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Model-based Controller Design for a Plastic Film Extrusion Process

Sung-ho Hur, Reza Katebi and Andrew Taylor

Abstract— This paper reports the development and imple-
mentation of a model-based cross-directional controller for
plastic film extrusion and other web-forming processes. The
controller design has a similar structure to that of internal
model control (IMC) with the addition of an observer whose
gain is designed to minimise process and model mis-match.
The observer gain is obtained by solving a multi-objective
optimisation through the application of a genetic algorithm and
simulation results are presented in this paper demonstrating
improvements that can be achieved by the proposed controller
over two existing CD controllers.

I. INTRODUCTION

As with other web forming processes, such as the pa-
permaking and metal-rolling, plastic film extrusion employs
arrays of actuators across a continuously moving web to
control the cross-directional (CD) profiles of key product
properties. In plastic film, the main controlled property is
finished product thickness profile as measured by a scanning
gauge downstream from the actuators as illustrated in Fig.
1. The main stages of the plastic film extrusion process are
extrusion, where a polymer melt is fed into a die; casting,
where the polymer melt is discharged through the die gap
onto a rotating casting drum to form a continuous amorphous
sheet; machine-directional (MD) stretching; cross-directional
(CD) stretching; heat setting; and winding, where finished
product is rolled. The array of actuators is located at the die
gap and the scanning gauge is placed prior to winding, hence
there is a significant time lag between the two as shown in
Fig. 1.

CD control has received a considerable attention in the
control systems community and there have been many pa-
pers published studying various CD controller designs –
see [1] and references therein. In this paper, model-based
CD controller design is presented and applied to a first-
principles model of a plastic film extrusion process. This
model is described in [2] and is used to simulate the plant
throughout this paper. The proposed controller design has
a similar structure to that of the controller reported in [3]
since both are modifications to the internal model control
(IMC), which can be regarded as a dynamic compensator
(Fig. 3). Our controller design requires the solution of a
quadratic programming problem online for optimal steady
state performance. Model-based CD controllers require an
accurate reference model and controller performance can
therefore be improved by minimising the effects of process-
model mismatch and disturbances. Consequently, the pro-
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Fig. 1. Generic web forming process

posed controller design employs an observer in place of the
reference model in order to reduce the effect of process-
model mismatch as well as disturbances.

The observer design is presented in Section II along with
the genetic algorithm [4] that solves the resulting multi-
objective optimisation problem. The dynamic compensator
is discussed in Section III and Section IV illustrates how the
steady state performance is achieved by solving a quadratic
programming problem [3], [5]. The computational struc-
ture of the controller is summarised in Section V, and
the implementation and performance of the controller are
demonstrated in Section VI followed by a conclusion in
Section VII.

II. OBSERVER DESIGN

A model-based controller requires a reference model. One
advantage of the proposed controller design is that for this
reference model there is no need to separate the dynamic re-
sponse from the spatial response unlike the controller design
reported in [3]. Derivation of a model in such a form requires
a system identification process such as the one described
in [1]. Instead, the proposed controller design utilises the
System Identification ToolboxTM7 in MATLAB R©, which is
more widely available, to derive a state space model directly
from the first-principles model [2] used to simulate the plant
throughout this paper. Derivation of the state space model
using subspace method included in the System Identifica-
tion ToolboxTM7 is possible using standard functions and
procedures and thus not discussed in this paper. This state
space model is used to construct an observer which is then
employed as the reference model for the proposed model-
based controller design. Another advantage of the proposed
controller design is that this observer can be designed to
minimise the effects of process-model mismatch and distur-
bances.
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Fig. 2. Proposed controller

The mathematical description of the observer is as follows:

˙̃x(t) = Ax̃(t) + Bu(t) + K(y(t)− ỹ(t))

= (A−KC)x̃(t) + (B−KD)u(t) + Ky(t)

ỹ(t) = Cx̃(t) + Du(t) (1)

where y(t) ∈ Rn and ỹ(t) ∈ Rn denote the plant mea-
surements and model estimates, respectively, and u(t) ∈ Rm

represents the control action. The term involving the observer
gain K should correct the observer estimate continuously
such that ỹ(t) follows y(t) more closely. This consequently
means that the effects of process-model mismatch and dis-
turbances can be reduced by optimising K. Derivation of an
optimal gain K is summarised in this section. Gc(z

−1) and
NL in Fig. 2 are responsible for dynamic compensation and
steady state performance respectively and are discussed in
Section III and Section IV.

