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Abstract— Coronary artery disease (CAD) is the dominant 

cause of death and hospitalization across the globe. 

Atherosclerosis, an inflammatory condition that gradually 

narrows arteries and has potentially fatal effects, is the most 

frequent cause of CAD. Nonetheless, the circulation regularly 

adapts in the presence of atherosclerosis, through the 

formation of collateral arteries, resulting in significant long-

term health benefits. Therefore, timely detection of coronary 

collateral circulation (CCC) is crucial for CAD personalized 

medicine. We propose a novel deep learning based method to 

detect CCC in angiographic images. Our method relies on a 

convolutional backbone to extract spatial features from each 

frame of an angiography sequence. The features are then 

concatenated, and subsequently processed by another 

convolutional layer that processes embeddings temporally. 

Due to scarcity of data, we also experiment with pretraining 

the backbone on coronary artery segmentation, which 

improves the results consistently. Moreover, we experiment 

with few-shot learning to further improve performance, given 

our low data regime. We present our results together with 

subgroup analyses based on Rentrop grading, collateral flow, 

and collateral grading, which provide valuable insights into 

model performance. Overall, the proposed method shows 

promising results in detecting CCC, and can be further 

extended to perform landmark based CCC detection and 

CCC quantification.  
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invasive coronary angiography, convolutional neural networks 

I. INTRODUCTION  

Cardiovascular disease (CVD) is the leading cause of 
mortality and morbidity for the entire world population [1]. 
The most frequent cause of CVD is atherosclerosis [2], an 
inflammatory disease that gradually obstructs arteries and 
has life-threatening effects when present in the coronary 
circulation, i.e. leading to coronary artery disease (CAD). 
While traditional CAD risk factors (e.g., age, gender, 
diabetes, etc.) [3], as well as genetical risk factors [4] are 
highly predictive of the onset of CVD, mortality and 
morbidity is determined by clinical events such as the 
occurrence of ischemic tissue damage, which cannot be 
well predicted from traditional CAD risk factors [5-7].  

One of the factors which helps to avoid ischemic tissue 
damage, is the development of coronary collateral 
circulation (CCC) [8]. CCC is characterized by natural 
bypasses (collateral arteries) which start to form as a result 
of progressive blood vessel lumen constriction and blood 
flow restrictions. Recent clinical studies have demonstrated 
that well-functioning CCC can independently predict 
lowered mortality and improved survival rates [9,10]. The 
protective effect translates to improved left ventricular 
(LV) function, decreased remodelling, and a lower risk of 
life-threatening arrhythmias [11]. Thus, CCC can be 
regarded as a survival advantage [12]. 

However, technical methods to automatically detect 
CCC currently lack behind studies on the clinical benefits 
of CCC. We aim to bridge this gap by introducing a novel 
method to detect the presence of CCC using deep neural 
networks on invasive coronary angiography (ICA) images. 
CCC detection represents an important prerequisite for 
assessing the morbidity rate for patients with CAD. 
Moreover, ICA is the gold standard in CAD. To the best of 
our knowledge, this is the first study to attempt CCC 
detection on ICA.        

The remainder of this article is organized as follows. We 
start by discussing background information and related 
work (Section II). Next, we introduce the available data sets 
and the model architecture (Section III), followed by 
empirical results (Section IV), a discussion (Section V) and 
conclusions (Section VI). 

II. BACKGROUND AND RELATED WORK 

As mentioned earlier, no previous studies have attempted 
to detect CCC from ICA. Nevertheless, some studies 
focused on the assessment of CTO (chronic total occlusion) 
collaterals from ICA, detecting the onset of coronary artery 
disease, and on the evaluation of collaterals in patients with 
ischemic stroke using CT brain scans.  
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Fig. 1. Python based annotation tool allowing the clinical experts to 

perform the annotation of ICAs with CCC.  

 

L. Liu et al. [13] proposed a deep learning based method 
for collateral physiology assessment under total occlusion 
conditions. Their model automatically extracts the length 
or time curves of the coronary filling to perform the 
assessment. H. Kuang et al. [14] proposed a vessel 
segmentation method for automating collateral scoring on 
brain CT angiography using a hybrid CNN transformer 
network. L. Wolff  et al. [15] assessed a commercial 
algorithm for automated collateral scoring on brain CT 
angiography. Unfortunately, technical descriptions of the 
algorithm are not provided. Nevertheless, when tested 
against experts, the agreement between the algorithm and 
the experts is not significant.  

