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Abstract—In software product line engineering, the construc-
tion of an ADL architecture for a product family is still an
outstanding engineering challenge. An ADL architecture for
a product family would define the architectures for all the
products in the family, allowing engineers to reason at a higher
level of abstraction. In this paper, we outline a component
model that can be used to define architectures for product
families, by incorporating explicit variation points.
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I. INTRODUCTION

Fig. 1 shows the key artefacts involved in the construction
of product families in Software Product Line Engineer-
ing (SPLE) [34], [29]: feature model, architecture and
components. The feature model [7] captures common and
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Figure 1: Product family artefacts [32].
variable characteristics in the problem space as nodes in a
tree. Variability is expressed by optional, alternative and
or variation points. The feature model is the most abstract
specification of a product family. In order to realise the
product family defined by a feature model, SPLE makes
use of two kinds of artefacts in the solution space: an
architecture for the product family; and components that can
be combined into a product. However, the construction of

Research leading to these results has received funding from the EU
ARTEMIS Joint Undertaking under grant agreement no. 621429 (project
EMC2) and from the Technology Transfer Board (TSB) on behalf of the
Department for Business, Innovation & Skills, UK.

an architecture in the sense of ADL (architecture description
language) [26] for a product family is still an outstanding
engineering challenge [17].

In this paper we outline a component model [23], called
FX-MAN, that can be used to construct a real architecture for
a product family, and thereby provide this crucial solution
space artefact. We have implemented a tool for our model
[14], and we demonstrate its use in SPLE on an example.

II. THE FX-MAN COMPONENT MODEL

A component model for constructing product families
must define a family of architectures by incorporating
variation points, as well as composition mechanisms for
combining (sub)families of architectures into larger ones.

The basic idea of FX-MAN is that it defines: (i) basic
component-based architectures that correspond to features;
(ii) variations of sets of basic architectures; (iii) composition
of sets of basic architectures into a product family.

Basic component-based architectures are X-MAN architec-
tures, constructed using the X-MAN component model [21],
[25]. These are intended to implement features in the final
products.

A set of X-MAN architectures is a family of product
parts. We call such a set an X-MAN set. Variations of
X-MAN sets are constructed by variation operators that
correspond to standard variation points in feature models,
namely OPT (optional), ALT (alternative, or exclusive or),
and OR (inclusive or).

Tuples of X-MAN sets that represent variations generated
by variation operators can be composed into a product
family. Such a family contains all the possible products
(containing all possible variations as defined in the feature
model).

A. X-MAN Component Model

In X-MAN there are two kinds of components: (i) atomic
and (ii) composite components. An atomic component con-
sists of a computation unit (CU) and an invocation connector
(IC). The computation unit contains the implementation of
the services exposed by the invocation connector. Atomic
components can be composed by composition connectors



Figure 2: FX-MAN overview.

into composite components. Composition connectors are
(exogenous) control structures that coordinate the execution
of the components they compose [24]. A sequencer (SEQ)
provides sequencing, while a selector (SEL) branching.
AN aggregator connector (AGG) aggregates the services
exposed by its sub-components.

B. Variation Generation

To generate variations of X-MAN sets, we have defined
three variation operators, which are functions that take a
tuple of X-MAN sets as input and return variations of the
input sets. The resulting variations are again tuples of X-
MAN sets.

A variation operator is a function that applies the variabil-
ity expressed in a feature model, that is exclusive or (ALT),
optional (OPT), and inclusive or (OR) to a tuple of X-MAN
sets. The language of our variation operators is defined by
a context free grammar.

The ALT variation operator is a function that takes a
tuple of at least two T’s as input, and returns each input
set as a possible alternative. The OR variation operator also
takes as input a tuple of at least two Ts, and returns all
possible combinations (without repetition) of its input. The
OPT operator makes a single T optional.

Variation operators can be nested, since they all return tu-
ples of X-MAN sets. This is in keeping with the hierarchical
nature of variation points in a feature model.

C. Family Composition

Once variations of X-MAN sets have been generated,
the X-MAN architectures in these sets can be composed
together into a family of products, which is another tuple
of one X-MAN set. The composition of these sets can be
defined in terms of X-MAN composition connectors, since it
is ultimately X-MAN architectures that are being composed.
However, for any set composition, there are many possible
combinations of the members of the input sets. In order not
to lose any potential products (as specified by the feature
model), we need to keep all possible combinations, and so
we have defined family connectors accordingly to perform
these set compositions.

A family connector F -Conn is defined as an n-ary
function that takes a tuple of at least two X-MAN sets, and
returns a product family, which is a tuple of an X-MAN
set. The result of the composition performed by F -Conn
is a family of fully formed, executable products, each one
in the form of an X-MAN architecture. The two F -Conn
connectors are F -SEQ and F -SEL corresponding to the X-
MAN composition connectors SEQ and SEL respectively.