A. Observer Gain in Frequency Domain

Assuming that the plant can be represented in the state
space form, process-model mismatch and disturbances may
be described by additional terms d1(t) ∈ Rr and d2(t) ∈ Rn

as follows:

ẋ(t) = Ax(t) + Bu(t) + d1(t)

y(t) = Cx(t) + Du(t) + d2(t) (2)

The vectors d1(t) and d2(t) can represent any unknown input
such as process-model mismatch and disturbances as follows:

d1(t) = ∆Ax(t) + ∆Bu(t) + E1d̃1(t)

d2(t) = ∆Cx(t) + ∆Du(t) + E2d̃2(t) (3)

where E1 and E2 are the distribution matrices and d̃1(t) and
d̃2(t) are the disturbance vectors. ∆A, ∆B, ∆C and ∆D
are the parameter errors or variations that represent process-
model mismatch.

Subtracting ˙̃x(t) in (1) from ẋ(t) in (2), the equation for
the residual r(t) can be derived as follows: [5]

ė(t) = (A−KC)e(t) + d1(t)−Kd2(t)

r(t) = Ce(t) + d2(t) (4)

where

ė(t) = ẋ(t)− ˙̃x(t) (5)

The Laplace transform of (4) is thus

r(s) = C(sI− A + KC)−1d1(s)

+ (I− C(sI− A + KC)−1K)d2(s) (6)

Subsequently, the effects of process-model mismatch and
disturbances can be minimised by minimising the following
performance indices:

J1(K) =
∥∥C(sI− A + KC)−1

∥∥
∞ (7)

J2(K) =
∥∥I− C(sI− A + KC)−1K

∥∥
∞ (8)

where ‖.‖∞ denotes L∞ norm of a LTI model, which is
different from L∞ norm of a vector known as uniform
or maximum norm. By minimising J1(K) and J2(K), the
maximums of the largest singular values of C(sI−A+KC)−1

and I−KC(sI−A + KC)−1, which correspond to the peak
gains of the frequency response, are minimised. Hence, the
effects of process-model mismatch and disturbances reduce.

If enough information is given to determine ∆A, ∆B,
∆C, ∆D, E1 and E2, these matrices can be incorporated
into (6). As a result, the effects of process-model mismatch
and disturbances may be minimised even further resulting in
improved controller performance. However, minimisation of
more performances indices will be required in compensation
– more detailed discussion on incorporating theses matrices
can be found in [5].

The problem has become finding K such that J1(K) and
J2(K) are minimised. However, it is likely that K causes
instability. This can be prevented by parameterising K via
the eigenstructure assignment method [5] summarised in
Section II-B. Furthermore, since more than one performance
index requires to be minimised, it becomes a multi-objective
optimisation problem [4], [5], which may be defined as the
process of simultaneously optimising two or more conflicting
objectives. The genetic algorithm is a popular approach in
multi-objective optimisation and is utilised to solve the multi-
objective optimisation problem in Section II-C.

B. Parameterisation via Eigenstructure Assignment Method

When conducting an optimisation to minimise J1(K) and
J2(K) in (7) and (8), it is important to ensure that the stability
of the observer is always guaranteed, and this leads to more
complex constrained optimisation problem. To guarantee the
stability condition, [5] suggests the use of the eigenstructure
assignment method which parameterises K. The method
has an advantage of allowing the eigenvalues in predefined
regions and is summarised as follows: First it is assumed that
the eigenvalues are always real for the sake of brevity. Since
the observer design problem is the “dual problem” [5] of the
controller design, vi is the ith eigenvector of AT − CT KT

corresponding to the ith eigenvalue λi as follows:

(AT − CT KT )vi = λivi (9)

vi = −(λiI− AT )−1CT wi (10)

where wi = KT vi. In turn, we have two design parameters
wi and λi instead of one design parameter K. These design
parameters still do not guarantee the stability of the observer.



