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Robust Gain-Scheduled Fault Tolerant Control For A Transport
Aircraft

Jong-Yeob Shin and Irene Gregory

Abstract— This paper presents an application of robust gain-
scheduled control concepts using a linear parameter-varying
(LPV) control synthesis method to design fault tolerant con-
trollers for a civil transport aircraft. To apply the robust
LPV control synthesis method, the nonlinear dynamics must
be represented by an LPV model, which is developed using
the function substitution method over the entire flight envelope.
The developed LPV model associated with the aerodynamic co-
efficient uncertainties represents nonlinear dynamics including
those outside the equilibrium manifold. Passive and active fault
tolerant controllers (FTC) are designed for the longitudinal
dynamics of the Boeing 747-100/200 aircraft in the presence
of elevator failure. Both FTC laws are evaluated in the full
nonlinear aircraft simulation in the presence of the elevator
fault and the results are compared to show “pros” and “cons”
of each control law.

I. I NTRODUCTION

Aircraft loss-of-control (LOC) accidents [1] comprise the
largest and most fatal aircraft accident category across all
civil transport classes, and can result from a large array of
causal and contributing factors (e.g., system and component
failures, control system impairment or damage, inclement
weather, inappropriate pilot inputs, etc.) occurring either
individually or in combination. Research [2]–[5] into the
characterization of the aircraft LOC phenomenon as well as
LOC prevention and recovery system technologies is being
conducted by NASA as part of its Aviation Safety Program
(AvSP). Thus, fault tolerant control (FTC) for a transport
aircraft plays an important role in preventing LOC aircraft
accidents due to control upset or failure.

The concept of FTC has been used for various applica-
tions [6]–[8] including flight control. In general, the FTC
systems can be categorized into two classes: passive and
active [9]. A passive FTC law is designed with the consider-
ation of a set of pre-modeled failures as uncertain dynamics.
Thus, the gains are not recalculated based on faults but are
robust enough to maintain closed-loop system stability in
the presence of faults at the cost of conservative nominal
performance. Hence, a system with a passive FTC law is not
vulnerable to a fault detection false alarm, to fault detection
time delay or to incorrect fault identification.

An active FTC law recomputes its gains due to faults
to maintain system performance and stability. It is less
conservative than a passive FTC law and achieves better
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performance. Fault detection and isolation (FDI) filters are,
however, required to implement an active FTC law since
estimated fault parameters are used to recalculate the gains.
Fault parameter estimation effects on performance and even
stability of the integrated system must be considered in a
validation and verification process [10]. To consider the fault
parameter estimation effect on the closed-loop system, fault
detection times (fault estimation time delay) are assumed
and are simulated with the full nonlinear closed-loop system.
Based on the simulation results, acceptable fault detection
time delay is estimated for maintaining closed-loop stability.

One approach to designing a FTC law is a linear parameter
varying (LPV) control synthesis method with pre-defined
fault models using linear matrix inequality (LMI) optimiza-
tion. Incorporating the benefits of the robust control concept
developed for an LTI system, the LPV synthesis method has
been successfully applied to various nonlinear problems: F-
16 aircraft [11], turbofan engines [12], an inverted pendu-
lum [13], etc. In Refs. [2], [14], a robust LPV synthesis
method has been introduced to reduce conservatism induced
by the structured uncertainty block. In Ref. [2], this method
was applied to designing a FTC system of the HiMAT aircraft
described by a linearized model at a trim point.

Ref. [15] presents a reconfigurable LPV control design
for a Boeing 747-100/200 aircraft using the conventional
LPV synthesis method in the presence of an elevator fault
with unmodeled dynamics. In this paper, the robust LPV
synthesis method is applied to the design of a FTC law for
the longitudinal motion of the aircraft that includes the full
nonlinear dynamics and uncertain aerodynamic coefficients.
The magnitude of uncertainty of aerodynamic coefficients
and the moment of inertia term (Iyy) of the aircraft are
pre-defined and are considered in the control synthesis pro-
cedure. Aerodynamic coefficients in tabulated data are fit
as polynomial functions to generate a LPV model of the
aircraft. The fitting errors are integrated into the uncertainties
of aerodynamic coefficients.

