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Decomposition of a Fixed-Profile Load Scheduling Method for

Large-Scale Irrigation Channels

Yuping Li, Julien Alende, Michael Cantoni, and Bart De Schutter

Abstract— The problem of fixed-profile load scheduling is
considered for large-scale irrigation channels. Based on the
analysis of the special structure of a channel under decen-
tralised control, a predictive model is built on a pool-by-pool
basis and a decomposition strategy of the scheduling problem is
provided. The decomposition avoids excessive memory require-
ments in building the predictive model of the controlled plant
and solving the formulated optimisation problem.

Index Terms— Fixed-profile load scheduling, {0, 1} lin-
ear programming, large-scale systems, predictive model, con-
strained optimisation, hierarchical control.

I. INTRODUCTION

In large-scale irrigation networks, water is often distributed

via open water channels under the power of gravity (i.e. there

is no pumping). The flow of water through the network is

regulated by automated gates positioned along the channels

[3], [8], [10]. The stretch of a channel between two gates

is commonly called a pool. Water offtake points to farms

and secondary channels are distributed along the pools.1 As

such, an important control objective is setpoint regulation of

the water-levels immediately upstream of each gate, which

enables flow demand at the (often gravity-powered) offtake

points to be met without over-supplying. When the number of

pools to be controlled is large and the gates widely dispersed,

it is natural to employ a decentralised control structure. Fig. 1

shows a side view of a channel under decentralised feedback

control. The flow into pooli, denoted by ui, equals to flow

supplied by the upstream pool, vi−1. Note ui is actually the

control action taken by controller Ci to regulate the water-

level yi to a relevant setpoint ri,
2 in the face of disturbances

associated with variations of the uncontrolled load di.

In practice, channel capacity is limited. This forces farmers

to take water by placing orders. Moreover, the time-delay for

water to travel from the upstream end to the downstream

end of the pool limits the closed-loop bandwidth, which

dampens the performance. Hence, the starting and ending

of offtakes (di) induce transients (i.e. the water-level drops

and rises from setpoint). Such a transient response propagates
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1Typically at the downstream end of pools.
2The water-level setpoints could be an outcome of a Supervisory Supply

Management System [2]; here they are considered known.

to upstream pools as regulators take corrective actions [3],

[6]. Indeed, water-levels are equivalent to setpoints in steady-

state. Hence, the open water channel management objectives

can be expressed in terms of constraints on the water-levels

in each pool: upper bounds avoid water spillage over the

banks of the channel; and lower bounds ensure a minimal

channel capacity to supply water. In load scheduling, a

set of offtakes (requested by farmers) is organised, which

ensures the water-level constraints are satisfied, in the face

of transients associated with load changes. Moreover, from

a farmer’s perspective, a preferable solution would involve

the smallest possible delay between the requested starting

time and the time the load is scheduled. As a result, the

scheduling can be expressed as an optimisation problem

involving minimising the delay of water delivery subject to

constraints.

Indeed, the load scheduling sits on the higher-level of a

two-level control hierarchy. On the lower-level, controllers

are designed to ensure stability, robustness, good setpoint

tracking, and disturbance rejection. The following load

scheduling problem is considered in this paper, in particular,

for large-scale irrigation channels. Given

• a linear controlled plant whose controller rejects distur-

bances associated with load variation,

• linear constraints on the transient response,

• load orders from users,

determine the smallest delay between the time the load is

requested to start and the time it can be scheduled, without

violation of the constraints.3 Note that preserving the profile

of the requested load is a strong constraint on the scheduling

task. Such a constraint corresponds to a specific production

requirement, e.g. constant load over time in gravity-fed

irrigation channels.

In [1], a predictive model of the controlled plant over

a finite horizon is built as a function of the load to be

scheduled. Then the scheduling problem is formulated as a

combinatorial optimisation problem that can be rewritten as a

{0, 1} Linear Programming problem. However, when applied

in load scheduling for large-scale irrigation channels, such

a formulation has several limitations mainly due to compu-

tational issues with the size of the predictive model and the

time to solve the constrained integer optimisation problem.