The eigenvalues λi, one of the design parameters, is
generally not required to be placed at a specific point in
the s or z-plane but rather in a predefined region to satisfy
the stability condition. This in turn provides more relaxed
design freedom as follows:

λi ∈ [Li, Ui] (11)

where Li and Ui (i = 1, . . . n) respectively denote the upper
and lower bounds. By defining an equation for the eigenvalue
as

λi = Li + (Ui − Lisin
2(zi)) (12)

zi ∈ R (i = 1, . . . , n) becomes a design parameter instead of
λi. Any zi subsequently guarantees the stability condition.

Finally, the two design parameter vectors W and Z have
been defined and the performance indices in (7) and (8) can
be rewritten as follows:

J1(W,Z) =
∥∥C(sI− A + KC)−1

∥∥
∞ (13)

J2(W,Z) =
∥∥I− C(sI− A + KC)−1K)

∥∥
∞ (14)

where

K = [WV−1]T (15)

Having redefined the multi-objective optimisation problem
as finding Z and W from finding K only, the stability
condition is always guaranteed. Solving the multi-objective
optimisation problem by utilising a genetic algorithm is
described in Section II-C.

C. Multi-objective optimisation

Two most common methods for solving multi-objective
optimisation problems are construction of a single aggregate
objective function (AOF) and utilisation of an evolutionary
algorithm. In this paper, the genetic algorithm, which is a
type of an evolutionary algorithm, is exploited for multi-
objective optimisation. The genetic algorithm is exploited in
conjunction with the method of inequalities and the moving
boundaries algorithm [6]. [5] applied a similar combination
to develop a fault monitoring system for a flight model but it
has never been applied for developing a CD control system
before.

1) Method of Inequalities: The method of inequalities
transforms the problem of the minimisation or maximisation
of the performance indices to the problem of the satisfaction
of a set of inequalities, That is, the problem becomes
searching for a parameter set that satisfies the following
inequalities:

Ji(W,Z) ≤ εi (16)

where εi (i = 1, 2) is the bound on the performance index
Ji(W,Z) chosen by the designer. By restricting or relaxing
the bound εi, the designer can place a different emphasis. If
J∗1 (W,Z) and J∗2 (W,Z) are the minimum values achieved,
the designer should define εi (i = 1, 2) as

J∗i (W,Z) ≤ εi (17)

2) Moving-boundaries Algorithm: To help solving the
design problem presented above, [6] suggests an algorithm
which he calls the moving boundaries algorithm. More
detailed description can be found in [5] and [6].

The performance indices are first normalised as follows:

φi(W,Z) = Ji(W,Z)/εi (18)

In turn, the problem becomes satisfying

φi(W,Z) ≤ 1 (19)

To solve (19), let Pi be the set of parameters that satisfies
the ith performance index

Pi = {(W,Z) : φi(W,Z) ≤ 1} (20)

and P be the set of parameters that satisfies both performance
indices

P =
{

(W,Z) :
2

max
i=1
{φi(W,Z) ≤ 1}

}
(21)

It is now clear that the search for an optimal P can be
achieved by solving the following optimisation problem:

min
{

2
max
i=1
{φi(W,Z)}

}
≤ 1 (22)

In order to solve (22), let Pk be the set of parameters at step
k, and define

Pk
i =

{
(W,Z) : φi(W,Z) ≤ ∆k

}
(23)

where

∆k =
2

max
i=1

{
φi((W,Z)k)

}
(24)

Now, let the problem become finding a new parameter set
(W,Z) that reduces the largest performance index ∆k such
that

∆k+1 ≤ ∆k (25)

The optimisation process terminates either when ∆k is less
than 1 or when ∆k cannot be reduced further. If ∆k cannot
be reduced further and persists being larger than 1, the
appropriate bound should be relaxed. The most difficult part
of this process is the provision of a trial parameter set Pk+1

given Pk. To solve this problem, many methods have been
suggested since [6] introduced this technique, but especially
the incorporation of the genetic algorithm has been proven
to be effective and straightforward [4], [5], and thus is a
popular choice for multi-objective optimisation problems.

3) Multi-objective optimisation via Genetic Algorithm:
This paper assumes that the readers are familiar with the
genetic algorithm. Detailed introduction to the genetic algo-
rithm can be found in many books and papers such as [5]
and [7].