M. Aktar et al. [16] proposed a deep learning method for 
collateral evaluation in patients with ischemic stroke using 
CT angiography. Their model processes 2D slices from 
CTA and uses a voting scheme to determine the outcomes. 
An additional difficulty of CCC detection is that, due to the 
myocardial contraction, the coronary vessels display a 
significant motion during a cardiac cycle.  

Moreover, processing ICAs or CTAs with deep learning 
methods has a long background, for tasks such as coronary 
arteries segmentation [17], calcium scoring [18] or 
cardiovascular hemodynamic prediction on bypass 
surgeries [19]. 

Since the available data set for our task is small, a 
relevant related field is that of few-shot learning, with 
applications to deep learning. FSL is a learning method in 
which predictions are performed based on a limited number 
of samples [20].   

 

Fig 2. Sample annotation for CCC. 

Few shot learning (FSL) methods are classified into four 
categories: multitask learning, embedding learning, learning 
with external memory, and generative modeling. Herein we 
use prototypical networks [21], a subcategory of the 
embedding learning models, considered the state-of-the-art 
for classification tasks.  

III.  DATA AND CCC DETECTION  

A. Dataset 

We operate in a low data regime, using a data set that 
consists of only 88 patients (with 168 ICAs) for which CCC 
was annotated, and 90 patients (with 168 ICAs) without 
CCC. Some patients have multiple ICAs but for each patient 
we have at least one ICA. For the ICAs with CCC, only one 
frame was annotated, marking the location of the CCC, as 
illustrated in Fig. 1.  

 To annotate the data, we developed a custom, Python-
based, annotation tool that allows clinical experts to perform 
the annotation of ICAs with CCC (see Fig 1.). The tool 
enables experts to annotate the location of the collateral 
artery, the donor artery and the receiving artery, Rentrop 
grading [22], pathways [23], collateral flow grade [24], 
blush grade [25], the donor segment, the receiving segment, 
and the collateral artery size.  We use these annotations for 
the subgroup analysis and for a future CCC quantification 
model. To reduce annotation time, the experts were asked to 
annotate only one frame for each angiography with CCC (as 
illustrated in Fig. 2) 

 The annotators were trained and supervised by expert 
interventional cardiologists with at least 10 years of 
experience in the catheter lab, and annotations were checked 
reciprocally and, in case of disagreement, discussed by at 
least two independent experts. 

B. CCC detection 

To perform CCC detection while also balancing 
hardware resources, we extract from each angiography 11 
consecutive frames. For the sequences annotated with CCC, 
we use five frames before the annotated frame, the 
annotated frame, and five frames after the annotated frame. 
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While more frames may be used, the computational costs 
increase significantly, and the information gains decrease 
since the contrast flushes out over time.  

 

 

Fig 4. The proposed method for the CCC detection.  

For the sequences without CCC, we employ a model that is 
described in section III.C to compute the vesselness score 
and select 11 frames centered around the frame with the 
highest vesselness score. All data is normalized using z-
score normalization [26] across the spatial pixel intensities. 

 To extract spatial features from the selected frames we 
use a spatial CNN (backbone) with six layers meant to 
capture a large field of view. The extracted spatial features 
are later concatenated and processed by 2D convolution 
with a kernel size of one, that extracts spatial and temporal 
features from the sequence. Based on the extracted 
characteristics, a FC layer outputs a binary decision for each 
frame (whether CCC is present or not). For this reason, a 
sigmoid function [27] has been applied at the output of the 
network. If the predicted value is greater than 0.5, the CCC 
is present, and if the predicted value is less than 0.5 the CCC 
is not present. The goal of this layer is to extract both spatial 
and temporal features from all frames. An illustration of our 
approach is depicted in Fig. 4. 

The spatial CNN is used in three configurations: no 
pretraining, pretrained without freezing the weights of the 
backbone, and pretrained with freezing the weights (and 
training just the last convolutional and fully connected 
layers). The pretrained backbone uses an auxiliary task of 
segmenting the vessels, as discussed in Section III.B.   

