
Observer Based Output Feedback Tracking Control of Robot Manipulators

Erkan Zergeroglu and Enver Tatlicioglu

Abstract— In this paper, we developed a new observer based
output feedback (OFB) tracking controller for rigid-link robot
manipulators. Specifically, a model independent variable struc-
ture like observer structure in conjuction with the use of desired
system dynamics in the controller design have been utilized
to remove the link velocity dependency of the controller and
the asymptotic stability of the observer-controller couple is
then guaranteed via Lyapunov based arguments. Simulation
results are included to demonstrate the observer/controller
performance.

I. INTRODUCTION

Nearly all commercially available robot manipulators do

not have link velocity sensors and the ones that have velocity

sensors the sensor outputs are, most of time, contaminated

with noise. Therefore the output feedback tracking control

of robot manipulators, where only link position information

is available, have received considerable interest in robotics

literature over the past years. The existing solutions to the

forementioned problem can be categorized as observer based

[1], [2] and filtered based [3], [4], [5], [6], [7] methods. In

observer based methods either a model based [2], [8] or a

model free observer is used to estimate the velocity signal,

where in filtered based approaches surrogate filters are used

to overcome the need of velocity measurements.

In this paper we present a new model free observer

based output feedback controller, some of the past research

that applied a similar approach are as follows: In [9] a

variable structure output feedback controller was designed

to compensate for the lack of link velocity measurement.

Similarly in [10] a discontinuous controller with a high gain

observer was proposed for the stabilization of a class of

nonlinear systems. Recently a Luenberger like observer with

an extra switching term was proposed in [11] for the output

feedback control of robot manipulators.

In this paper, inspired by the observer structure given in

[17], we propose a new model free observer in conjunction

with a desired robot model based controller formulation

for the output feedback tracking control of robot manipu-

lators. The observer/controller structure proposed achieves

semi-global asymptotic tracking despite the lack of velocity

measurements. Though in its current form the proposed

methodology require the exact knowledge of the system

parameters, with considerably small effort adaptive and

repetitive learning versions of the same observer/controller
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structure can be designed to compensate for the parametric

uncertainty of the robot dynamics.

The paper is organized as follows. In Section II the

dynamical model of the robot manipulator with its properties

used in the analysis and design of the proposed observer-

controller couple are presented while Section III contains

the error system development and problem formulation. In

Section IV the design and stability analysis of the controller

and observer are proposed. In Section V, we demonstrate

the effectiveness of the proposed method through simulation

results obtained from a two link, direct drive planar robot

manipulator. Finally, concluding remarks are presented in

Section VI.

II. ROBOT MODEL

The mathematical model for an n DOF, revolute joint, di-

rect drive robot manipulator is assumed to have the following

form [13]

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + Fdq̇ = τ (1)

where q(t), q̇(t), q̈(t) ∈ R
n denote the link position, velocity,

and acceleration, respectively, M(q) ∈ R
n×n represents the

positive-definite, symmetric inertia matrix, Vm(q, q̇) ∈ R
n×n

represents the centripetal-Coriolis matrix, G(q) ∈ R
n is the

gravitational vector, Fd ∈ R
n×n denotes the constant, diag-

onal, positive-definite viscous friction matrix, and τ(t) ∈ R
n

represents the torque input control vector. In the subsequent

development, we will assume that the left-hand side of (1)

is first-order differentiable.

The dynamic model given by (1) exhibits the following

properties that will be utilized in the subsequent control

development and the associated stability analysis.

Property 1: The inertia matrix can be bounded from

above and below by the following inequalities [13]

m1In ≤ M(q) ≤ m2In (2)

where m1 and m2 are positive constants, and In is the

standard n × n identity matrix. Likewise, the inverse of the

inertia matrix can be bounded as follows [13]

1

m2

In ≤ M−1(q) ≤ 1

m1

In· (3)

Property 2: The inertia and the centripetal-Coriolis matri-

ces satisfy the following relationship [14]

ξT

(

1

2
Ṁ(q) − Vm(q, q̇)

)

ξ = 0 ∀ ξ ∈ R
n (4)

where Ṁ(q) represents the time derivative of the inertia

matrix.
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Property 3: The centripetal-Coriolis matrix satisfies the

following relationship [8]

Vm(q, ν)ξ = Vm(q, ξ)ν ∀ ξ, ν ∈ R
n. (5)

Property 4: The norm of the centripetal-Coriolis and fric-

tion matrices can be upper bounded as follows [13]

‖Vm(q, ξ)‖ ≤ ζc1 ‖ξ‖ , ‖Fd‖ ≤ ζf ∀ ξ ∈ R
n. (6)

where ζc1 and ζf are positive constants.