The multi-objective optimisation procedures that utilise
the combination of the method of inequalities, the moving-
boundaries algorithm, and the genetic algorithm for satis-
fying the performance indices are briefly summarised as
follows:
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Fig. 3. Generic IMC Design

Step 1: Generation of Initial Population: The population
is a row vector of length (r×m+ r). First r elements of the
population constitute the row vector Z, and the rest constitute
W ∈ Rr×m.

Step 2: Evaluation: Using (15), a trial value of K can be
found and the fitness functions (18) are evaluated. In turn, a
score is given using (24).

Step 3: Reproduction: Using “ranking”, which is one of
the available options [7], new children are created.

Step 4: Elitism: A certain percentage of individuals in the
current generation with the lowest fitness values are selected
as “elites” and are passed on to form the population for the
next generation.

Step 5: Recombination: Using “scattering” [7], which
is one of the available options, “cross-over” children are
created.

Step 6: Mutation: Mutation children are created by ran-
domly changing the genes of parents’ individuals.

Step 7: Termination Checking: Step 3 to 6 are repeated
until either the stopping criteria, ∆k ≤ 1, has been met or
it cannot be minimised further, in which case εi (i = 1, 2)
should be relaxed.

Finally, having designed an observer that minimises the
effects of process-model mismatch and disturbances, the ob-
server can now be employed as a reference model necessary
for model-based controllers (Figs. 2 and 3). The remaining
stages of the controller design follow.

III. DYNAMIC COMPENSATION
Bump test results can be used to approximate the dynamic

response of the plant as follows:

h(z−1) =
1− α

1− αz−1
z−k (26)

Recall that the proposed controller design benefits from not
having to separate the spatial component from the dynamic
component of the reference model. Although the bump tests
provided the dynamic response of the model, the benefit
claimed is still valid as the spatial component of the model
is still unknown.

The generic IMC design illustrated in Fig. 3 usually
designs Gc(z

−1) as the inverse of the reference model
G̃p(z−1) so that if G̃p(z−1) is equal to Gp(z−1), y(t) is also
equal to s(t). However, G̃p(z−1) is usually non-invertible
and should therefore be factorised into invertible and non-
invertible components first as follows:

G̃p(z−1) = G̃+
p (z−1)G̃−p (z−1) (27)

where the invertible component is given by

G̃+
p (z−1) =

1− α
1− αz−1

(28)

Subsequently, Gc(z
−1) can be designed as the inverse of

G̃+
p (z−1). Furthermore, the effect of process-model mis-

match can be minimised to improve robustness. Since mis-
matches generally occur at the high frequency region of
the frequency response, a low-pass filter Gf (z−1) is usually
added to attenuate the effect of process-model mismatch as
follows:

Gc(z
−1) = [G̃+

p (z−1)]−1Gf (z−1) (29)

where

Gf (z−1) =
1− β

1− βz−1
(30)

Substituting (28) into (29), the equation for the controller is

Gc(z
−1) =

(
1− αz−1

1− α

)(
1− β

1− βz−1

)
(31)

where β is the only tuning parameter for the proposed
controller design apart from those required for conducting
the genetic algorithm optimisation.

The proposed controller design in Fig. 2 has a similar
structure to Fig. 3. Therefore, Gc(z

−1) in Fig. 2 is also given
by (31) but it is further multiplied by the identity matrix of
size n× n since it is a MIMO system.

IV. STEADY STATE PERFORMANCE

Optimal steady state performance can be achieved by
minimising ‖y(t)‖2 = ‖ỹ(t) + r(t)‖2 where ỹ(t) is given
in (1) and ‖.‖2 denotes L2 norm.

In the steady state, ˙̃x(t) in (1) is equal to zero and therefore
the equation becomes

x̃(t) = −A−1Bu(t)− A−1Kr(t) (32)

Substituting (32) into the following

ỹ(t) = Cx̃(t) + Du(t) (33)

and assuming D is a zero matrix, the following can be
derived:

ỹ(t) = −CA−1Bu(t)− CA−1Kr(t) (34)

Since y(t) = ỹ(t) + r(t)

y(t) = −CA−1Bu(t) + (I− CA−1K)r(t) (35)

Hence, optimal steady state performance can be attained
with

uss = arg min
u

∥∥−CA−1Bu(t) + (I− CA−1K)r(t)
∥∥
2

(36)

where u(t) is subject to constraints, such as actuator satura-
tion and bending constraints. Namely, the nonlinear element
(NL) in Fig. 2 continuously produces the control action using
(36). In order to solve the quadratic program required for
(36), “ fmincon” function provided by the System Identifi-
cation ToolboxTM7 was utilised.