The models are trained using a vanilla method and a 
method based on prototypical networks. Due to the low data 
regime we operate in, we trained the models using k-fold 
cross validation [28] with k = 4, for 100 epochs. The k-fold 
cross validation datasets are split at patient level, meaning 
that all ICAs from one patient belong to the same fold. The 
classification accuracy is computed for each epoch, and the 
epoch leading to the highest accuracy on the entire dataset 
(all folds) is chosen for reporting the statistics. All models 
are trained using Adam optimizer [29] and a fixed learning 
rate of 0.0001.   

C. Backbone pretraining 

To boost the performance of the vanilla model, we also 
pretrained the backbone on a proxy task and performed 
transfer learning on the CCC task.  

 
Fig 3. The predicted vesselness segmentation for a dicom from our 

dataset. 

For pretraining, we used a supervised learning vessel 
segmentation task, for which annotations were already 
available. An illustration of the task is provided in Fig 3. 

To generate ground truth masks, we had access to annotated 
artery centerlines and diameter information. From these, we 
generated segmentation masks using a Gaussian function 
(with mean centered on the centerline points and a standard 
deviation of 0.75). The Gaussian ensured smooth vessel 
edges. To preserve smoothness, we formulated the training 
process as a regression problem, and used MSE as loss 
(instead of thresholding the segmentation masks and 
employing classification loss functions). In total, we had 
access to 3350 ICAs for pretraining, from which we used 
70% for training, 10% for validation and 20% for testing. 
Training ran for 100 epochs and we used early stopping 
based on the minimum loss on the validation data set. The 
evaluation on the test set revealed a Dice score of 0.92 (with 
sensitivity 0.95 and specificity 0.94). 

IV. EXPERIMENTAL RESULTS 

A. CCC detection 

 To evaluate the CCC detection performance, we 
determined the accuracy (Acc.), sensitivity (Sens.) and 
specificity (Spe.) [30]. The results obtained on the entire 
dataset following cross-validation, using all models 
described in Section III, are illustrated in Table I. The table 
indicates that the best results are obtained using a FSL 
model with pretraining and with weight freeze. All models 
perform better if the backbone is pretrained. Fig. 5 displays 
four sample cases from the dataset: one true positive (TP), 
one true negative (TN), one false positive (FP), and one 
false negative (FN). We  observe that both the FP and the 
FN samples are difficult, as the FP image has artifacts which 
can easily be confused with CCC and the FN sample’s field 
of view looks incomplete.  

Table I. Results obtained for the CCC detection. 
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Fig. 5. Four sample cases: one for each of the categories: (a) TP, (b) FP, 

(c) TN, and (d) FN. 
 

 The confusion matrix for the best performing model is 
depicted in Fig. 6: sensitivity and specificity are balanced. 

 In the following, we use the best performing model for 
a series of subgroup analyses. For these analyses, we focus 
on the dataset of ICAs with CCC. Since only TPs and FNs 
can be obtained within this dataset, we analyse the 
sensitivity. The subgroups were defined using the 
annotations performed by the clinical experts. The first 
analysis is based on the Rentrop grading (see Table II).  

Table II. Results obtained for subgroup analyses based on Rentrop 
grading. 

Rentrop Grading 

 

Nr. Of 

samples 

Sensitivity 

1  20 65 

2  51 88.23 

3  91 80.21 

  

 Rentrop grading one means filling of side branches of 
the artery to be dilated via collateral channels without 
visualization of the epicardial segment, Rentrop grading two 
means partial filling of the epicardial segment via collateral 
channels, and Rentrop grading three means complete filling 
of the epicardial segment of the artery dilated via collateral 
channels. The model detects the collateral circulation 
Rentrop grading two and three better than the collateral 
circulation graded with one. This is to be expected, since 

epicardial segments cannot be visualized well in Rentrop 
grading one.  

Table III. Results obtained for subgroup analyses based on collateral 
flow grade. 

Collateral flow grade 

 

Nr. Of 

samples 

Sensitivity 

1  10 80 

2  33 75.75 

3  46 82.6 

4  73 82.19 

 

Fig 6. The confusion matrix for the best performing model.  

 The second analysis is based on the collateral flow 
grade, which can vary between one and four. Collateral flow 
grade one means that collateral flow is barely apparent, dye 
is not visible throughout the cardiac cycle, but in at least 
three consecutive frames. Collateral flow grade two means 
that the collateral flow is moderately opaque, the dye being 
present in more than 75% of cycle. Collateral flow grade 
three means that the collateral flow is well opacified, with 
clear antegrade dye motion. Collateral flow grade four 
means that the collateral flow is well opacified, fills 
antegrade, with very large vessels (> 0.7 mm). The results 
obtained for this subgroup analysis are depicted in Table III. 
The model performs well on all four subgroups, only the 
results for collateral flow grade two are slightly lower. This 
indicates that even when the dye is visible on only a few 
frames, the model can detect the CCC. 