Property 5: The inertia, centripetal-Coriolis, and gravity

terms in (1) can be upper bounded as follows [15]

‖M(ξ) − M(ν)‖i∞ ≤ ζm1 ‖ξ − ν‖
∥

∥M−1(ξ) − M−1(ν)
∥

∥

i∞
≤ ζm2 ‖ξ − ν‖

‖Vm(ξ, η) − Vm(ν, η)‖i∞ ≤ ζc2 ‖η‖ ‖ξ − ν‖
‖G(ξ) − G(ν)‖ ≤ ζg ‖ξ − ν‖

(7)

∀ ξ, ν, η ∈ R
n, where ζm1, ζm2, ζc2, and ζg ∈ R are positive

bounding constants, and ‖·‖i∞ denotes the induced infinity

norm of a matrix.

The robot dynamics given in (1) can be written in terms

of the desired trajectory in the following manner

Wd = M(qd)q̈d + Vm(qd, q̇d)q̇d + G(qd) + Fdq̇d (8)

where Wd(qd, q̇d, q̈d) ∈ R
n is a function of the desired link

position, velocity, and acceleration vectors, denoted by qd(t),
q̇d(t), q̈d(t) ∈ R

n, respectively.

III. PROBLEM FORMULATION

The control objective is to design a link position tracking

controller for the robot manipulator model given by (1) under

the restrictive constraint that only the link position variable

q(t) is available for control development. We will quantify

the control objective by defining the link position tracking

error e(t) ∈ R
n as follows

e , qd − q (9)

where we assume that qd (t) and its first three time deriva-

tives are bounded functions of time. To account for the

unmeasurable link velocity constraint, we define ˙̂q (t) ∈ R
n

as the observed velocity signal. The corresponding velocity

and position observation error signals ˙̃q (t), q̃ (t) ∈ R
n are

defined as
˙̃q = q̇ − ˙̂q,
q̃ = q − q̂.

(10)

To ease the presentation of the analysis, we will use two

auxiliary variables, filtered tracking error, denoted by r (t) ∈
R

n, and filtered observation error, denoted by s (t) ∈ R
n as

r , ė + αe, and s , ˙̃q + αq̃ (11)

where α ∈ R is a positive control gain. It should be

noted that, from (11), regulating r (t) and s (t) ensures the

regulation of e (t) and q̃ (t), respectively.

IV. OBSERVER-CONTROLLER DESIGN

Based on the subsequent error system development and the

stability analysis we propose the following velocity observer

˙̂q = p + K0q̃ − Kce
ṗ = K1Sgn (q̃) + K2q̃ − αKce

(12)

where p (t) ∈ R
n is an auxiliary variable, Sgn (·) ∈ R

n is

defined as

Sgn (ζ) =
[

sgn (ζ1) sgn (ζ2) ...sgn (ζn)
]T ∀ζ ∈ R

n

(13)

with sgn (·) being the standard signum function, K0, Kc,

K1, K2 ∈ R
n×n are diagonal, positive define gain matrices

and α was defined in (11). It is straightforward to show that

the time derivative of (12) yields

¨̂q = K1Sgn (q̃) + K2q̃ + K0
˙̃q − Kcr (14)

where the definition of r (t) given in (11) has been utilized.

Similarly, assuming that exact knowledge of all the system

parameters are available, the control torque input signal τ (t)
is designed to have the following form

τ = Wd + Kpe + Kcα (qd − q̂) + Kc

(

q̇d − ˙̂q
)

(15)

where the first term, Wd (·), defined in (8) is the desired robot

dynamics, Kp ∈ R
n×n is diagonal positive define control

gain matrix and Kc , α were previously defined. Note that

using the fact that

qd − q̂ = e + q̃ (16)

the control torque input given in (15) can be rewritten in the

following advantageous form

τ = Wd + Kpe + Kcr + Kcs. (17)