D. Family Filters

In order to handle composition rules, or constraints, that
may be present in a feature model, we define a family filter
as an operator on components composed by a family con-
nector. A family filter removes products containing illegal

2



combinations of components, from the family constructed
by the family connector.

III. CONSTRUCTING A PRODUCT FAMILY

Clearly, by itself, FX-MAN just provides the building
blocks for product families. However, the nature of these
building blocks lends itself to the construction of product
families whose architectures are feature-oriented in the sense
that they are structurally isomorphic to the feature model.

At this stage, it should be obvious that the architecture
of every product in FX-MAN (i.e. an X-MAN component,
atomic or composite) is a tree, as composition is strictly
hierarchical. This means that a product is hierarchically
composed of components. Therefore if we use components
to implement the features in the feature model, and construct
a product family architecture in FX-MAN from these com-
ponents, then the resulting architecture will be structurally
isomorphic to the feature model. This is the basis of our
approach to constructing product families in FX-MAN.

We construct a component ci to implement each leaf
feature fi, and then hierarchically construct composite com-
ponents Ci containing ci, to implement parent features Fi of
fi. Variation operators can be applied at any level above the
leaf level, and lead to permutations of composite components
with features Fi and child features fi. Finally, the tuples of
X-MAN sets generated by variation operators are composed
by family connectors into a family.

IV. EXAMPLE

We have implemented a tool for our component model
[14] and we have experimented with the construction of a
family of Vehicle Control Systems (VCS) [20].

A VCS is a real-time, on-board system for controlling a
motor vehicle. The key functionalities of VCS are captured
in the feature model in Fig. 3.

Figure 3: Feature model of VCS.
The feature model for VCS specifies that: (i) the Cruise

Management feature is mandatory, which can provide Dis-
tance Detection or Auto Cruise Control, or both, and Dis-
tance Detection if present is either Front Detection or All-
round Detection, but not both; (ii) the Observation feature
is mandatory, which can yield either Maintenance or Moni-
toring, but not both; (iii) the Calculation feature is optional,
which if present can provide Average MPH, Average MPG
or both.

Following the VCS feature model, we now describe the
steps needed to construct a family of VCS systems. The
complete family is shown in Fig. ??.

Step 1. The first step is to construct X-MAN components,
atomic or composite, that implement the leaf (lowest level)
features in the feature model; and then deposit them in the
repository. There are seven leaf features, so we will construct
seven X-MAN components: AverageMPH, AverageMPG,
Maintenance, Monitoring, FrontDetection,
AllRoundDetection, and AutoCruise.

Step 2. The second step is to apply variation
operators defined in the feature model to the X-MAN
components that have been constructed to implement
the leaf features. To this end, we retrieve all the seven
components from our repository, and apply the specified
variation operators to them. The Optional operator
applied to the tuple resulting from applying Or to
AverageMPH and AverageMPG yields the tuple F1
= 〈{AverageMPH},{AverageMPG},{AverageMPH}
⊕ {AverageMPG}, ∅ 〉. The Alternative operator
applied to Maintenance and Monitoring gives the
tuple F2 = 〈{Maintenance},{Monitoring}〉. The
Or operator applied to the X-MAN set consisting of
AutoCruiseControl and the tuple resulting from
applying the Alternative operator to FrontDetection
and AllRoundDetection yields the tuple of 5
X-MAN sets: F3 = 〈{AutoCruiseControl⊕All-
RoundDetection}, {AllRoundDetection},
{FrontDetection⊕AutoCruiseControl},
{FrontDetection}, {AutoCruiseControl}〉.

Step 3. After generating variations, the last step is to com-
pose the variations into a product family. It is worth noting
that all the tuples of X-MAN sets specified by the variation
points in the feature model have now been generated, but
it remains to compose them into all the possible products
specified by the feature model. Applying family connectors
to these tuples of X-MAN sets will generate a product family,
whose size depends on the cardinalities of these sets. The
choice of family connectors is a design decision, however
it will not affect the total number of products in the family.
In this case the total number is 40. We choose to compose
F1 and F2 into F4 with the family connector F-Selector
because we want to allow the driver to choose any subset
of the features: AverageMPH, AvergageMPG, Maintenance
and Monitoring. Then we choose to compose F4 and F3
with F-sequencer to combine the driver’s choice with the
Cruise Management feature.

Step 4. Finally, the complete product family (Fig. 4) or a
single member (e.g. Product 4 in Fig. 5) can be extracted.

V. RELATED WORK

Our work in this paper is about a new component model
that can be used to construct a product family from com-
ponents (that represent products and product sub-families),
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Figure 4: VCS product family.