 The third subgroup analysis focuses on the collateral 
artery size measured in pixels (most of the ICAs in our 
dataset do not have the pixel spacing information; hence, it 
is not possible to perform this analysis in physical units). 
The collateral artery size was measured using the annotation 
tool, and three equally sized subgroups have been defined 
(see Table IV). We observe that the model performs worst 
on the subgroup with the smallest collateral artery size, 
which is to be expected since these are the most difficult 
ones to detect.  

Table IV. Results obtained for subgroup analyses based on collateral 
artery size. 

Collateral artery size Nr. Of 

samples 

Sensitivity 

< 3.14  54 74.07 

3.14 – 4  54 87.03 

> 4  55 80 

Model Pretrain Freeze Acc. 

[%] 

Sens. 

[%] 

Spec. 

[%] 

Classi

c 

  65.2 62.5 67.9 

  78.9 79.8 78.0 

  76.2 75 77.4 

 

FSL 

  61.3 61.9 60.7 

  77.7 77.4 78.0 

  79.5 80.4 78.6 



 

 
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 

DOI: 10.1109/CBMS58004.2023.00337 

 

  

V. DISCUSSIONS 

Overall, the models introduced show promising results 

for CCC detection, albeit the performance can be further 

improved. One of the main challenges was the small dataset 

size. We approached this problem from two angles: (i) by 

pretraining the models, and (ii) by employing few shot deep 

learning techniques. However, the lack of data and 

population diversity induces small inconsistencies in the 

results, which we discuss in this section. 

As shown in Table I, pretraining provided significant 

improvements for both classical and few shot learning. This 

motivates further research into better pretraining methods, 

using more data. For our task, we had annotated data and 

formulated pretraining and a supervision task. However, if 

more data without annotations are available, self-

supervised methods deserve exploration [31]. 

The use of few shot learning techniques further provided 

marginal improvements. However, as shown in Table I, 

these improvements were not entirely consistent. For 

example, when using the pretrained backbone without 

freezing the weights, classical training exceeded few shot 

learning. This result is likely because optimizing the 

prototypes and fine-tuning the backbone weights was not 

possible given limited training data set. When freezing the 

weights, however, the prototypes could be better defined 

and the few shot method exceeded classical training. This 

balance between choosing which parameters to specialize 

in limited data regimes deserves future exploration. 

The subgroup analyses in Section IV also revealed minor 

uneven results. For example, the sensitivity for Rentrop 

grading in Table II shows better performance for Rentrop 

grading two than three. Nevertheless, the number of data 

points for grading three is significantly higher than for 

grading two, which induces more diversity in the analyzed 

population. We expect more even results once more data is 

available. 

The same result can be observed for collateral flow grade 

sensitivity in Table III, where the sensitivity for collateral 

flow 1 is higher than for collateral flow 2. These small 

inconsistencies will likely be removed by analyzing data 

that is more diverse. 

Moreover, the artery size measurements in Table IV 

revealed that sensitivity is higher for medium artery sizes 

than for large sizes. This result is likely due to some 

inherent bias stemming from the pretraining method, where 

the model was pretrained to avoid segmenting larger 

structures such as the catheter. Since the best model uses a 

backbone with frozen weights, it is likely that the model is 

cautious with larger structures. 

VI. CONCLUSIONS 

We proposed a deep learning based method to detect the 

CCC on ICAs in low data regimes. The method integrates 

both spatial and temporal features using a CNN-based 

backbone to extract spatial information from multiple 

frames, and an additional CNN-based head which 

integrates temporal features. Due to limited data 

availability, we experiment both with pretraining the 

backbone on coronary segmentation and with few-shot 

learning techniques. 

We performed multiple subgroup analyses to understand 

the outcomes and report on their results. Overall, the best 

performing model uses both pretraining and few-shot 

learning, and demonstrates promising results in CCC 

detection. Future work will focus collecting more data and 

extending pretraining to self-supervision. Moreover, future 

work will also focus on extending the current model to 

perform landmark based CCC detection and CCC 

quantification, which in turn can benefit the core task of 

CCC detection.  
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