balanced metrics.

As covariate features, we selected a set of 22 variables:

namely gender, age and the Complete Blood Count (CBC),

including the leukocyte formula (analyzed through a Sysmex

XN 9000 hematology analyzer). We decided to focus on this

set of features for two main reasons: first, these variables

guaranteed the highest completeness rate for the dataset at

hand (see Table I); second, and most important, these hema-

tologic parameters can be obtained through rapid, widely

available and cost-effective routine blood exams. The full set

of features, with the respective missing data rates, is reported

in Table I. The complete dataset, in compliance with medical

ML reporting guidelines [8], has been made publicly available

on Zenodo https://zenodo.org/record/4686707.

In order to perform missing data imputation, we used a

multi-variate iterative imputation approach [10], for its capa-

bility to better take into account the latent distribution of the

missing values compared with standard constant-based impu-

tation strategies. Due to the relatively low number of missing

values (< 10%), we do not expect significant differences with

respect to other multi-variate imputation strategies [11]

In regard to data imbalance, we applied the SMOTE

oversampling method [12]. This approach, compared with

standard under- or oversampling approaches, allows to better

capture the distribution of the minority class (under standard

smoothness assumptions).

Model testing was performed through a patient code-based

train/test split: we used a 80%-20% data split with the addi-

tional constraint that all observations pertaining to each given

patient were all in the same data fold. This setting was selected

in order to reduce performance over-estimation due to potential

auto-correlations among different observations pertaining to

the same patient.

As anticipated in Section I, we considered three classes of

models: two interpretable models, i.e., a decision tree and a

(regularized) logistic regression; and a black-box ensemble

model. According to the tenets of eXplainable AI [13], the

more interpretable models were chosen to guarantee a suf-

ficient accuracy level according to the general expectations

of clinicians for prognostic tasks [14] in combination with

a high level of interpretability, so that their output could be

understood and examined by the clinicians involved. In regard

to the black-box model, this was developed as a solution to

maximize the model’s discriminative performance. This model

was obtained by determining the best combination among

5 different ML model classes: Gradient Boosting, logistic

regression, Support Vector Machine, Random Forest and a

Decision Tree.

In order to perform hyper-parameter selection, we used

a Sequential Model-Based Optimization (SMBO) approach,

implemented through the Optuna framework, which allows to

perform a computationally efficient and model-agnostic search

through the parameter space [15].

Hyper-parameter selection, model training and validation

were performed on the training set through a 10-time re-

peated 7-fold Cross-Validation. Indeed, as shown in [16], this

procedure has lower over-estimation bias compared to either

boostrapping and standard Cross-Validation, while being less

computationally intensive than Nested Cross-Validation.

The target metric for hyper-parameter selection was the F2

score:

F2 = 5
PPV ·Sensitivity

4 ·PPV +Sensitivity
(1)

We chose this metric in order to improve sensitivity (which

the above formula considers twofold more important than

positive predictive value) and hence reduce the amount of

false negatives. False negatives for the task at hand are worse

than the false positives, as the former ones contribute to

underestimate the number of ICU beds necessary in the near

future.

For each model, we report five different metrics, evaluated

on the test set, namely: area under the ROC curve (AUC),

sensitivity, specificity, F2 score and the Brier score (as a

measure of calibration). In particular, we reported the F2 score

as a way to better account for the presence of label imbalance

in the used dataset.

We also report the performance of the models on the

instances that were associated with a probability score greater
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than 75% [14]: this allows to assess the performance of the

models on the instances these models were more “confident”

about, or for which the prediction uncertainty was lower [17].

In the former case, we denote the related measures as “highly

confident” - HC.

III. RESULTS

The selected hyper-parameter values are as follows:

• Decision Tree: split criterion = entropy, maximum depth

= 4, minimum samples per split = 26, minimum samples

per leaf = 3;

• Logistic Regression: regularization norm = l1, regular-

ization coefficient C = 0.0058, solver = liblinear;

• Ensemble: optimal configuration = XGBoost, Random

Forest, Logistic Regression.

The performance of the developed models, in terms of

sensitivity, specificity, F2 score, AUC and Brier score is

reported in Table II. Table II also reports performance scores

evaluated on the instances with an associated probability score

greater than 75% (denoted with a HC- prefix, where HC stands

for Highly Confident).

A graphical representation of the models’ performance in

the ROC space is reported in Figure 1, while the calibration

of the models is reported in Figure 2.