Figure 5: Product No.4.

variation operators (that represent variation points in a prod-
uct family), and composition connectors that compose sub-
families. An architecture created in our model contains a
family of (sub-families of) fully formed, executable prod-
ucts.

This is in contrast to related work, which falls into
two main categories: (i) component models (ii) variability
handling approaches.

Figure 6 shows a comparison between FX-MAN and com-
ponent models that define parametrised architectural tem-
plates. These models include: ADLARS [6], MontiArchHV

[18], ∆MontiArc[19], KobrA [5], Mae [30],Plastic Partial

Components [28], xADL2 [13], Koala [35], Com [27], and
Kumbang [4].

Component Model/ADL

Plastic Partial Components

MontiArcHV

xADL2

KobrA
Mae

Koala
Com

Our model: FX-MAN

Explicit Variation Points
Alt Opt Or

Kumbang
Family

Product

Template
Template
Template
Template

Template

ADLARS
MontiArc

Template/
Family

Template
Template
Template
Template

Figure 6: Component models and ADLs.

Some of these models do not define variation points
explicitly, and express variability by other means. For exam-
ple, MontiArchHV [18] uses presence conditions, ∆Monti-
Arc[19] use architectural deltas, while xADL2 [13] defines
conditions in XML schemas. Other models do define some
variation points explicitly. For example, Koala defines the Alt
variation point explicitly (as a switch between components),
but not Opt and Or (these can be simulated by parameters
in the diversity interface of a component to change its
internal structure). By contrast, FX-MAN explicitly defines
the full standard set of variation points that appears in feature
models: Opt, Alt and Or.

Having the full set of variation points explicitly enables
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FX-MAN to be used to define architectures structurally
isomorphic to the feature model in all cases. Conversely, the
lack of the full set of explicit variation points means that the
other component models can only define such architectures
in a limited number of cases. Furthermore, an FX-MAN
architecture allows to analyse a family, and its family
members, at design time without the need of additional
configuration. In other words, where other component model
realise a template, FX-MAN realise a family architecture with
explicit behaviour and variation points.

Figure 7: Variability management approaches.
In a wider context, SPLE methods and tools that do

not construct architectures (or use a component model),
rely on variability handling mechanisms. Figure 7 shows
a comparison between FX-MAN and existing approaches
to handle variability. There are three main categories of
such approaches: (i) weaving-based (ii) annotation-based
(iii) superimposition.

Weaving-based approaches [10], [15], e.g. XWeave [16]
and AFM [1], manage variability by applying the principles
of aspect-oriented programming [11] at the meta-level. Base
models are varied by pointcuts and advices: the former
define where to affect the base model, while the latter specify
how to modify it. Product derivation is achieved by weaving
the set of aspect models corresponding to a particular feature
configuration.

Annotation-based approaches are widely used in industry
[7] why they are very well supported through the commercial
tools Gears [22] and pure::variants [9]. On the low level side
the c-preprocessor (cpp), or FArM [33] are examples of such
approaches. Here, artefacts as fragments of a code base are
annotated with statements for example with #ifdef. Product
derivation is achieved by removing fragments that do not
reflect feature selection.

Superimposition [12], [3], [2] is the process of composing
fragments of software artefacts (e.g. code, UML diagrams)
by merging their corresponding substructures on the basis
of nominal and structural similarity. Products are derived
by merging only the fragments that satisfy their presence
condition.

Like the component models in Figure 6, the key difference
between all these variability handling approaches and FX-
MAN is that they define a template for a product family,
and not an architecture for a product family as in FX-MAN.

Individual products have to be configured one at a time using
the template.

VI. DISCUSSION AND CONCLUSION

The distinguishing characteristic of FX-MAN is its appli-
cability to the construction of the architecture of a complete
family of executable software products, together with the
key advantage that the products can be analysed at design
time without the need to be extracted. However, enumerating
a complete product family is an NP-hard problem: for large-
scale families with a high degree of variability, enumeration
and extraction of a complete family is costly both in terms
of computation time and memory. For practical purposes, a
divide-and-conquer strategy might be necessary, to handle
a large product family by decomposing it into sub-families.
Happily this is possible in FX-MAN, due to its compositional
nature, and its associated type system.

Another important aspect of compositionality is that FX-
MAN can be used to compose families into bigger ones. This
is possible because variation operators and family connectors
can be applied at any level of composition on X-MAN sets
(every product family is a tuple of an X-MAN set).

We are currently collaborating with pure::variants, the
current market leader in variability management [7], in
order to automate the mapping between problem space and
solution space. This collaboration will enable us to evaluate
our approach on larger real-world case studies, and we
intend to do so.

Finally, our tool is available at http://www.click2go.umip.
com/i/software/x man.html.
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