A. Observer Analysis

After utilizing (1) and (14), the velocity observation error

dynamics can be obtained as

¨̃q = q̈ − ¨̂q

= N0 − K1Sgn (q̃) − K2q̃ − K0
˙̃q + Kcr

(18)

where the auxiliary term N0 (t) ∈ R
n is defined as

N0 = M−1 (q) {τ − Vm (q, q̇) q̇ − G (q) − Fdq̇} . (19)

After inserting (17) and (8) in (19), we can write N0 (t) in

the following form

N0 = Nd + Nb (20)

where the auxiliary functions Nd (t) ∈ R
n and Nb (t) ∈ R

n

are defined as

Nd (t) , q̈d (21)

and

Nb (t) ,
(

M−1 (q) − M−1 (qd)
)

M (qd) q̈d

+M−1 (q) {Vm (qd, q̇d) q̇d − Vm (q, q̇) q̇
+G (qd) − G (q) + Fd (q̇d − q̇)
+Kpe + Kc (r + s)} .

(22)
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Remark 1: Exploiting the boundedness properties of the

desired trajectory, we can show that Nd (t) and Ṅd (t) are

bounded. Furthermore, as illustrated in Appendix I, after

using (5), (6), (7), and the mean value theorem [19], Nb (t)
can be upper bounded as follows

‖Nb (t)‖ ≤ ρo1 ‖e‖ + ρo2 ‖r‖ + ρo3 ‖r‖2
+ ρo4 ‖s‖ (23)

where ρoi, i = 1, .., 4 are some positive known bounding

functions that depend on the mechanical parameters and the

desired trajectory and ‖·‖ denotes the Euclidean norm.

Taking the time derivative of (11) and inserting (18),

the dynamics for the filtered observation error s (t) can be

obtained as follows

ṡ = Nd +Nb−K1Sgn (q̃)−K2q̃−(K0 − α) ˙̃q+Kcr (24)

and when the observer gains are selected to satisfy

α (K0 − α) = K2 (25)

the expression in (24) can be rearranged to have the following

form

ṡ = Nd + Nb − K1Sgn (q̃) − K2

α
s + Kcr. (26)

Based on the expression in (26), we can state the following

preliminary Lyapunov-like analysis for the observer design.

Specifically, we define the following non negative scalar

function, Vo (t), as follows

V0 =
1

2
sT s + P0 (27)

where the scalar auxiliary function P0 (t) ∈ R is defined as

P0 = ζ0 −
t

∫

t0

w0 (σ) dσ (28)

with the scalar function w0 (t) ∈ R
n and the non-negative

constant ζ0 ∈ R defined as

w0 , sT [Nd − K1Sgn (q̃)]

ζ0 ,
∑n

i=0
K1i |q̃i (0)| − q̃T (0)Nd (0)

(29)

where the subscript i = 1, 2, ..., n denotes the ith element of

the vector or diagonal matrix. Following a similar analysis1

to that of [16], [17], it can be proven that when K1 satisfies

the following sufficient condition

K1i > ‖Ndi (t)‖
∞

+
1

α

∥

∥

∥
Ṅdi (t)

∥

∥

∥

∞

(30)

where the subscript i = 1, 2, ..., n denotes the ith element

of the diagonal matrix and ‖·‖
∞

denotes the L∞ norm, then

P0 (t) of (28) is always non zero, that is P0 (t) ≥ 0 and

V0 (t) is a positive-definite Lyapunov function with respect

to s (t) and
√

P0 (t). After taking the time derivative of (27)

1Though the analysis very similar to that of the one given in the
references, for the completeness of the presentation we have included it
in Appendix II

and substituting (26), time derivative of (28) and (29), we

can obtain

V̇0 = sT

[

−K2

α
s + Kcr + Nb

]

. (31)

The first term in the brackets of (31) will be used for both

damping the unwanted effects of the term Nb (t) in the

composite stability analysis and to ensure the convergence of

the observation error. The second term is designed to cancel

out the interconnection term between the observer/controller

subsystem. At this point, we are ready to proceed to the error

system development.

B. Error System Development

To obtain the dynamics of r (t), we take its time deriva-

tive and premultiply the resulting equation by M (q), and

after utilizing (1) and (9)), and performing some algebraic

manipulation, to obtain

M (q) ṙ = −Vm (q, q̇) r + Ws − τ (32)

where the auxiliary term Ws (t) ∈ R
n is defined as

Ws = M (q) (q̈d + αė)+Vm (q, q̇) (q̇d + αe)+G (q)+Fdq̇.
(33)

After substituting the control law (17) into (32) we obtain

the following closed-loop dynamics for r (t)

M (q) ṙ = −Vm (q, q̇) r + χ − Kcr − Kcs − Kpe (34)

where the disturbance term χ (e, r, t) ∈ R
n is defined as

follows

χ = Ws − Wd (35)

with Wd (·) term was defined in (8).