In this paper, the special structure of an irrigation channel

3It is important to differentiate: – the (transportation) time-delay water
takes to travel from the upstream to the downstream end of a pool, and –
the (delivery) delay between the time an offtake is requested to start and the
time it is scheduled. The first delay is a known characteristic of the system,
the second one is the decision variable of the scheduling problem.



typical slope: 1:10000

−

−
ri+1

ri

vi = ui+1

vi+1 = ui+2

vi−1 = ui ui+1

ui

Ci

Ci+1

di
di+1

di−1

yi+1

yi+1

yi

yi

yi−1

pooli

pooli+1

gatei

gatei−1

gatei+1

Fig. 1. Decentralised control of an open water channel

under decentralised control is studied.4 It is shown that to

overcome the associated computational issues, it is useful

to build the predictive model on a pool-by-pool basis, with

the interconnection between controlled pools as a constraint

in the formulation of the scheduling problem. To decrease

the computing time in solving the optimisation (schedul-

ing) problem, a decomposition strategy is suggested, which

decreases the number of decision variables and constraints.

The resulting solution might be suboptimal compared to the

nominal solution (see [1]) of the load scheduling problem.

The paper is organised as follows. Section II discusses the

fixed-profile load scheduling problem for irrigation channels

as formulated in [1]. By analysing the special structure of a

channel under decentralised control, a decomposition of this

scheduling scheme is suggested in Section III. The solution

obtained via the proposed decomposition is compared to that

obtained via the original formulation in [1] for an example

channel. A brief summary is finally given in Section IV.

II. FIXED-PROFILE LOAD SCHEDULING PROBLEM FOR A

CONTROLLED IRRIGATION CHANNEL

The formulation of the fixed-profile load scheduling prob-

lem is discussed in [1]. The idea is to predict the behaviour

of the controlled channel (composed of N pools) over

a finite horizon as a function of the delays between the

requested offtakes and the scheduled ones. Throughout the

prediction horizon, the water-levels are constrained. Given

a cost function penalising the overall delays, the resulting

formulation is a Nonlinear Integer Programming problem.

Further, identifying that the number of values the delays

can take in a finite horizon is finite, by applying a change

of variables, the problem is formulated as a {0, 1} Linear

Programming problem as follows.

Before
Prediction

Time

li
gi

k k + k−i k + k+i

0

τi di

k + ny − 1

Fig. 2. A requested load and one possible schedule

Let li, see the dashed line in Fig. 2, denote the requested

offtake from pooli. Within the prediction horizon (i.e. from

4In fact, the decomposition strategy proposed in this paper can also be
applied to load scheduling for channels under distributed control [3], [5].

the time slot k to k+ny−1), the profile of li is represented

by l
[k,k+ny−1]
i =

[

0
k
−

i , gi × 1
k
+
i
−k

−

i ,0ny−k
+
i

]T

, where 0
n

represents a vector of n 0’s and 1
n a vector of n 1’s, k+k−i

and k + k+i denote the starting and stopping time of the

requested offtake, respectively, and gi is the magnitude of

the offtake. One possible schedule of the requested offtake,

di, is shown in the figure (see the solid line). In particular,

d
[k,k+ny−1]
i = Jτi l

[k,k+ny−1]
i ,

where τi ∈ N0 is the delivery delay between the starting

time of the requested offtake li and the starting time of the

scheduled offtake di;
5 and J is a ny×ny lower shift matrix,

J =







0 ··· 0

1 0
...

. . .
. . .

0 1 0






.

