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Abstract—Although Machine Learning (ML) can be seen as a
promising tool to improve clinical decision-making for support-
ing the improvement of medication plans, clinical procedures,
diagnoses, or medication prescriptions, it remains limited by
access to healthcare data. Healthcare data is sensitive, requiring
strict privacy practices, and typically stored in data silos, making
traditional machine learning challenging. Federated learning can
counteract those limitations by training machine learning models
over data silos while keeping the sensitive data localized. This
study proposes a federated learning workflow for ICU mortality
prediction. Hereby, the applicability of federated learning as an
alternative to centralized machine learning and local machine
learning is investigated by introducing federated learning to
the binary classification problem of predicting ICU mortality.
We extract multivariate time series data from the MIMIC-
III database (lab values and vital signs), and benchmark the
predictive performance of four deep sequential classifiers (FRNN,
LSTM, GRU, and 1DCNN) varying the patient history window
lengths (8h, 16h, 24h, 48h) and the number of FL clients (2, 4,
8). The experiments demonstrate that both centralized machine
learning and federated learning are comparable in terms of
AUPRC and F1-score. Furthermore, the federated approach
shows superior performance over local machine learning. Thus,
the federated approach can be seen as a valid and privacy-
preserving alternative to centralized machine learning for classi-
fying ICU mortality when sharing sensitive patient data between
hospitals is not possible.

Index Terms—Federated Learning, Recurrent Neural Network,
ICU mortality, Prediction, Classification, MIMIC-III

I. INTRODUCTION

Healthcare generates a vast amount of data that, if ade-
quately leveraged, has the potential to lead to improved clinical
decision-making even at the single patient level. This potential
is, however, yet to be fully realized. Machine Learning (ML)
is a promising tool to make a step towards this goal, as
it can achieve higher predictive performance against current
conventional approaches for several clinical prediction tasks
[1]–[3]. However, when it comes to accessing healthcare

data, traditional ML faces several limitations. Due to their
sensitive nature, patient data is usually stored in data silos
and protected by legal and ethical practices. As a result, ML
models could be trained on individual small local datasets.
Nevertheless, this Local Machine Learning (LML) approach
makes it challenging to obtain models that are generalizable
enough, as those local datasets are generally biased and/or
too limited. The standard approach to secure access to more
extensive datasets is to anonymize, extract, and aggregate data
from multiple healthcare institutions and train ML models
centrally, outside the hospital premises. The advantage of this
type of Centralized Machine Learning (CML) over LML is
that the obtained models are more generalizable, as they are
based on data from several healthcare institutions. However,
this approach comes with heavy restrictions and several limita-
tions in terms of scalability, security, cost-efficiency, and data
privacy. For example, even anonymized data, when shared, can
impose risks to patient privacy [4]. Thus, data is often required
to remain inside the hospital premises.

Counteracting the previously mentioned limitations of CML
and LML, Federated Learning (FL) [5], [6] trains the models
over data silos while keeping the sensitive data localized (see
Fig. 1). Its distributed design ensures that data is not shared
between clients, for example, hospitals, but instead, only the
local model parameters are shared, which are subsequently
aggregated to a joint model. Thus, FL can be seen as a propi-
tious solution for privacy-preserving ML within healthcare. An
additional advantage of FL is its capability to be seamlessly
integrated with existing electronic healthcare systems storing
valuable data, like Electronic Health Records (EHRs) [7], [8].

One of the most researched clinical prediction tasks where
ML has been applied, is predicting the probability of pa-
tient death during hospitalization [9]. The unit where this
need is more prominent is arguably the Intensive care unit
(ICU), since this is the unit where the patients with the most
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Fig. 1. Comparison of LML, CML, and FL.

severe and life-threatening medical conditions are admitted
and cared for. As a result, the ICU is often the unit with
the highest mortality rate. ICU mortality is defined as death
during an ICU stay [10]. While the conventional way of
mortality risk assessment is scoring systems, which are able
to classify and stratify patients by their severity of illness
[10], several traditional ML-based solutions have been recently
proposed. For example, Johnson and Mark [11] focus on
real-time ICU mortality prediction using logistic regression
and gradient boosting, while Pattalung and Chaichulee [12]
compare multiple ML algorithms for ICU mortality prediction.
Additionally, Pattalung et al. [13] focus on predicting the risk
of ICU mortality by combining Recurrent Neural Networks
(RNNs) with interpretable explanations. Finally, Rinta-Koski
et al. [14] propose Gaussian process classification for mortality
prediction in a neonatal ICU.