A FTC law has to be robust to the given uncertainty for
reliability of the implemented control system. In order to
design a robust LPV-FTC law of the transport aircraft, the
aerodynamic uncertainties are explicitly considered in the
control design procedure. In general, a robust control design
problem cannot be formulated as a linear matrix inequality
that finds the global solution. The problem is generally
solved by an iteration method (e.g. D-K iteration [16]). In
this paper, the robust LPV synthesis method in Ref. [2] is
used, which is an iteration method for solving two LMI
optimization problems to reduce the conservatism introduced
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by the structured uncertainty block.
To design passive and active FTC laws for the longitudinal

motion of the aircraft using the robust LPV synthesis method,
the nonlinear dynamics of the aircraft with uncertain aero-
dynamic coefficients have to be represented over the given
flight envelope by a quasi-LPV model. In this paper, the
function substitution method is used to develop the quasi-
LPV model of the longitudinal motion of the aircraft. This
method can convert the nonlinear dynamics into a quasi-LPV
form over the non-trim region while preserving the stability
of the original nonlinear system [17].

In this paper, both FTC laws are simulated with full
nonlinear dynamics in the presence of elevator fault and the
results are compared. Moreover, the closed-loop system with
the active FTC law is simulated with different fault detection
time delay intervals. In the example, the time delay makes
the closed-loop system uncontrollable. This paper highlights
the issue of a reliable fault detection time delay interval,
in which the controller can preserve stability. Calculating a
reliable fault detection time interval is an interesting problem.
However, it will be considered as a future research topic.

This paper is organized as follows. Section 2 describes
the function substitution method and the nonlinear longi-
tudinal motion of the Boeing 747-100/200 aircraft. Using
the dynamics substitution method, the nonlinear longitudinal
dynamics are rewritten as a quasi-LPV model with an uncer-
tainty block which represents real parameter uncertainties of
the aerodynamic coefficients. Section 3 defines the control
objectives for the longitudinal dynamics and the robust
LPV control synthesis framework. Section 4 presents the
simulation results for elevator faults with a passive LPV-
FTC law, an active LPV-FTC law, and a LPV law for healthy
elevator condition. Conclusions are presented in Section 5.

II. LPV M ODEL REPRESENTATION

A. Function Substitution Method

The function substitution method, introduced in Ref. [18],
has been used to develop a quasi-LPV model for nonlinear
dynamics found in Refs. [11], [17], [19], [20]. The nonlinear
longitudinal dynamics of a Boeing 747-100/200 aircraft can
be described by the following nonlinear model:[

ẋ1

ẋ2

]
= Anl(x1)

[
x1

x2

]
+ Bnl(x1)u + lnl(x1) (1)

with a state vectorxT = [xT
1 xT

2 ] ∈ Rnx and a
control vectoru ∈ Rnu . The functionAnl(x1), Bnl(x1)
and lnl(x1) are continuous mapping functions:Rnx1 7→
Rnx×nx , Rnx1 7→ Rnx×nu andRnx1 7→ Rnx . Note that
the part (x2) of the state vector and the control vector enter
the nonlinear dynamics in a linearly affine manner.

Assume that there is a reference pointxT
r = [xT

1r xT
2r]

which satisfies a trim condition. A nonlinear model in Eq. (1)
is rewritten as[ ˙̃x1

˙̃x2

]
= Anl(x1)

[
x̃1

x̃2

]
+ Bnl(x1)ũ + h(x1) (2)

where

h(x1) = Anl(x1)
[
x1r

x2r

]
+ Bnl(x1)ur + lnl(x1) (3)

and x̃ = x − xr, ũ = u − ur. To convert the nonlinear
dynamics into a quasi-LPV form, the functionh(x1) is
replaced byH(x1)x̃1 whereH(x1) is a mapping function:
Rnx1 7→ Rnx×nx1 . A quasi-LPV model is[ ˙̃x1

˙̃x2

]
=

[
Anl(x1) + [H(x1) | 0nx×nx2

]
] [

x̃1

x̃2

]
+ Bnl(x1)ũ

(4)
where 0nx×nx2

denotes a zero matrix with the dimension
of nx by nx2 . The key to the function substitution method
is to construct the matrix functionH(x1). The number of
possible solutions satisfying the equality condition,h(x1) =
H(x1)x̃1, is infinite because the equality constraint is an
under-determined problem.