Fig. 1. ROC Curve evaluated on the Test Set.

IV. DISCUSSION

The results reported in Section III show that our proposal

to support the interpretation of COVID-19 cases is at the

same level of - if not better than - the main contributions

to the current literature. In what follows, we outline the main

characteristics of these solutions and compare them with ours,

to highlight the respective strengths and limitations.

Fig. 2. Reliability curve for each model

Rodriguez-Nava et al. [18] developed clinical scores to

predict ICU admission, and reported an AUC of .76. Although

the proposed score is interpretable (like our logistic regression

and decision tree models), it was developed on a relatively

small sample encompassing 300 patients, and it was validated

on the same data used to develop the score, with no method

to control overfitting.

Wu et al. [19] developed a Logistic Regression model for

risk prediction that they also externally validated: on the

external validation sets the authors report an average AUC

of .87, average sensitivity of .86 and average specificity

of .71. The model, however, was developed and validated

only with data collected between February and March 2020;

also, compared with our proposed method, the model em-

ploys a large set of features encompassing hemato-chemical

parameters, symptomatology and radiological findings. This

could hamper its applicability in real-world medical practice,

especially in resource-limited settings; our model, by contrast,

only employs CBC data, i.e., a rapid, widely available and

economic blood test. Also, while we address the task of ICU

admission prediction, the authors of [19] consider a composite

binary prediction task: a patient was considered severe in case

of either ICU admission, organ failure, shock or death; this,

in turn, can reduce the usefulness of the ML method in the

management of severe cases.

Klann et al. [20] developed generalized-linear and gradient-

boosting models for severity prediction based on computable
phenotypes (that is, vector-based representations of a patient’s

clinical history and EHR data): for the task of ICU admission

prediction, they report an average sensitivity of .77 and an

average specificity of .79. While the reported results are

comparable with our findings, we notice that our logistic re-
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TABLE II
RESULTS OBTAINED ON THE TEST SET.

Model Sensitivity Specificity AUC F2 Brier score HC-AUC HC-Sensitivity HC-Specificity HC-F2 Coverage
Decision Tree 0.76 0.73 0.81 0.69 0.17 0.86 0.60 0.93 0.63 0.72

Logistic Regression 0.83 0.70 0.83 0.74 0.17 0.92 0.76 0.94 0.78 0.43
Ensemble 0.85 0.74 0.88 0.77 0.15 0.93 0.75 0.94 0.78 0.58

gression model achieves higher performance while being fully

interpretable: this in turn could improve model understanding

and foster trust in the clinical users and, ultimately, bring wider

adoption in clinical practice as a medical decision support.

Furthermore, the model discussed in [20] uses all information

collected in patients’ health records as predictive features,

while the method that we propose only requires CBC data.

More in general, four recent reviews [5], [21]–[23] surveyed

the state-of-the-art with respect to prognostic ML models for

COVID-19: most of the surveyed works were found to be

subject to a high risk of bias. This is due to limitations

related to model development and data collection [24], lack of

reporting standards, lack of procedures to control or mitigate

over-fitting, and lack of data sharing [25] which, in turn, affects

replicability.

As a final comment, we note some general important differ-

ences between the proposed approach and the surveyed works.

First, all discussed models consider the task of severity (either

death and/or ICU admission) prediction with a potentially

unlimited prediction horizon: a case is considered to be severe

if any severe adverse outcome occurs during the hospital

stay, irrespective of its length. While this approach could

help reducing data imbalance, it could also incur the risk

of disregarding important confounding factors, such as the

therapy; or it could require data which would not be available

shortly after admission. In order to mitigate the impact of these

confounding factors, in our method we considered prediction

on a fixed 5-day horizon, which is nonetheless clinically mean-

ingful and potentially useful. Second, our proposed approach

is based only on CBC data and this is a major advantage for

the following reasons:

• CBC can be acquired through routine exams;

• CBC can be acquired rapidly and with small costs com-

pared to other more specialized biomarkers’ data;

• Compared with other exams related to clinical chem-

istry [26], inflammatory markers [27], or coagulation

parameters [28], CBC is less affected by both pre-

analytical (that is, how specimens are collected, handled,

and identified), analytical (which regards differences in

the testing methods in different laboratories or with

different equipment [29]) and biological variability (that

is related to the fluctuations of biomarkers along patient’s

life [30]).