Moreover, there are several recent FL solutions for in-
hospital mortality prediction [15], [16], which is defined as
patient death during a hospital stay after being admitted
to an ICU. Lee and Shin [15] demonstrated that FL can
reach a comparable predictive performance to that of CML in
predicting in-hospital mortality using a standard Long Short-
Term Memory (LSTM). The authors compare the performance
of CML and FL in a simple experimental FL setup with
three clients and observe the influence on the performance
of balanced and imbalanced distribution of data (amount not
labels) amongst clients. Budrionis et al. [16] extended the
work of Purushotham et al. [1], who benchmark deep learning
algorithms to more traditional ML algorithms on MIMIC-
III. They compare the performance of CML and FL more
extensively than Lee et al. [15] with experiments in a more
realistic deployment setting of FL, studying the influence of
the number of clients, amount of data, and data distribution on
predictive performance and inference and training duration.

Despite the FL-based solutions for in-hospital mortality
prediction mentioned above, little emphasis has been given
to ICU mortality prediction using FL. This paper addresses
this limitation by: (1) proposing FLICU, a workflow for
retrospective analysis of ICU mortality using FL alongside
sequential deep neural network classifiers; (2) comparing the
proposed FL solution against LML and CML in terms of

predictive performance using an extract from the MIMIC-III
database; (3) benchmarking four common sequential neural
network architectures (1DCNN, FRNN, LSTM, and GRU) as
parts of our workflow for different patient history window
lengths (8h, 16h, 24h, and 48h before the discharge/death event
in the ICU); (4) studying the sensitivity of the four FL models
as the number of FL clients varies (2, 4, and 8).

II. PROBLEM FORMULATION

The problem studied in this paper can be formulated as
a binary classification problem for ICU mortality prediction,
where the label indicates whether a patient died during an
ICU stay or got discharged. Given a set of p ICU patients, we
define D to be a collection of multivariate time series variables,
with |D| = p. Each Di ∈ D describes a set of vital signs
and lab tests of the ith ICU patient over time and contains q
univariate time series, with |Di| = q. The dimensionality (i.e.,
length) of the jth time series Dij ∈ Di may vary due to the
variable sampling rates used for collecting the vital signs and
lab values.

The objective of the CML approach is to learn a function
hCML(·) using D, such that, given an ICU patient, it assesses
whether the patient will die during an ongoing ICU admission.
Moreover, consider a set of K clients, each having its own
patient cohort Dk ⊂ D, such that Da ∩ Db = ∅,∀(a, b) ∈
[1,K] × [1,K]. For LML, the goal is to build a set of
classifiers hkLML(·), using Dk,∀k ∈ [1,K], for solving the
binary classification task of ICU mortality prediction locally
at each client.

For FL, we build a local classifier hkFL(·) using Dk for
each client k ∈ [1,K] and denote with wk the set of the
local weights learned by hkFL(·). Our objective is to define a
global classifier hFL(·) that is learned as a function of the local
weights, i.e., hFL({w1, . . . , wK}), that optimizes its weight
configuration without sharing the local datasets. For example,
hFL(·) can be a weighted average of the local weights.

III. FLICU: A FEDERATED LEARNING WORKFLOW FOR
INTENSIVE CARE UNIT MORTALITY PREDICTION

The proposed workflow comprises three steps: (1) feature
extraction within a time window, (2) local FL model training,
and (3) global FL model training.



A. Feature Extraction within a Time Window

For each ICU patient i, we identify one of two critical time
points, i.e., the time of death in the ICU (positive class) or
the time of discharge from the ICU (negative class). Given
a fixed time window W (8h, 16h, 24h, and 48h), for each
Dij ∈ Di, and based on Pattalung et al. [13], we only
consider the medical events that occurred within W hours
before the last recorded vital sign or lab value. Knowing
the time of ICU death/discharge, we assume that the most
important information about the critical event is at the end
of the ICU stay, and we want to explore how much of this
information (window size) is really relevant based on the
predictive performance achieved by the model.