In Ref. [18], the matrix functionH(x1) is calculated
as h(x1)/x̃1. Therefore, there is singularity at the point:
x1 = x1r. In Refs. [11], [19], [20], the matrix function
is calculated by using linear optimization formulated at all
given grid points with smoothness constraints. The reference
point is not chosen as a grid point because of the singularity.
In Ref. [17], the function value atx1 = x1r is replaced by
the limit value oflimx1→x1r

h(x1)
x̃r

to remove the singularity.
In the process of linear optimization in Refs. [11], [17]–
[20], the aerodynamic coefficients of the nonlinear aircraft
dynamics are evaluated at all grid points from the tabulated
data. However, the methods in Refs. [11], [17]–[20] are not
guaranteed to satisfy the equality condition between grid
points. In Ref. [17], the preservation of stability of the orig-
inal nonlinear dynamics was taken into consideration during
the process of constructing the matrix functionH(x1).

In this paper, the nonlinear functionh(x1) is rewritten as a
polynomial function ofx1 with the aerodynamic coefficients
expressed as polynomials over the given flight envelope. To
construct the matrixH(x1), the functionh(x1) is decom-
posed into coefficients of̃x1 and each coefficient is collected
into the matrix form. For example, suppose

h(x1) = h(x̃1 + x1r) =
[
a1α̃ + a2α̃Ṽ 2

b1Ṽ + b2α̃Ṽ

]
(5)

whereai andbi are constant. Theh(x1) can be rewritten as

h(x1) = H(x1)x̃1 = H(x̃1 + x1r)x̃1

=
[
a1 + a2p1Ṽ

2 a2(1− p1)α̃Ṽ

b2p2Ṽ b1 + b2(1− p2)α̃

] [
α̃

Ṽ

]
(6)

The values ofp1 andp2 are chosen to preserve the stability
of the original nonlinear model [17]. These underdetermined
conditions can be solved numerically, as was done in pre-
vious work [17]. Here however, the equations are solved
symbolically. The benefits of the symbolic solution are:1)
simplification that avoids the need for a linear optimization
problem with the smoothness condition, and 2) validation
of the quasi-LPV model between grid points, including
computed fitting errors. Moreover, the fitting errors can
be integrated with the uncertainty block in the quasi-LPV
model.
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TABLE I

THE UNCERTAIN AERODYNAMIC COEFFICIENTS

coefficient uncertain range (δa) coefficient uncertain range(δa)
CDM

[−0.01 0.01] CLq [−0.15 0.20]
CLb

[−0.025 0.025] Cms [−0.07 0.03]
Cmb [−0.005 0.005] Cme [−1, 1]× 10−4

CLe [−6 6]× 10−6 Cmq [−0.83 0.6]

B. Longitudinal dynamics of a transport aircraft

The nonlinear longitudinal dynamics of a transport aircraft
(Boeing 747-100/200 aircraft) are taken from Refs. [20]–
[22]. The longitudinal motion states and controls arex =
[α, q, V, θ]T (angle of attack (deg), pitch rate (deg/sec),
velocity (m/sec), pitch angle (deg)) andu = [δe, δs, T ]T

(elevator deflection (deg), horizontal stabilizer deflection
(deg) and thrust (N)), respectively. The nonlinear longitudinal
dynamics are documented in Refs. [21], [22]. In this paper,
the flight envelope for the longitudinal dynamics is defined as
α ∈ [−2 10](deg) andV ∈ [100 250] (m/sec) at an altitude
of 7000 m. Aerodynamic coefficients and their derivatives
are fit into a polynomial function form such that

a = [αn α(n−1) · · · 1]Ca[V m V (m−1) · · · 1]T + δa

(7)
wherea is an aerodynamic coefficient,Ca is a coefficient
matrix andδa is a fitting error over the flight envelope. The
aerodynamic coefficients and their uncertainties are given in
Table I. The drag coefficient at fixed mach number (CDM

),
the lift coefficient at zero stabilizer angle (CLb

), the pitch
moment coefficient at zero stabilizer angle (Cmb

), the lift
coefficient derivative due to elevator deflection (CLe

), and
the pitching moment coefficient derivative due to elevator
deflection (Cme ) are functions of angle of attack and velocity,
and the lift coefficient derivative due to pitch rate (CLq ),
the pitching moment coefficient derivative due to stabilizer
deflection (Cms

), and the pitching moment coefficient deriva-
tive due to pitch rate (Cmq

) are constant over the flight enve-
lope. The detailed polynomial fit functions are omitted due
to limited space. Note that the aerodynamic coefficients are
evaluated in the full nonlinear simulation with the tabulated
data. The polynomial fit aerodynamic coefficients are only
used for the quasi-LPV model development.