Remark 2: As illustrated in [13], and also shown in Ap-

pendix I, we can exploit the boundedness properties of the

desired trajectory and the properties of the robot dynamics

in (5), (6), (7), to show that the norm of the variable χ (·)
defined in (35) can be upper bounded as

‖χ (·)‖ ≤ ρ1 (e) ‖e‖ + ρ2 (e) ‖r‖ (36)

where ρ1 (e) ∈ R and ρ2 (e) ∈ R are known positive

bounding functions. The above bound will be exploited to

obtain the stability result presented in the next section.

C. Stability Analysis

The combination of error systems in (26) and (34) yields

the following stability result for the observation error and

the position tracking error.

Theorem 1: The velocity observer in (12) and the control

law in (15) ensure that the closed-loop observer/controller is

semi-globally asymptotically stable in the sense that

‖e (t)‖ ,
∥

∥ ˙̃q (t)
∥

∥ → 0 as t → ∞ (37)

provided that the controller and observer gains are selected to

satisfy (25), (30), and the controller gain Kc and the observer

gain K2 are designed as follows

Kc =
(

1 + ρ2 + knρ2
1

)

In

K2 = α
(

1 + ρo4 + kn

(

ρ2
o1 + ρ2

o2 + ρ2
o3

))

In
(38)
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where ρ1 (e), ρ2 (e) were defined in (36), ρoi, i = 1, 2, 3, 4
were defined in (23) and kn is a nonlinear damping gain

selected to satisfy the following condition

kn >

(

1 +
λ2

λ1

‖z (0)‖2

)

/2 (39)

and z (t) ∈ R
3n+1 defined as follows

z (t) ,
[

sT
√

P0 rT eT
]T

(40)

and the positive bounding constants λ1 ∈ R and λ2 ∈ R are

defined as

λ1 = 1

2
min {1, m1, λmin {Kp}}

λ2 = 1

2
max {1, m2, λmax {Kp}} (41)

Proof: We start our proof by introducing the following

non negative function in the form

V = V0 +
1

2
rT M (q) r +

1

2
eT Kpe. (42)

From (42) V (t) can be upper and lower bounded as

λ1 ‖x‖2 ≤ λ1 ‖z‖2 ≤ V ≤ λ2 ‖z‖2
(43)

where x (t) ∈ R
3n is defined as

x (t) ,
[

sT rT eT
]T

, (44)

where z (t) was defined in (40) and the positive constants

λ1, λ2 were defined in (41). After differentiating (42) with

respect to time, then substituting (31), (34), and cancelling

common terms results in

V̇ ≤ sT

[

−K2

α
s + Nb

]

+ rT [χ − Kcr] − αλ ‖e‖2
(45)

where Property 2 was utilized and λ ∈ R+ denotes the

minimum eigenvalue of Kp. After applying (23) and (35)

to (45), we can form an upper bound on V̇ (t) as follows

V̇ ≤ −αλ ‖e‖2 − ‖r‖2 − ‖s‖2

+
[

ρo1 ‖e‖ ‖s‖ − knρ2
o1 ‖s‖2

]

+
[

ρo2 ‖r‖ ‖s‖ − knρ2
o2 ‖s‖

2
]

+
[

ρo3 ‖r‖2 ‖s‖ − k2
nρ2

o3 ‖s‖2
]

+
[

ρ1 ‖e‖ ‖r‖ − knρ2
1 ‖r‖

2
]

.