For each W , we extract vital signs and lab values. As vital
signs and lab values have different temporal characteristics
(0.5–1.5 vital signs per hour, 1-2 lab values per 8 hours), the
variables corresponding to vital signs are re-sampled in 1h
time intervals, with mean as aggregation function, while lab
value variables are re-sampled in 8h time intervals. Missing
values are imputed using linear interpolation, as eliminating
patients can bias the study. Furthermore, if certain variables
are never observed for a patient, their values are set to the
variable mean.

B. Local FL Model Training

In this study, we explore four neural network architectures.
We first use a one-dimensional convolutional neural network
(1DCNN), which creates a convolution kernel that is con-
volved with the input layer over one dimension. Additionally,
we use three sequential deep learning architectures: a Fully-
connected RNN (FRNN) architecture [17], and its two adap-
tations, i.e., a Long Short-Term Memory (LSTM) architecture
[18], and a Gated Recurrent Unit (GRU) architecture [19].

For each client k ∈ [1,K], the local FL models hkFL(·)
are trained using their local cohort Dk, and each set of
local weights wk is then passed to the central server. The
local model consists of two parallel input channels (one for
vitals and one for labs), with one Conv1D layer followed
by one Flatten layer (kernel sizes 1 and 8) each, for the
1DCNN model, or with 3 RNN layers of 16 units each for
the three sequential neural network classifiers (according to
[13]). For all classifiers, we perform batch normalization sub-
sequentially, followed by a concatenation of the outputs and
fusion of the concatenated outputs via two fully connected
layers. We calculate the final outputs ([0,1]) with a Sigmoid
layer computing the risk of death in the ICU or ICU discharge.
Moreover, we use Adaptive Moment Estimation (Adam) op-
timization [20] and binary cross-entropy loss function, which
is suitable for binary classification tasks.

C. Global FL Model Training

We consider K clients, each having its own local patient
cohort Dk, k ∈ [1,K]. Initially, centrally (i.e., in the central
server), we initialize a global model that is shared with
all the clients, whereby each client represents one hospital.
Subsequently, we conduct several FL rounds: all clients train

their local models on their local data based on the received
global model (in defined epochs and mini-batch size), then,
the clients send the resulting local model to the global server,
and the server aggregates the local models and updates the
global model with the aggregated results. The FL rounds are
repeated until a defined stopping criterion is met.

The objective for FL is to optimize the global model
parameters using an aggregation of the local model parameters.
This is accomplished by minimizing the following function
fFL(w) =

∑K
k=1

nk

n f
k
FL(w), with fkFL(w) = 1

nk
L(Dk, w),

nk = |Dk|, and w denoting the global model weights [5].
Our FL model training approach is based on the Federated

Averaging (FedAvg) algorithm [5]. FedAvg is most commonly
used for FL with neural networks, an algorithm based on
iteratively averaging the stochastic gradient descent (SDG)
weights generated locally. It has been shown that FedAvg
is robust for non-IID and imbalanced data distributions [5],
which is very common for medical data. In FedAvg, the local
models are updated multiple times (multiple batch gradient
calculations) before sending the model weights back to the
server for aggregation, contrary to Federated SGD (FedSGD),
where a single step of gradient descent is performed per client
in each FL round.

Algorithm 1: Global FL Model Training
Result: Optimized global model

1 initialize w0;
2 while stopping criterion not met do
3 foreach client k ∈ [1,K] do
4 download w from central server;
5 wk ← w;
6 foreach mini-batch do
7 wk ← wk − ηgk;
8 end
9 return wk to central server;

10 end
11 update w ←

∑K
k=1

nk

n w
k in central server;

12 end

The pseudocode of our approach is presented in Algorithm
1, inspired by the FedAvg algorithm. In line 1, we initialize
the global model weights w0 in the central server. Then,
the central server shares the current global model weights
with the selected clients at the beginning of each FL round
(lines 4 and 5). Subsequently, each client k computes the
gradient gk = ∇fkFL(w

k) using its local data and performs
local updates with fixed learning rate η (line 7) in multiple
iterations (dependent on mini-batch size), resulting in wk.
Finally, the weights are returned to the central server (line
9), and the results are aggregated and updates applied to the
central server (line 11). The previously described steps are
iterated for several FL rounds.