C. LPV model with real parameter uncertainties

Using the symbolic tool in MATLAB and the function
substitution method, the nonlinear longitudinal model can
be rewritten as ẋ

zp

y

 =

 A(α, V ) Bw(α, V ) Bu(α, V )
Cz(α, V ) Dzw(α, V ) Dzu(α, V )
Cy(α, V ) Dyw(α, V ) Dyu(α, V )

 x
wp

u

 ,

(8)
wp = ∆pzp, (9)

where∆p represents real parameter uncertainties of the aero-
dynamic coefficients. With the assumption that the moment

of inertia (Iyy) uncertainty is 5 percent of nominal value
(45278000Kg m2), the ∆p is

∆p = diag([δCDM
, δCLb

, δCmb
, δCLe

,

δCLq
, δCms

, δCmq
, δCme

, δIyy
)] (10)

Note that the 9 real uncertainty parameters are normalized
such that|∆p| ≤ 1.

For comparison between the linearized model and the
quasi-LPV model, an extreme flight maneuver (shown in
Fig. 1) is simulated for the elevator and thrust input sig-
nals to show which model can best capture the origi-
nal nonlinear model. Time responses for each model are
shown in Fig. 1. Note that the linearized model (LTI) is
obtained using Jacobian linearization around a trim point
(xt ≈ [1.1(deg), 0, 228(m/s), 1.1(deg)], ut ≈
[−2(deg), 1.3(deg), 43000(N)]) at altitude of 7000 m. It is
observed from Fig. 1 that the quasi-LPV model can capture
the nonlinear aspects of the original model better than the
linearized model.

0 20 40 60 80 100
−5

0

5

10

α 
−α

t (d
eg

)

time (sec)
0 20 40 60 80 100

−5

0

5

q 
(d

eg
/s

ec
)

time (sec)

 

 

0 20 40 60 80 100
−150

−100

−50

0

50

V
−V

t (m
/s

ec
)

time (sec)
0 20 40 60 80 100

−20

0

20

40

θ 
−θ

t (d
eg

)

time (sec)

Non−L
LTI
Q−LPV

0 20 40 60 80 100
−4

−2

0

2

 δ
e −

 δ
e t (d

eg
) 

time (sec)
0 20 40 60 80 100

0

1

2

3

4
x 104

 T
 −

 T
t (N

)

time (sec)

Fig. 1. The simulation results of the nonlinear model (Non-L), the quasi-
LPV model (Q-LPV), and the linearized model (LTI)

III. ROBUST LPV FTC CONTROL SYNTHESIS

A. Control Objectives

The control objectives for the transport aircraft are to
obtain good tracking on flight path angle (γ) and velocity
commands in the presence of parameter uncertainties and
an elevator fault. The elevator fault is modeled as zero
controllability in the elevator channel. The elevator and
stabilizer actuator dynamics are modeled as

δe = ρf
37

s + 37
δecmd

, δs = (1− ρf )
0.5

s + 0.5
δscmd

(11)

with the fault parameter (ρf ) which can vary from 0 (failure
case) to 1 (healthy case). Hereδecmd

andδscmd
are actuator

command signals from a control law. The engine is modeled
as the first order transfer function0.5

s+0.5 . The deflection and
rate limits for the elevator and the stabilizer are−23 ≤
δe ≤ 17, |δ̇e| ≤ 37(deg/sec) and−12 ≤ δs ≤ 3, |δ̇s| ≤
0.5(deg/sec) (Refs. [15], [20], [22]). The maximum thrust
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and thrust rate are 167000N and 83500 N/s, respectively.
Actuator models and their limits are included in the nonlinear
simulations. To formulate the control objectives into an
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Fig. 2. The interconnection structure with a controller and weighting
functions.