(46)

Completing the squares of the terms in the brackets we obtain

V̇ ≤ −
[

αλ − 1

2kn

]

‖e‖2−
[

1 − 1

4kn

− 1

4kn

‖r‖2

]

‖r‖2−‖s‖2

(47)

which using the definition of x (t) of (44) can be further

upper bounded as follows

V̇ ≤ −
[

1 − 1

2kn

(

1 + ‖x‖2
)

]

‖x‖2
. (48)

The sign of the upper bound of V̇ (t) is determined by the

term in the brackets of (48). This term has to be positive

to ensure the negative semi-definiteness of V̇ (t), that is to

ensure the negative semi definiteness of V̇ (t) we must have

1 − 1

2kn

(

1 + ‖x‖2
)

> 0. (49)

From (43), a sufficient condition on (49) can be obtained as

1 − 1

2kn

(

1 +
V (t)

λ1

)

> 0

and hence at this point the analysis can be reformulated as

V̇ ≤ −β ‖x‖2
provided that 2kn >

(

1 +
V (t)

λ1

)

(50)

where β ∈ R is some positive constant (0 < β ≤ 1). Due

to the negative semi-defineteness of V̇ (t), the maximum

value that V (t) can have is its initial value (i.e., V (0)),
therefore, from (43), a more conservative condition on kn

can be obtained to have the following form

V̇ ≤ −β ‖x‖2
provided that 2kn > 1 +

λ2

λ1

‖z (0)‖2
(51)

that is when kn is selected to satisfy (39), we can ensure

that V (t) in (42) remains bounded therefore z (t) ∈ L∞,

thus e (t), r (t), s (t), P0 (t) ∈ L∞. Following standard

signal chasing arguments we can show that all signal in

the closed loop system are bounded and e (t) and ˙̃q (t) are

uniformly continuous (from the boundedness of their time

derivatives), furthermore after integrating both sides of (51),

it is easy to see that x (t) ∈ L2 and therefore e (t), q̃ (t),
˙̃q (t) ∈ L2. Finally, after utilizing a direct application of

Barbalat’s Lemma [12], we can obtain the result given in

(37) provided that the gain condition of (39) is satisfied.

V. SIMULATION RESULTS

The proposed, observer based OFB controller was sim-

ulated on a two-link, direct-drive, planar robot manipulator

having the following dynamics [18]
[

p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2

] [

q̈1

q̈2

]

+

[

−p3s2q̇2 −p3s2(q̇1 + q̇2)
p3s2q̇1 0

] [

q̇1

q̇2

]

+

[

fd1 0
0 fd2

] [

q̇1

q̇2

]

=

[

τ1

τ2

]

(52)

where p1 = 3.473[kg-m2], p2 = 0.193 [kg-m2], p3 =
0.242 [kg-m2], fd1 = 5.3 [Nm-sec], fd2 = 1.1 [Nm-sec],

c2 , cos(q2) and s2 , sin(q2).
The simulations were performed using the following de-

sired position trajectory

qd(t) =

[

57.30 sin(t)
(

1 − exp
(

−0.3t3
))

45.84 sin(t)
(

1 − exp
(

−0.3t3
))

]

[deg] (53)

where the exponential term was included to ensure that

q̇d(0) = q̈d(0) =
...
q d(0) = 02×1 and the observer/controller

gains were selected as

Ko = diag
{

8 6
}

K1 = diag
{

20 20
}

Kc = diag
{

0.012 0.08
}

Kp = diag
{

60 32
}

α = 1.2
(54)

with the initial link positions selected as q (0) =
[

10 10
]T

deg. The link position tracking error is de-

picted in Figure 1, while the control torque is shown in

Figure 2. From Figure 1, it is clear that the position tracking

objective was met.
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Fig. 1. Link Tracking Errors
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Fig. 2. Control Torque Inputs

VI. CONCLUSION

In this paper, we have presented a new observer based

output feedback tracking controller for robot manipulators. A

novel observer-controller couple was introduced that ensures

semi-globally asymptotic the tracking despite the lack of link

velocity measurements. Simulation results are presented to

illustrate the tracking performance of the observer-controller

couple. Future work will focus on extending the proposed

result to adaptive and learning output feedback controllers

for robot manipulators.
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APPENDIX I

PROOF OF BOUNDS

In this appendix, we illustrate how the upper bounds of

Nb (t) in (23) and χ (t) in (36) are obtained. We start with

exploting the expression given in (22), which can be rewritten

in the following form

Nb =
(

M−1 (q) − M−1 (qd)
)

M (qd) q̈d

+M−1 (q) {Vm (qd, q̇d) q̇d − Vm (q, q̇d) q̇d}
+M−1 (q) {2Vm (q, ė) q̇d − Vm (q, ė) ė}
+M−1 (q) {G (qd) − G (q) + Fd (q̇d − q̇)}
+M−1 (q) {Kpe + Kcr + Kcs}