Note li has ni (= ny−k
+
i −T

max
i ) possible schedules, where

Tmax
i is the maximal duration of the transients in pool1 to

pooli caused by stopping of the offtake di.
6 Indeed, let Mi ∈

R
ny×ni represent all the possible delayed versions of the

requested load, any schedule of li can be represented by

di =
[

J0li|J
1li| . . . |J

ni−1li
]

zi =: Mizi, (1)

where zi is a vector of size ni, with only one element equal

to 1 and the others 0, which corresponds to only one schedule

being selected. For a string of N pools, the offtake-load

scheduling problem is then formulated as

min
zi

N
∑

i=1

hT
i zi

s.t. ŷ[k+1,k+ny] =

N
∑

i=1

fi(zi) (2)

y[k+1,k+ny] ≤ ŷ[k+1,k+ny] ≤ y[k+1,k+ny];
ni
∑

m=1

(zi)m = 1,

zi ∈ {0, 1}
ni for i = 1, . . . , N. (3)

5In this paper, scheduling an offtake in advance of its requested time, i.e.
τi < 0, is not considered from the practical perspective.

6This considers the transient propagating to upstream pools under distant-
downstream control as shown in Fig. 1.



In the cost function, hT
i is a weight penalising the delays. The

equality constraint (2) is a process model of the controlled

channel, it predicts the water-levels of the N pools as a linear

function of the decision variables zi,
7 where ŷ[k+1,k+ny] :=

[

ŷ(k+1)

...
ŷ(k+ny)

]

with ŷ(k) =

[

ŷ1(k)

...
ŷN (k)

]

, where ŷi(k) is the

estimate of the water-level yi at time k. Constraint (3)

requires that the ni elements in zi be either 0 or 1.

Such a formulation is an MILP, for which efficient algo-

rithms exist [4]. However, as pointed out in [1], it has several

limitations mainly due to computational issues:

• The size of the predictive model is proportional to

the number of pools and the length of the prediction

horizon.

• The computing time when solving the constrained inte-

ger optimisation problem is polynomial in the number

of decision variable and constraints.

The facts that for offtake-load scheduling the forecast horizon

ny is often large (e.g. in the simulation in [1] ny = 480,

to forecast a scheduling for 80 hours under a practical

consideration) and that the number of pools in a channel

could be above 30 make the previous scheduling strategy

impractical for large-scale irrigation network. To overcome

this, a decomposition strategy is suggested in the next

section, which is based on the analysis of the special structure

of a string of pools under decentralised control.

III. DECOMPOSITION OF THE LOAD SCHEDULING

PROBLEM

For an irrigation channel under decentralised distant-

downstream control, the information exchange between sub-

systems is one-by-one from downstream to upstream (i.e.

vi = ui+1 as shown in Fig. 1). Such a special structure makes

it feasible to schedule load requests from downstream to

upstream in sequence, i.e. first schedule for dN , then dN−1,

..., at last for d1. Hence the scheduling optimisation problem

introduced in Section II can be decomposed. Moreover, in

such a decomposition, the interconnections between subsys-

tems are represented as a function of the already scheduled

load. We can then build a predictive model based on each

controlled pool, which demands much less memory space

than that of a controlled channel [1].

A. Predictive model building for a controlled pool

A simple frequency-domain model of the water-level in

pooli, that is based on mass balance (see [9]) and that

captures the dynamics at low frequencies, is obtained:

yi(s) =
cin,ie

−td,is

s
ui(s)−

cout,i

s
di(s)−

cout,i

s
vi(s),

where cin,i and cout,i are discharge coefficients, functions of

the pool surface area and the gate width; and td,i is the

internal time-delay that the water takes to travel from the

upstream end to the downstream end of a pool. Essentially,

7fi is a linear matrix function.

the decentralised controller Ci is a PI compensator with low-

pass filter [3], [10]:

ui(s) =
κi

φi

(1 + sφi)

s(1 + sρi)
(ri(s)− yi(s)),

in which the integrator is involved for zero steady-state

water-level error in rejection to step load disturbance di,

the low-pass filter ensures no excitement of (unmodelled)

dominant wave dynamics, while the phase-lead term helps

for closed-loop stability. Then a continuous state-space real-

isation of the controlled pool is obtained by using a first-

order Padé approximation to represent the transportation

time-delay td,i:

ẋi(t) = Aixi(t) +Briri(t) +Bdi
di(t) +Api

vi(t)

yi(t) = Cixi(t)

where Ai =









0 cin,i −cin,i 0

0 −2
td,i

4
td,i

0

−κi
ρi

0 0 1

−κi(ρi−φi)

φiρ
2
i

0 0 −1
ρi









, Api
=

[

−cout,i

0
0
0

]

,

Bdi
=

[

−cout,i

0
0
0

]

, Bri =





0
0
κi
ρi

κi(ρi−φi)

φiρ
2
i



, Ci = [ 1 0 0 0 ]. Note

that the interconnection between neighbouring (controlled)

pools can be expressed as vi = ui+1. Indeed, ui can be

expressed by the following state-space form of controller

ẋK
i (t) = AK

i xK
i (t) +Bei(ri(t)− yi(t))

ui(t) = CK
i xK

i (t)

where AK
i =

[

0
κi(ρi−φi)

φiρ
2
i

0 −1
ρi

]

, Bei =
[

κi
ρi

1

]

and CK
i = [ 1 0 ].

To build the predictive model, a discrete-time state-space

model (4-5) is employed. This can be obtained by direct

converting the continuous model through a zero-order hold.

The sampling interval Ts should be of duration small enough

to capture the whole relevant dynamics of the system.

[

xi(k + 1)
yi(k)

]

=

[

Āi B̄ri B̄di
Āpi

C̄i 0 0 0

]









xi(k)
ri(k)
di(k)
vi(k)









(4)

[

xK
i (k + 1)
ui(k)

]

=

[

ĀK
i B̄ei

C̄K
i 0

] [

xK
i (k)

ri(k)− yi(k)

]

(5)

The predictions of the response of a controlled pool over
a finite horizon of ny slots (of duration Ts) (i.e. from the
instant k+1 to the instant k+ny) can be computed as follows,
by writing the dynamic equation of the discrete model (4-5)
recursively as discussed in [7]:

y
[k+1,k+ny ]
i = Γixi(k) + Ωir

[k,k+ny−1]
i +Ψid̃

[k,k+ny−1]
i

+Ψid
[k,k+ny−1]
i +Υiv

[k,k+ny−1]
i for i = 1, . . . , N (6)

v
[k+1,k+ny ]
i = ΓK

i+1x
K
i+1(k) + Πi+1r

[k,k+ny−1]
i+1

−Πi+1y
[k,k+ny−1]
i+1 for i = 1, . . . , N − 1 (7)



where Γi =







C̄iĀi

C̄iĀ
2
i

...
C̄iĀ

ny
i






, ΓK

i+1 =









C̄K
i+1Ā

K
i+1

C̄K
i+1(Ā

K
i+1)

2

...
C̄K

i+1(Ā
K
i+1)

ny









,

Ωi =









C̄iB̄ri

C̄iĀiB̄ri
C̄iB̄ri

...
...

. . .
C̄iĀ

(ny−1)

i
B̄ri

C̄iĀ
(ny−2)

i
B̄ri

··· C̄iB̄ri









,

Ψi =









C̄iB̄di

C̄iĀiB̄di
C̄iB̄di

...
...

. . .
C̄iĀ

(ny−1)

i
B̄di

C̄iĀ
(ny−2)

i
B̄di

··· C̄iB̄di









,

Υi =









C̄iĀpi

C̄iĀiĀpi
C̄iĀpi

...
...

. . .
C̄iĀ

(ny−1)

i
Āpi

C̄iĀ
(ny−2)

i
Āpi

··· C̄iĀpi









, Πi+1 =









C̄K
i+1B̄ei+1

C̄K
i+1Ā

K
i+1B̄ei+1

C̄K
i+1B̄ei+1

...
...