optimization problem of minimizing the induced-L2 norm
of the closed-loop system from commands to tracking errors,
the model matching framework shown in Fig. 2 is used in this
paper. The desired velocity tracking model (TV ) is chosen
as the second order system 0.152

s2+0.3s+0.152 from Ref. [15]
with 0.15 rad/sec as the cut off frequency. The desired
flight path tracking model (Tγ) is chosen as the second
order system ( 0.72

s2+1.4s+0.72 ) having a cut-off frequency of
0.7 rad/sec. The desired transfer functions are defined based
on control designer judgment. The performance weighting
function Wp is chosen as diag([ 50(s/300+1)

s/0.01+1 , 50(s/100+1)
s/0.005+1 ])

to penalize the tracking error at low frequency range (de-
sired tracking within 2% of command) and to be relaxed
at high frequency since unmodeled actuator dynamic un-
certainty is greater than 100% at high frequency. The
unmodeled dynamicsWum [15] of actuators are set as
diag([ 0.01(s/1+1)

s/500+1 , 0.01(s/0.5+1)
s/300+1 , 0.01(s/1+1)

s/500+1 ]) to represent
1% uncertainty at low frequency. The noise levelWnoise

is set as diag([0.05deg, 0.1deg/sec, 0.05m/sec]). The

1/2S S
−1/2

∆um

∆p

zum

z p

umw
w p

noise

cmds

Augmented

Open−loop

K( ρ )

G( ρ )

e

y u

z = w=

d=

Fig. 3. The augmented open-loop with the scaling factor associated with
the uncertainty block∆.

augmented open-loop system is represented by the dashed-
dotted box shown in Fig. 3. The augmented state vectorx
includes longitudinal dynamics states, actuator states, and
weighting function states; the vectorsz andw are associated
with the uncertainty block∆, diag([∆p, ∆um]), the vector
e represents weighted tracking errors, and the vectord repre-
sents noise inputs, flight path angle and velocity commands.
Note that the command signals are treated as disturbance
signals here. The scaling matrixS over the uncertainty block

relating the input and output signals belongs to a setS∆:

S∆ = {S : S > 0, S∆ = ∆S, S ∈ Rn∆×n∆}. (12)

In Fig. 3, the scheduling parameterρ represents angle of
attackα, velocity V , and the fault parameterρf .

B. Linear Matrix Inequality Optimization Formulation

The robust LPV control synthesis problem is stated as
designing an LPV controller with the scaling matrixS to
minimize the inducedL2 norm of the closed-loop system.

min
K,S

γ =
||[zT eT ]T ||2
||[wT dT ]T ||2

. (13)

This problem is a bilinear matrix inequality problem similar
to a D-K iteration problem for a linear system. In this paper,
this problem is solved by an iterative procedure using the
linear matrix inequality (LMI) optimization. The iteration
procedure is as follows:

1) Design an LPV controllerK using a conventional LPV
synthesis method [23], [24], with an assumption thatS =
I, to minimize the induced-L2 norm indexγ over all LMI
constraints evaluated at all grid points. The grid points are set
asV = [110 140 170 200 230] andρf = [0.01 0.3 0.6 1].

2) Combine the designed controllerK and the augmented
open-loop system with all weighting functions, resulting in
the augmented closed-loop system given by[

ẋcl

p

]
=

[
Acl B1cl

B2cl

Ccl D1cl
D2cl

]xcl

w
d

 (14)

where the vectorp is [zT eT ].
3) Calculate a scaling matrixS solving the following LMI

optimization problem. Applying the Kalman-Yakubovich-
Popov lemma (Ref. [25]), the following LMI optimization
is formulated to minimize the induced-L2 norm of the
augmented closed-loop system fromd to e.

min
P, S

γc (15)

subject toM11 PB1cl
+ CT

clS̃D1cl
PB2cl

+ CT
clS̃D1cl

(∗) DT
1cl

S̃D1cl
− S DT

1cl
S̃D2cl

(∗) (∗) DT
2cl

S̃D2cl
− I

 < 0

(16)
where

S̃ =
[
S 0
0 γcIne×ne

]
(17)

and M11 = AT
clP + PAcl + Ṗ + CT

clS̃Ccl. The notation
(∗) denotes the symmetric component of the LMI constraint.
Note that the LMI constraint in Eq. (16) can be derived from
the candidate quadratic Lyapunov functionV = xT Px and
||e||2 < γc||d||2.