(55)

where (5) was utilized. After applying (3), (6), and (7), we

can obtain an upper bound for the right-hand-side of (55) as

‖Nb (t)‖ ≤ 1

m1

{ζm1m1m2 ‖q̈d‖ + ζc2 ‖q̇d‖ (56)

+λmax {Kp} + ζg} ‖e‖

+
1

m1

{2ζc1 ‖q̇d‖ + ζf + λmax {Kc}} ‖r‖

+
1

m1

ζc1 ‖r‖2
+

1

m1

λmax {Kc} ‖s‖

where the fact that ‖r (t)‖ ≥ ‖ė (t)‖ was utilized. From the

structure of (57), it is clear that the bounding functions in
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(57) are valid and ρoi, i = 1, 2, 3, 4 are defined as

ρ01 , ζm1m2 ‖q̈d‖ +
1

m1

ζc2 ‖q̇d‖ (57)

+
1

m1

λmax {Kp} +
1

m1

ζg,

ρ02 ,
2

m1

ζc1 ‖q̇d‖ +
1

m1

ζf +
1

m1

λmax {Kc} ,

ρ03 ,
1

m1

ζc1,

ρ04 ,
1

m1

λmax {Kc} .

For (36), we start with the previously found bound on the

same term [13] (see Chapter 6 Eq: 6.2-9) as

‖χ‖ ≤ ζ1 ‖e‖ + ζ2 ‖e‖2
+ ζ3 ‖r‖ + ζ4 ‖r‖ ‖e‖ (58)

where ζi, i = 1, 2, 3, 4 are positive bounding constants that

depend on the desired trajectory and physical parameters

(i.e., link mass, link length, friction coefficients, etc.). The

right-hand-side of the expression in (58) can be rewritten in

the following form

‖χ‖ ≤ (ζ1 + ζ2 ‖e‖) ‖e‖ + (ζ3 + ζ4 ‖e‖) ‖r‖ . (59)

When the bounding functions ρ1 (e) and ρ2 (e) are selected

as

ρ1 (e) = ζ1 + ζ2 ‖e‖ (60)

ρ2 (e) = ζ3 + ζ4 ‖e‖

then the bound given in (36) is satisfied.

APPENDIX II

THE GAIN CONDITION OF K1

In this appendix, we will illustrate how the sufficient

condition of (30) is obtained. After substituting the definition

of s (t) in (11) into (29) and then integrating w0 (t) in time,

results in the following expression

∫ t

t0

w0 (σ) dσ =

∫ t

t0

q̃T (σ)α [Nd (σ) (61)

−K1Sgn (q̃ (σ))] dσ

+

∫ t

t0

dq̃T (σ)

dσ
Nd (σ) dσ

−
∫ t

t0

dq̃T (σ)

dσ
K1Sgn (q̃ (σ)) dσ.

After integrating the second integral on the right-hand side

of (61) by parts, the following expression is obtained
∫ t

t0

w0 (σ) dσ =

∫ t

t0

q̃T (σ) α [Nd (σ)

−K1Sgn (q̃ (σ))] dσ + q̃T (σ)Nd (σ)
∣

∣

t

t0

−
∫ t

t0

q̃T (σ)
dNd (σ)

dσ
dσ

−
m

∑

i=1

K1i |q̃i (σ)||tt0

=

∫ t

t0

q̃T (σ) α [Nd (σ)

− 1

α

dNd (σ)

dσ
− K1Sgn (q̃ (σ))

]

dσ

+q̃T (t)Nd (t) − q̃T (t0)Nd (t0)

−
n

∑

i=1

K1i (|q̃i (t)| − |q̃i (t0)|) . (62)

The right-hand side of (62) can be upper-bounded as follows

∫ t

t0

w0 (σ) dσ ≤
∫ t

t0

n
∑

i=1

|q̃i (σ)|α [|Ndi (σ)| (63)

+
1

α

∣

∣

∣

∣

dNdi (σ)

dσ

∣

∣

∣

∣

− K1i

]

dσ

+

n
∑

i=1

|q̃i (t)| (|Ndi (t)| − K1i) + ζ0.

If K1 is chosen to satisfy (30), then it is easy to obtain the

following expression from (63)
∫ t

t0

w0 (σ) dσ ≤ ζ0 (64)

thus; from (28), it can be concluded that P0 (t) is non-

negative.
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