In our FedAvg setup, all clients perform computations on
each FL round, as this is more suitable for the domain. Each
client performs 1 training pass over the local dataset per FL



TABLE I
PATIENT DEMOGRAPHICS OF FINAL STUDY COHORT.

Demographics Total Death Survival
Patients 19414 1892 17522
Gender
Female 8582 879 7703
Male 10832 1013 9819
Ethnicity
Caucasian 13706 6021 7685
African American 1447 801 646
Asian 445 174 271
Hispanic/Latino 604 249 355
Others/Unknown 3212 1337 1875

round, and the local mini-batch size for client updates is
dependent on the number of clients K (64/K).

IV. EMPIRICAL EVALUATION

A. Dataset

We use the MIMIC-III dataset [21] for this study, which
is a publicly available critical care database containing de-
identified clinical data of patients admitted to an ICU at the
Beth Israel Deaconess Medical Center (BIDMC) from 2001 to
2012. We follow the approach described in Pattalung et al. [13]
for the pre-processing and feature extraction steps, expanding
on the publicly available code of the mimic-code GitHub
repository [22], [23]. We extract patient demographic informa-
tion for pre-processing and labeling (icustay id, first icu stay,
first careunit, length of stay icu, deathtime icu), as well as
statistical purposes (gender, ethnicity, admission age), which
are presented briefly in Tables I and II. Note that patients older
than 89 have age values of 300 in MIMIC-III due to privacy
reasons, which are set to 90 in this study to reflect reality
more closely. Additionally, we extract patients’ vital signs and
lab values, collected during their ICU stays for modeling. We
obtain 23 ICU mortality clinically relevant variables, which are
in the form of time series [13], 7 vital signs (heartrate, systolic
blood pressure, diastolic blood pressure, mean blood pressure,
respiratory rate, temperature, peripheral oxygen saturation),
and 16 lab values (albumin, blood urea nitrogen, bilirubin,
lactate, bicarbonate, band neutrophi, chloride, creatinine, glu-
cose, hemoglobin, hematocrit, platelet count (platelet), potas-
sium, partial thromboplastin time, sodium, white blood cells).
Additionally, we prune data outliers and perform grouping of
similar clinical variables (using the item ids, see [22]). Finally,
we filter the patients, following the steps described below,
resulting in a total of 19414 patients:

1) Filter for the first ICU stay of each patient.
2) Exclude patients admitted to the Neonatal Intensive Care

Unit (NICU) and Pediatric Intensive Care Unit (PICU).
3) Filter for patients whose length of stay in the ICU was

at least 48h to ensure sufficient data for analysis.
4) Filter for patients for which observations (vital signs and

laboratory values) are recorded for at least 48h.
Labels are assigned to each unique patient. Patients that died

during the ICU stay are included in the positive group (label
= 1). Patients being alive throughout the entire ICU stay, up
until ICU discharge, are included in the negative group (label

TABLE II
ADMISSION AGE AND LENGTH OF STAY OF FINAL STUDY COHORT.

Admission age (years) Length of 1st ICU stay (days)
Total Death Survival Total Death Survival

Count 19414 1892 17522 19414 1892 17522
Mean 64.83 68.56 64.42 6.82 9.46 6.53
Std 17.09 16.15 17.14 7.50 8.90 7.28
Min 15.19 16.47 15.19 2.00 2.01 2.00
Max 90.00 90.00 90.00 153.93 97.30 153.93

= 0). The labeling process resulted in 1892 patients (9.75%)
in the positive class and 17522 (90.25%) in the negative class,
which demonstrates the high class imbalance of the dataset.