4) The calculated scaling matrixS is integrated with the
augmented open-loop in Fig. 3. A new LPV controllerK
is calculated based on the new augmented open-loop shown
in dashed-dotted line in Fig. 3 to minimize an induced-L2



5

norm of the closed-loop system using the conventional LPV
synthesis method.

5) Iterate steps 1-4 until optimal solutionγ value is
converged or the designed controller provides satisfactory
performance.

This iterative procedure does not guarantee convergence.
Also note that this procedure may not find global solutions
for K andS. Using the iteration procedure, three LPV con-
trollers are designed. 1) A nominal, no actuator failure, LPV
controller (KLPVh

), robust to the real parameter uncertainty,
is designed to minimize the performance index (induced-L2

norm). It is used as a baseline for comparison in case of
an actuator failure. 2) A passive LPV FTC law (KLPVp) is
constructed in the presence of the elevator fault. 3) An active
LPV FTC law (KLPVa

) is designed in the presence of the
elevator fault with the assumption that the fault is accurately
estimated on-line. For the healthy condition, elevator and
thrust are used to control the longitudinal motion of the
aircraft, while the stabilizer is used only as a trimming
device.

To design a passive LPV-FTC law, elevator failure should
be modeled into an LFT form. The failure parameterρf is
modeled as the upper LFT formFu(M, δρf

), whereM =[
0

√
0.5√

0.5 0.5

]
with |δρf

| ≤ 1. We put the matrixM in the

signal path between the open-loop model and the elevator
actuator in Fig.2 to represent elevator failure as a parameter
uncertainty. In the control design process forKLPVp

, the
real parameter uncertaintyδρf

is appended to the uncertainty
block shown in Fig.3 such that∆ = diag([∆p,∆um, δρf

]).
Note that the elevator failure is treated as a real parameter
uncertainty in designing a passive FTC law.

In an active LPV-FTC law design, the elevator is used
under the healthy condition and the stabilizer is used only
in the presence of the elevator failure. The actuators are
modeled as in Eq.(11) with fault parameterρf . In this case,
ρf is one of the scheduling parameters. For all three LPV
controllers, the minimized inducedL2 norm index γ is
around 2.5. In this example during the iteration process, the
γ values do not change much. After 3 iterations, the iteration
procedure is terminated.

IV. SIMULATION RESULTS

The designed LPV control laws are evaluated in the
nonlinear dynamic simulation with commanded flight path
angle under nominal and faulty conditions. For the faulty
condition, the elevator is stuck at 10 sec. For all simulations,
the flight path angle command is a 3 degree magnitude, 70
second duration pulse beginning at 5 sec. It is observed from
the simulation results shown in Fig. 4 that all controllers
achieve the desired performance under the healthy condition.
Note that the passive FTC law (KLPVp

) uses both the
elevator and the stabilizer even in the nominal case. The
active FTC law, however, uses only the elevator under the
healthy condition.

It is observed from Fig. 5 that the FTC controllersKLPVp

andKLPVa
achieve the desired performance in the presence

of the elevator fault. Note that the closed-loop time responses

for the controllerKLPVh
show that the system is unstable

in the presence of the elevator fault. The design of the
active FTC lawKLPVa

assumed that the fault parameter is
accurately estimated with no time delay. Based on the fault
parameter, the gains in the active FTC law are reconfigured
to use the stabilizer instead of the faulty elevator.
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Fig. 4. The simulation results with the control laws under a healthy
condition.
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Fig. 5. The simulation results under the faulty condition: the stuck elevator
at 10 sec.