. . .
C̄K

i+1(Ā
K
i+1)

(ny−1)B̄ei+1
C̄K

i+1(Ā
K
i+1)

(ny−2)B̄ei+1
··· C̄K

i+1B̄ei+1









.

Note that in (6) the applied load consists of d̃i, representing

the already scheduled load, and di, representing the load to

be scheduled. It is assumed that a scheduled offtake will be

executed as it is planned, hence the already scheduled loads

influence the scheduling result of the newly requested loads.

In fact, for large-scale irrigation networks, the memory

space gained by building the model on a pool-by-pool basis

is substantial compared with that on a channel basis. In

particular, the transfer function matrix from di to yi is

represented by a block Ψi (see (6)); while the impact on yi
by interaction between controlled pools, i.e. vi, is represented

by a block Υi, which has a similar structure as Ψi. In total,

to represent d := [d1, . . . , dN ]
T

to y := [y1, . . . , yN ]
T

for

N controlled pools, 2N − 1 such blocks are requested. In

contrast, in the predictive model constructed as in [1] for a

channel under decentralised control, such a relationship is

represented by a block-triangular matrix Ψ, which consists

of
N(N+1)

2 such (nonzero) blocks, each with the same size

as Ψi.

To reduce the computational complexity, the subsequent

decomposition scheme further exploits the nature of transient

propagation in the upstream direction under decentralised

distant-downstream control, to arrive at a sequence of smaller

(in the number of decision variables and constraints) prob-

lems that produce a potentially suboptimal solution in the

sense that priority is effectively given to downstream load.

B. Decomposition of the fixed-profile load scheduling prob-

lem

As previously mentioned, in distant-downstream control,

when offtakes start or stop in one pool, a transient devia-

tion of the water-level from the setpoint is expected. The

control action to compensate such an influence causes the

undesirable transient propagating to upstream pools. Hence,

scheduling of offtakes in a pool will affect scheduling results

of requested loads in all the pools upstream of the pool. As

such, when considering scheduling load pool by pool, it is

natural to have a scheduling sequence from dN to d1. So

when scheduling di, assume d1, · · · , di−1 equal to 0. The

idea is to represent the interconnection between two pools

as a function of the already scheduled offtakes in the down-

stream pools. For example, from (7), the interconnection vi−1

is expressed as a function of yi, which is a function of di
(see (6)),8 then from (6), yi−1 can be written as a function of

di by direct substitution of variables. In this way, y1, · · · , yi
are written as a function of di. Then solve for feasible di
such that the upper-bounds and lower-bounds of y1 to yi are

satisfied. Note that such a decomposition gives priority to

offtake requests in the downstream pools.

In summary, based on the process model (6-7), let ỹi and

ṽi−1 represent the predictions of the water-level transients

and the control actions in response to the already scheduled

offtakes in pooli, respectively:

ỹ
[k+1,k+ny]
i := Γixi(k) + Ωir

[k,k+ny−1]
i

+ Ψid̃
[k,k+ny−1]
i , (8)

ṽ
[k+1,k+ny]
i−1 := ΓK

i xK
i (k) + Πi (ri − ỹi)

[k,k+ny−1]
(9)

we can have the decomposition of the offtake load scheduling

as the following algorithm.

1) i← N ; v
[k,k+ny−1]
N ← 0

ny .9

2) Set d1, . . . , di−1 equal to 0
ny ; represent y

[k+1,k+ny]
1

to y
[k+1,k+ny]
i as a function of d

[k,k+ny−1]
i , as given

by the following steps a) to d).

a) From (6) and (8),

y
[k+1,k+ny]
i ← ỹ

[k+1,k+ny]
i +Υiv

[k,k+ny−1]
i

+ Ψid
[k,k+ny−1]
i ; (10)

b) Set j ← i− 1;

c) From (6) and (8) and the assumption that for j =
1, . . . , i− 1, dj = 0

ny ,

y
[k+1,k+ny]
j ← ỹ

[k+1,k+ny]
j +Υjv

[k,k+ny−1]
j ,

where v
[k,k+ny−1]
j ←

[

uj+1(k)

v
[k+1,k+ny−1]

j

]

with

v
[k+1,k+ny]
j ← ṽ

[k+1,k+ny]
j −Πj+1y

[k,k+ny−1]
j+1

+ Πj+1ỹ
[k,k+ny−1]
j+1 .