B. Evaluation Strategy

We evaluate LML, CML, and FL on the same testing data
splits using 5-fold cross-validation to eliminate randomness
induced by dataset partitioning. All folds consist of 20% of
the whole data each, whereby each fold serves as a testing
set once. The remaining four folds are again split into 85%
training and 15% validation set (CML approach). In the FL
approach, the remaining data is firstly split into K cohorts
(one per client), then each client’s cohort is also split into
85% training and 15% validation set. We use a stratified
sampling process for each splitting procedure because the
data is highly imbalanced. To further ensure comparability,
each neural network type is initialized with the same random
weights to ensure the same starting point for the optimization
in all approaches.

In all three approaches, CML, LML, and FL, firstly, we
normalize the training and validation datasets. The class im-
balance is taken into consideration by using class weights
during model training by giving both positive and negative
classes equal importance on gradient updates. We train the
CML models on a mini-batch size of 64 and the LML models
(2, 4, and 8 clients) on a mini-batch size of 64/K using a
maximum of 100 epochs and an initial learning rate of 0.01,
which decreases by 50% every 5 epochs to avoid undesirable
divergent behavior in the loss function. Furthermore, we
use early stopping via monitoring the validation loss with a
patience value of 30. When reaching this criterion, we restore
the weights of the epoch with the best validation results and
test the final model on the normalized testing dataset.

We train all FL clients’ local models in 1 epoch to maintain
a high training speed. This is considerably lower than the
CML, and LML approaches due to the iterative averaging
process, a mini-batch size of 64/K, and a maximum of 100
FL rounds (similar to max epochs in CML). As in CML, the
initial learning rate is set to 0.01 for all clients. Each training
round follows the aggregation of weights with FedAvg. We
pass the global model with averaged weights to the clients and
evaluate them locally on their validation dataset. We monitor
the average validation loss as FL stopping criterion, with the
patience set to the same number as in CML and LML: if
the client’s averaged validation loss does not improve over 30
rounds, we initiate early stopping. Eventually, we restore the
FL model with the lowest loss and test it on the normalized



test dataset. Finally, we repeat this process for 2, 4, and 8
clients.

C. Results and Discussion
We tackle the task of predicting ICU mortality using multi-

ple sequential classifiers in a federated setting on the MIMIC-
III dataset. We evaluate the predictive performance of 1DCNN
and three types of RNNs (FRNN, LSTM, and GRU), varying
the patient history window lengths (8h, 16h, 24h, and 48h)
and the number of FL clients (2, 4, and 8). Additionally, we
compare the results of the three approaches, FL, LML, and
CML. In Table III, we comparatively present the performance
of all combinations using the following evaluation metrics:
AUPRC and F1-Score.

Recent research on ICU and in-hospital mortality prediction
using MIMIC-III mainly focuses on AUC as an evaluation
metric [13], [15]. Although AUC is widely used for evaluating
classifiers built on imbalanced datasets, there is the drawback
of the unreliability of the estimates when there is a low sample
size of the minority class [24]. Thus, in this study, we focus
our evaluation on AUPRC and F1-Score, which are common
alternatives and better suited for highly imbalanced data.

We report the mean and standard deviation (std) of all
approaches as follows: mean and std of all 5-fold models in
CML, of k × 5-fold local models LML, and of all 5-fold
global models in FL.
1DCNN vs FNN vs LSTM vs GRU Comparing the four
classifiers, it is evident that all RNN classifiers, FRNN, LSTM,
and GRU, are comparable. Nevertheless, on average, all three
RNN classifiers are superior to 1DCNN, which underlines the
fact that RNNs are designed for sequences, while CNNs are
not capable of effectively learning temporal information.
Window Length All four classifiers (1DCNN, FRNN, LSTM,
and GRU) have similar performance across all time windows
(8h, 16h, 24h, and 48h) and approaches (CML, LML, and FL).
This suggests that there is valuable information to be learned
in all the windows and enough relevant information is also
prevalent in the smaller time windows. This might be due to
the fact that the most crucial information is observed shortly
before the event of interest (ICU death/discharge). It could be
argued that for dying patients, the shorter the window length,
the higher the density of relevant information contained in vital
signs and lab values.
Number of Clients The experiments were performed with 2,
4, and 8 FL clients, simulating a set of independent (LML)
or collaborating (FL) hospitals. In LML, we notice that the
performance continuously decreases with higher K as the data
available at each client decreases, and it could prove to be
biased and/or too limited. In FL, the results are comparable
across all different number of clients, and there is no clear
pattern to be observed. However, when the performance of FL
with a certain number of clients is lower, the standard deviation
is higher as well. This suggests that the data distribution
influences the result in some rounds of the k-fold cross-
validation, which could be solved by further optimization of
the FL setup.