Although not explicitly considered in the design process,
the effect of time delays in the fault detection algorithm can
be examined in the nonlinear simulation. The fault detection
time is defined as the time interval to detect a fault after fault
occurrence. In this example, the fault detection times are
assumed to be 1 sec, 5 sec, 10 sec and 20 sec, respectively.
For example, 5 sec fault detection time means that when the
elevator is stuck at 10 sec, the fault parameter is estimated
at 15 sec. It is observed from Fig. 6 that the system remains
stable for 1 sec and 5 sec fault detection time cases. For the
10 sec and 20 sec detection time cases, the system is unstable
since the disturbance caused by the stuck elevator makes
the system unrecoverable. It is observed from the stabilizer
time responses that the stabilizer deflection rate is already
saturated when the fault is detected and the controller gains
recalculated. It is too late to stabilize the system using the
stabilizer with its rate limit of 0.5 deg/sec. For this single
actuator failure case, non-zero controllability condition for
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Fig. 6. The simulation results with fault detection time: 1 sec, 5 sec, 10
sec and 20 sec

the active FTC law is not satisfied for the short time interval.
Thus to reiterate, calculating a reliable fault detection time
limit for stability and performance is still an open problem
due to nonlinearity and complexity of the integrated system
as well as the fault condition itself with the limited control
authorities. Calculating a reliable fault detection time limit
will be a future research topic.

V. CONCLUSION

Robust-gain scheduled control concepts have been applied
to design passive and active fault tolerant control laws for a
transport aircraft. In order to use the LPV synthesis method,
the nonlinear model of the longitudinal aircraft dynamics is
converted into a quasi-LPV form. In the LPV representation
procedure, the tabulated aerodynamic coefficients are fit as
polynomial functions of angle of attack and velocity. The
fitting errors are integrated into the real parameter model
uncertainties. The passive and active FTC laws, designed
based on the quasi-LPV model, achieve the desired perfor-
mance level in the presence of the prescribed elevator fault.
In this example, the “pros” and “cons” of each FTC law
are compared via nonlinear simulations. For the active FTC
controlled system for the elevator failure, the controllability
condition is not satisfied for the fault detection time delay
(t ≥ 10 sec). It makes the system unstable due to the limited
control authority. For the passive FTC law, the controller uses
both the elevator and the stabilizer for control even healthy
condition.

REFERENCES

[1] Belcastro, C., Khong, T., Shin, J-Y, Balas, G., Kwatny, H., and Chang,
B., “Uncertainty Modeling for Robustness Analysis of Control Upset
Prevention and Recovery Systems,” inAIAA Guidance, Navigation
and Control Conference, AIAA 2005-6427, AIAA, 2005.

[2] Shin, J-Y., N.E. Eva, and Belcastro, C., “Adaptive Linear Parameter
Varying Control Synthesis for Actuator Failure,”Journal of Guidance,
Control, and Dynamics, Vol. 27, Sept.-Oct. 2004, pp. 787–794.

[3] Belcastro, C. and Chang, B-C., “Uncertainty Modeling for Robustness
Analysis of Failure Detection and Accommodation Systems,” inIEEE
American Control Conference, Vol. 6, American Control Conference,
2002, pp. 4776–4782.

[4] Jordan, T., Langford, W., and Hill, J., “Airborne Subscale Transport
Aircraft Research Testbed- Aircraft Model Development,” inAIAA
Guidance, Navigation and Control Conference, AIAA-2005-6432,
AIAA, 2005.

[5] Bailey, R., Hostetler, R., Barnes K., Belcastro, Celeste, and Belcastro,
Christine, “Experimental Validation: Subscale Aircraft Ground Facil-
ities and Integrated Test Capability,” inAIAA Guidance, Navigation
and Control Conference, AIAA-2005-6433, 2005, AIAA.

[6] Balle,P., Fischera, M., Fussel, D., Nells, O., and Isermann, R., “Inte-
grated Control, Diagnosis and Reconfiguration of a Heat Exchanger,”
IEEE Control Systems Magazine, 1998, pp. 52–63.

[7] Katebi, M. and Grimble, M., “Integrated Control, Guidance and Diag-
nosis for Reconfigurable Autonomous Underwater Vehicle Control,”
International Journal of Systems Science, Vol. 30, No. 9, 1999,
pp. 1021–1032.

[8] Musgrave, J., Guo, T-H., Wong, E., and Duyar, A., “Real-time Ac-
commodation of Actuator Faults on a Reusable Rocket Engine,”IEEE
Transactions Control Systems Technology, No. 1, 1997, pp. 100–109.