For these reasons, and in light of previous studies that

highlighted key associations between CBC indicators and

COVID-19 prognosis [6], [7], our CBC-based approach could

be particularly useful for developing countries or for countries

facing any resource shortage (e.g. in terms of specialized

personnel), in that it provides a cost-effective method to predict

ICU admission and, therefore, support the clinicians in ICU

allocation planning.

In what follows, we discuss the results reported in Sec-

tion III: as anticipated above, we observe that all three devel-

oped models achieved good results; in particular, all models

achieve an AUC score greater than 80%. While these results

are promising, we also acknowledge the following limitation:

the generalizability of the developed models was not evaluated

(e.g. through external validation), either on data collected from

different settings, or collected from the same hospital but in

a different period. Nonetheless, as previously mentioned, the

adopted model development procedures were selected with the

aim of increasing model robustness and reduce overfitting.

Interestingly, we note that the interpretable models (in

particular, the logistic regression model) achieved good perfor-

mance (see Table II): this shows that these approaches could

be fruitfully used as decision-support tools that provide much

more information, compared with the black-box model, and

thus aid the clinicians in the decision-making task without

undermining the predictive performance. Nonetheless, we note

that, from a purely quantitative perspective, the ensemble

model achieved the best performance.

Focusing on the interpretable models, the Decision Tree and

the logistic regression coefficients are reported in Figures 3, 4,

and 5. In both cases, the Neutrophils count feature is con-

sidered the most important prognostic variable, with higher

Neutrophils count increasing the odds of ICU admission for

both models. This information is consistent with the existing

literature [31] where the prognostic role of the neutrophils-

to-lymphocyte ratio is often discussed: interestingly, both

models also associate a negative predictive power with the

lymphocytes count (i.e. increased lymphocytes reduce the odds

of ICU admission). Similar points can also be made for other

leukocyte formula components, though the role for prognostic

purposes of these other biomarkers has been less studied [32],

[33]. As a further potential limitation of our study, we note that

both interpretable models associate a decreasing odd of ICU

admission with increasing age: this could be a consequence

of the relatively small proportion of young patients in our

sample (just around 25% of the involved patients was younger

than 50 years), or an indication of more aggressive therapeutic

interventions in older patients. In future work, we aim to

collect data from more patients with possibly different age

distributions, and see whether information about comorbidities

(presence/absence or even the type) would have predictive

power (as highly plausible). Also, we aim to validate our

models also on COVID-19 negative patients: This would allow
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Fig. 3. A graphical representation of the Decision Tree

Fig. 4. Feature importance based on Logistic Regression coefficients, for the
positive class (that is, admission to ICU)

the models to be applied also on cases that could be affected

by false negatives in the RT-PCR test results.

In regard to calibration, we see from Table II that all models

reported a good Brier score (we recall that the lower the Brier

score, the better the model calibration ): this can also be seen

from Figure 2, where we can observe that all models over-

estimate the probability scores, and especially so in the middle

part of the plot (that is, on the more uncertain instances).

In order to better understand the performance of the models

(as a function of the probability scores), we can observe the

Highly Confident scores in Table II: the AUC and Specificity

of the models increase when considering instances for which

confidence is higher than 75%, while the Sensitivity decreases.

This highlights the fact that the models tend to assign lower

probability scores to positive- rather than negative-predicted

instances: this is consistent with the decision to optimize the

models for the F2 score (which weights sensitivity more than

PPV).

Fig. 5. Feature importance based on Logistic Regression coefficients, for the
negative class.

V. CONCLUSIONS

In summary, we reported a retrospective study to address the

challenging task of predicting whether a COVID-19 patient

will have to be transferred to the ICU within the next 5

days during their hospital stay. The proposed approach, based

on both interpretable and black-box models, reported good

results. Also, our methods are parsimonious, as they ground

on two demographic features and the CBC test results, only:

this is the main strength of our approach in light of acceptable

accuracy. For this reason, our models can be useful in resource-

limited settings, such as healthcare facilities which have to

manage a surge of ill patients and that cannot afford the

execution of more COVID-specific exams (e.g., inflammatory

markers, interleukins and coagulation parameters [34]) on a

daily basis.

For future work, we aim to externally validate our models

with data coming from other hospitals and other time periods:

This would allow to test the model in light of possible virus

mutations and different patient management and therapeutic
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policies. Since these latter ones depend on the number of cases

to deal with and on the continuous advancement of what we

know about COVID-19 and its effective treatment (changing

its prognosis), phenomena related to concept drift cannot be

ruled out in any existing predictive model, including ours.
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