Comparison of CML, LML, and FL Our results illus-
trate that CML and FL have comparable performance for
predicting ICU mortality. Both approaches perform well on
the classification task considering the high class imbalance
of only 9.75% positive samples, with a baseline AUPRC
of 0.10. Additionally, it can be verified that the behavior
regarding the different window sizes matches between FL and
CML. Extending the study by adding attention layers to the
used classifiers could further verify whether the classifiers are
learning the same patterns. Furthermore, when comparing the
predictive performance of LML and FL, it becomes apparent
that FL performs considerably better than LML, which proves
FL to be the better option over LML when data sharing
amongst hospitals is not possible.

Limitations The data used (MIMIC-III) is from a single
medical center, and selection bias is unavoidable. In addition,
the data used is from the end of the ICU stay, knowing the time
of death/discharge, and does not allow for early prediction.
Thus, the retrospective nature of the analysis does not permit
us to use this workflow within the scope of decision-support.
Nevertheless, this study can be seen as the basis for further
analysis of interpretability and feature importance.

V. CONCLUSION

We presented a federated learning workflow for predicting
ICU mortality using the MIMIC-III benchmark database. We
compared the predictive performance of the proposed FL ap-
proach against LML and CML, using several sequential deep
neural network classifiers (1DCNN, FRNN, LSTM, GRU),
expanding windows of temporal data (8h, 16h, 24h, and 48h),
and different numbers of FL clients (2, 4, and 8). Our findings
suggest that both CML and FL are comparable in terms of
AUPRC and F1-Score. Additionally, FL is superior to LML,
which is the only other alternative to guarantee data privacy.

Since the main focus of this study was on comparing
the different approaches, the FL setup has not been fully
optimized. Thus, future work could involve experimentation on
alternative design choices, such as using fixed mini-batch size,
taking into consideration communication costs, and using real
client/server FL architecture. Additional improvements could
include exploring the general effect of local class distribution
(fraction of deaths/dismissals per local client) within FL and
employing rolling windows over each patient’s history. Finally,
integrating an interpretability method to determine the most
important features in predicting ICU mortality in an FL
approach is worth studying.

Overall, the FLICU workflow that we present in this study
is for predicting ICU mortality using the MIMIC-III database.
Nevertheless, our approach shows great promise to be easily
extended not only to predict ICU mortality using different ICU
databases but also on different clinical prediction tasks.
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TABLE III
PREDICTIVE PERFORMANCE OF 1DCNN, FRNN, LSTM, AND GRU.