Note that uj+1(k) can be calculated directly from

the initial state of the system, see (5).

d) j ← j − 1; if j = 0, end; else go to c).

3) Represent y1 to yi as functions of zi, by replacing di
in (10) with Mizi as in (1).

8vi is known: it is a function of the already scheduled d̃i+1.
9Under distant-downstream control, setting a boundary condition of

vN = 0 is indeed possible [3].



4) Find optimal zi satisfying

min
zi

hT
i zi

s.t. for all h = 1, . . . , i

y[k+1,k+ny]
h

≤ y
[k+1,k+ny]
h ≤ y

[k+1,k+ny]
h

ni
∑

m=1

(zi)m = 1

zi ∈ {0, 1}
ni .

If no feasible solution found, d
[k,k+ny−1]
i ← 0

ny .

5)

v
[k,k+ny−1]
i−1 ←

[

ui(k)

v
[k+1,k+ny−1]

i−1

]

; in which

v
[k+1,k+ny]
i−1 ← ṽ

[k+1,k+ny]
i−1 − Πi (yi − ỹi)

[k,k+ny−1]

where (yi − ỹi)
[k,k+ny−1]

←
[

0
(yi−ỹi)

[k+1,k+ny−1]

]

,10

with

(yi − ỹi)
[k+1,k+ny] ← Ψid

[k,k+ny−1]
i +Υiv

[k,k+ny−1]
i

6) i← i− 1; if i = 0, end; else, go to 2).

Note that at time k, the plant output yi(k) and the controller

output ui(k) are represented in the initial states xi(k) and

xK
i (k), which could be an estimation of the states, i.e. x̂i(k)

and x̂K
i (k).

On the one hand, the computational complexity of the

above procedure is light compared with that of the scheduling

scheme proposed in [1], without considering the special

structure of the controlled plant. For example, to schedule

N water demands from N pools (i.e. one demand per pool),

each requested load, li, has ni possible schedules. Hence the

number of decision variables for each demand is ni. For the

scheduling scheme in [1], the number of decision variables is
∑N

i=1 ni; the number of constraints is
∑N

i=1 ni+N×2ny+N

(see the optimisation formulation introduced in Section II);

and there are
∏N

i=1 ni combinations of possible schedules.

While for the above scheduling strategy, the one with the

heaviest computation load is to schedule for lN , i.e. the

load request from the last pool. In such a case the number

of decision variables is nN ; the number of constraints is

nN + N × 2ny + 1; the number of the combinations of all

possible schedules is nN .

On the other hand, the combinational number of the total

possible schedules from the above scheduling method is
∑N

i=1 ni, which is small compared to that of the scheduling

scheme in [1] (i.e.
∏N

i=1 ni). In fact, the above decomposi-

tion of the scheduling problem makes the solution suboptimal

compared to the optimal solution, if any existing, obtained

by the scheduling scheme in [1].

C. Simulation results

The scheduling procedure introduced in Section III-B is

applied in the following case studies.

First, schedule offtake requests from the last two pools

(i.e. Campbells and Schifferlies) of the East Goulburn Main

10From (4), yi(k) = ỹi(k) = C̄ixi(k) and hence (yi − ỹi) (k) = 0.