[9] Zhang, W. and Jiang, J., “Issues on Integration of Fault Diagnosis And
Reconfigurable Control in Active Fault-Tolerant Control Systems,”
in IFAC Symposium on Fault Detection, Supervision and Safety
for Technical Processed, (Beijing, China), August-September 2006,
pp. 1513–1524.

[10] Shin, J-Y, and Belcastro, C., “Performance Analysis on Fault Tolerant
Control System,”IEEE Transactions on Control Systems Technology,
Vol. 14, No. 5, 2006, pp. 920–925.

[11] Shin, J-Y., Balas, G.J., and Kaya, M.A., “Blending Methodology of
Linear Parameter Varying Control Synthesis of F-16 Aircraft System,”
Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, 2002,
pp. 1040–1048.

[12] Balas, G., Ryan, J., Shin, J-Y., and Garrard, W., “A New Technique
for Design of Controllers for Turbofan Engines,” inAIAA 34th Join
Propulsion Conference, (Cleveland, OH), 1998, pp. 1–6. AIAA-98-
3751.

[13] Kajiwara, H., Apkarian, P., and Gahinet, P., “LPV Techniques for
Control of an Inverted Pendulum,” inIEEE Control Systems, Feb.
1999, pp. 44–54.

[14] Apkarian, P. and Adams, R., “Advanced Gain-Scheduling Techniques
for Uncertain Systems,”IEEE Transactions on Control Systems Tech-
nology, Vol. 6, No. 1, 1998, pp. 21–32.

[15] Ganguli, S., Marcos, A., and Balas, G., “Reconfigurable LPV Control
Design for Boeing 747-100/200 Longitudinal Axis,” inProceedings
of the American Control Conference, (Anchorage, AK), May 2002,
pp. 3612–3617, American Control Conference.

[16] Balas, G., Doyle, J., Glover, K., and Packard, A.,µ Analysis and
Synthesis Toolbox. Natick, MA: The Mathworks, Inc., 1995.

[17] Shin, J-Y., “Quasi-Linear Parameter Varying Representation of Gen-
eral Aircraft Dynamics Over A Non-Trim Region,” National Insti-
tute of Aerospace, , Hampton, VA 23666, 2005. NASA/CR-2005-
213926,NIA Report No. 2005-08.

[18] Tan, W., “Applications of Linear Parameter-Varying Control Theory,”
Master’s thesis, Department of Mechanical Engineering, University of
California at Berkeley, 1997.

[19] Shin, J-Y.,Worst-case Analysis and Linear Parameter Varying Control
of Aerospace System. PhD thesis, Department of Aerospace Engineer-
ing and Mechanics, University of Minnesota, 2000.

[20] Marcos, A. and Balas, G., “Linear Parameter Varying Modeling of the
Boeing 747-100/200 Longitudinal Motion,” inAIAA Guidance, Navi-
gation and Control Conference, AIAA-01-4347, American Institute of
Aeronautics and Astronautics, (Montreal, Canada), Aug. 2001.

[21] Szaszi, I., Marcos, A., Balas, G., and Bokor, J., “Linear Parameter-
Varying Detection Filter Design for a Boeing 747-100/200 Aircraft,”
Journal of Guidance, Control, and Dynamics, Vol. 28, No. 3, 2005,
pp. 461–470.

[22] Shin, J-Y., Belcastro, C., and Khong, T., “Closed-Loop Evaluation of
An Integrated Failure Identification And Fault Tolerant Control System
for A Transport Aircraft,” inAIAA Guidance, Navigation and Control
Conference, AIAA-2006-6310, (Keystone, CO), 2006, AIAA.

[23] Becker, G.,Quadratic Stability and Performance of Linear Parameter
Dependent Systems. PhD thesis, Department of Engineering, Univer-
sity of California, Berkeley, 1993.

[24] Wu, F., Control of Linear Parameter Varying Systems. PhD thesis,
Department of Mechanical Engineering, University of California,
Berkeley, 1995.

[25] Dullerud, G. and Paganini, F.,A Course in Robust Control Theory, A
Convex Approach. Berlin: Applied Mathematics, Springer, 2000. Ch.
7.