AUPRC F1-Score
1DCNN FRNN LSTM GRU 1DCNN FRNN LSTM GRU

8h
CML 0.68 ± 0.02 0.71 ± 0.02 0.71 ± 0.02 0.72 ± 0.02 0.86 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 0.84 ± 0.02
LML2 0.64 ± 0.04 0.69 ± 0.02 0.67 ± 0.04 0.67 ± 0.02 0.77 ± 0.04 0.81 ± 0.02 0.80 ± 0.03 0.80 ± 0.02
LML4 0.63 ± 0.04 0.66 ± 0.05 0.68 ± 0.04 0.67 ± 0.03 0.76 ± 0.04 0.79 ± 0.03 0.80 ± 0.03 0.80 ± 0.03
LML8 0.58 ± 0.09 0.61 ± 0.07 0.61 ± 0.10 0.63 ± 0.06 0.71 ± 0.10 0.74 ± 0.07 0.75 ± 0.09 0.76 ± 0.06
FL2 0.70 ± 0.01 0.69 ± 0.03 0.70 ± 0.02 0.70 ± 0.02 0.81 ± 0.01 0.81 ± 0.02 0.82 ± 0.02 0.82 ± 0.01
FL4 0.66 ± 0.03 0.67 ± 0.04 0.70 ± 0.03 0.64 ± 0.04 0.79 ± 0.03 0.80 ± 0.03 0.82 ± 0.02 0.78 ± 0.03
FL8 0.68 ± 0.01 0.67 ± 0.04 0.67 ± 0.05 0.69 ± 0.04 0.80 ± 0.01 0.80 ± 0.03 0.81 ± 0.03 0.81 ± 0.03
16h
CML 0.66 ± 0.04 0.72 ± 0.02 0.72 ± 0.02 0.71 ± 0.04 0.79 ± 0.03 0.83 ± 0.02 0.84 ± 0.02 0.83 ± 0.03
LML2 0.65 ± 0.04 0.68 ± 0.03 0.69 ± 0.03 0.69 ± 0.03 0.78 ± 0.03 0.80 ± 0.03 0.82 ± 0.02 0.81 ± 0.02
LML4 0.63 ± 0.05 0.65 ± 0.05 0.67 ± 0.04 0.65 ± 0.06 0.76 ± 0.04 0.78 ± 0.04 0.80 ± 0.03 0.78 ± 0.05
LML8 0.56 ± 0.07 0.59 ± 0.09 0.63 ± 0.09 0.64 ± 0.07 0.70 ± 0.07 0.73 ± 0.08 0.76 ± 0.08 0.77 ± 0.06
FL2 0.67 ± 0.02 0.67 ± 0.03 0.71 ± 0.02 0.69 ± 0.03 0.80 ± 0.02 0.79 ± 0.03 0.83 ± 0.02 0.81 ± 0.02
FL4 0.67 ± 0.04 0.70 ± 0.02 0.66 ± 0.07 0.68 ± 0.05 0.80 ± 0.03 0.82 ± 0.01 0.79 ± 0.05 0.81 ± 0.03
FL8 0.64 ± 0.04 0.70 ± 0.03 0.69 ± 0.02 0.65 ± 0.05 0.78 ± 0.04 0.82 ± 0.02 0.82 ± 0.01 0.79 ± 0.04
24h
CML 0.67 ± 0.02 0.71 ± 0.03 0.72 ± 0.03 0.72 ± 0.02 0.79 ± 0.02 0.82 ± 0.03 0.83 ± 0.02 0.84 ± 0.02
LML2 0.68 ± 0.02 0.68 ± 0.04 0.68 ± 0.04 0.69 ± 0.03 0.80 ± 0.02 0.81 ± 0.03 0.80 ± 0.03 0.81 ± 0.02
LML4 0.63 ± 0.04 0.67 ± 0.03 0.66 ± 0.07 0.68 ± 0.03 0.77 ± 0.04 0.80 ± 0.03 0.79 ± 0.05 0.80 ± 0.02
LML8 0.60 ± 0.06 0.61 ± 0.10 0.63 ± 0.07 0.62 ± 0.09 0.74 ± 0.06 0.74 ± 0.09 0.76 ± 0.07 0.75 ± 0.08
FL2 0.66 ± 0.03 0.69 ± 0.02 0.71 ± 0.02 0.71 ± 0.02 0.78 ± 0.03 0.81 ± 0.02 0.83 ± 0.02 0.83 ± 0.01
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[19] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[21] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii,
a freely accessible critical care database,” Scientific data, vol. 3, no. 1,
pp. 1–9, 2016.

[22] T. Pollard and et al., “MIT-LCP/mimic-code: MIMIC-III v1.4,” Accessed
January 2022.

[23] A. E. Johnson, D. J. Stone, L. A. Celi, and T. J. Pollard, “The mimic code
repository: enabling reproducibility in critical care research,” Journal of
the American Medical Informatics Association, vol. 25, no. 1, pp. 32–39,
2018.

[24] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera, Learning from imbalanced data sets. Springer, 2018, vol. 10.


	I Introduction
	II Problem Formulation
	III FLICU: A Federated Learning Workflow for Intensive Care Unit Mortality Prediction
	III-A Feature Extraction within a Time Window
	III-B Local FL Model Training
	III-C Global FL Model Training

	IV Empirical Evaluation
	IV-A Dataset
	IV-B Evaluation Strategy
	IV-C Results and Discussion

	V Conclusion
	References