Pool cin,i cout,i τi
Campbells 0.055 0.036 5 min
Schifferlies 0.017 0.026 6 min

Controller κi φi ρi
1 0.74 71.83 8.52
2 1.19 141.27 16.75

TABLE I

PARAMETERS OF (CONTROLLED) POOLS

(EGM) channel, Victoria, Australia. The parameters of con-

trolled pools are given in Table I. In this case, 3 requested

offtakes in each pool is considered. The notation di,j rep-

resents the j−th offtake happening in pooli. Since all load-

disturbances happening in the same pool are identically mod-

elled, it is relevant to adapt the notation used in the optimisa-

tion formulation in step 4) and step 5) as follow: the overall

load of a pool is noted di =
∑3

j=1 di,j(t); Mi,j and zi,j are

respectively the selection of eligible solution and the {0, 1}
decision variable associated to the requested offtake li,j .

The cost function is chosen as minzi,j
∑3

j=1 [ 1 2 ··· ni,j ] zi,j ,

which minimises the overall delivery delay in a pool.
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Fig. 3. Scheduling of requested offtakes

The sampling time is set to 10 minutes. The prediction

horizon ny = 480 (of 10 minutes), hence a forecast of

80 hours. The possible scheduled delays for each offtake

is restricted to multiples of one hour (i.e. 6 (×10min)). In



the simulation, the system is at steady-state at the begin-

ning of the horizon. Given the already scheduled offtakes

(d̃
[k,k+ny]
1 and d̃

[k,k+ny]
2 shown as in the top window of

Fig. 3 respectively), schedule three requested offtakes per

pool (represented by the dash-dotted line in the figure) such

that the constraints on the water-level of each pool are

satisfied. The requested flow is in the range of 20−30 Ml/day,

which is reasonable considering the pool characteristics. The

lower bound and the upper bound on the water-levels are

fixed, at 9.4 m and 9.7 m for pool1 and 9.5 m and 9.7 m for

pool2, throughout the horizon. The setpoint ri changes from

9.5 m to 9.6 m at 3600 min for pool1 and from 9.56 m to

9.62 m at 1200 min for pool2.11
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Fig. 4. Forecasting of water-levels

Forecasting of the influence of the requested offtakes on

the system dynamic is represented by the dashed line in

Fig. 4. The upper bound and lower bound (constraints) on

the water-levels (y
i

and ȳi) are violated at some time instants

(around 750 min and around 3750 min) in the prediction

horizon. In contrast, under the scheduled offtakes, the dy-

namics of the system is within the water-level constraints

(see solid line in Fig. 4). The scheduling results are shown

by the solid line in Fig. 3. The total time-delay (11 hours) for

the 6 offtakes requests is the same as the scheduling result

in [1].

11For comparison, the simulation scenario is set the same as that in [1].

We then check the case of scheduling for more pools.

In [1], building the predictive model for a channel of 10

(controlled) pools results in a memory problem (on a Pen-

tium4 CPU 2.8GHz, with 512 MB of RAM). By contrast, a

scheduling for 10 pools by the decomposition strategy does

not have such a problem. In this case, the time to build the

model with a prediction of 80 hours is 20 seconds (actually

2 seconds for each controlled pool). In the simulation, the

total computing time when solving the constrained mixed-

integer optimisation problem (scheduling for 3 offtakes per

pool) is 27 seconds, with the most complex sub-problem

(scheduling for offtakes in pool10: 9216 constraints, 105

decision variables) costing 7 seconds for solution.

IV. CONCLUSIONS

The problem of load scheduling for large-scale irrigation

channels is considered. Based on the analysis of the special

structure of open water channels under decentralised control,

a decomposition of the scheduling problem is discussed.

The solution could be suboptimal compared to an optimal

solution, if it exists, to the scheduling problem initially

formulated in [1], without considering the structure of the

irrigation system. However, such a decomposition scheme

avoids computational issues, including memory requirements

and computing time, which is significant for large-scale

system.

Future research can extend to integrating the scheduling

scheme in a receding horizon perspective. Such an extension

may decrease the conservativeness of the sub-optimal solu-

tion by implementing the decomposing scheme of the load

scheduling. Indeed, by receding the prediction horizon, new

offtake requests are involved in the scheduling procedure,

which introduces additional scheduling combinations.
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