V. COMPUTATIONAL STRUCTURE OF THE
CONTROLLER

The proposed controller design can be summarised as
follows (Fig. 2):

1) Derivation of a reference model: Using the System
Identification ToolboxTM7 in MATLAB R©, a reference
model in the state space form is derived.

2) Construction of an observer and derivation of an
optimal observer gain, K: In order to find K to
minimise the effects of process-model mismatch and
disturbances, the genetic algorithm (Section III) is
exploited for the multi-objective optimisation problem.
Moreover, the stability of the observer is guaranteed
by the use of the eigenstructure assignment method
summarised in Section II-B.

3) Dynamic compensation: For dynamic compensation,
the IMC design in employed (Section III). At this
stage, β in (31) is determined.

4) Steady state performance: Online optimisation is con-
ducted to calculate optimal control action uss by
continuously solving (36) (Section IV).

VI. SIMULATION AND IMPLEMENTATION
A. Tuning of the genetic algorithm

In order to execute the genetic algorithm, the Genetic
Algorithm and Direct Search ToolboxTM2 in MATLAB R©was
utilised. The parameters were set as follows: population
size: 20, number of generations: 100, reproduction method:
ranking, elite count: 2 out of 20, cross-over fraction: 14
out of 20, cross-over function: scattering, mutation function:
Gaussian, mutation fraction: 4 out of 20.

B. Simulation Results

A number of simulations have been conducted to demon-
strate how the controller performs, and three of these simu-
lations are depicted in Figs. 4, 5, 6 and 7. These simulations
have been conducted not only for the proposed controller
but also for the industrial controller reported in [2] and [8]
as well as another model-based controller reported in [3]
to provide comparison. Figs. 4, 5 and 6 show the steady
state CD thickness profile measured by the scanning gauge
and the corresponding actuator set-points. Plots with squares
are for the proposed controller and labelled “ Proposed” ;
plots with circles are for the industrial controller and labelled
“Industrial”; and plots with triangles are for the one reported
in [3] and labelled “IMC” since it is also based on the IMC
design. We assumed that the plastic film was divided into 10
lanes [2]. To simulate what happens in real-life, the edges –
the first and last lanes – were not controlled and left open-
loop instead. Therefore, the figures do not show the first
and last lanes. The y-axes represent thickness in percentage
deviation from the mean, and the x-axes denote the CD
position.

The reference model used for the industrial and IMC
controllers is

ỹ(t) = h(z−1)kpGu(t) (37)
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Fig. 4. Simulation 1: Steady state CD thickness profile under normal
operational conditions

which can be found in [8] and has been obtained using
identification experiments similar to those reported in [1].
h(z−1) is given in (26), kp denotes a scalar gain, and G
is the interaction matrix representing the steady state spatial
response.

For the proposed controller design, the System Iden-
tification ToolboxTM7 needs to be utilised to identify a
reference model in the state-space form directly from the
first-principles model, which simulates the plant. However,
(37) has been identified directly from a real plant as opposed
to the first-principles model. Although the first-principles
model has been developed to simulate the plant, a mismatch
between the plant and the first-principles model still exists.
The proposed and existing controllers are all tested by ap-
plication to the first-principles model and it therefore seems
unfair for the existing controllers. To be fair, the reference
model for the proposed controller has been identified from
(37) instead of the first-principles model. If the reference
model is identified from the first-principles model, improved
performance of the proposed controller can be expected. It is
also very important to point out that the industrial controller
has been tuned to work optimally with the plant as opposed
to the first-principles model, which in turn indicates that
improved performance of the industrial controller can also
be expected with improved tuning parameters.

Subsequently, all the controllers have been applied to
the first-principles model and the simulation results are
summarised as follows: In Simulation 1, the proposed con-
troller achieves a significant improvement over the existing
controllers under normal operating conditions as shown in
Fig. 4. Although no disturbances are present, the set-points
are not flat due to the mismatch between the reference
model and the first-principles model. Although, the proposed
controller design aims to minimise this mismatch, it can
not be eliminated completely. Moreover, the reference model
for every controller has been identified from (37) instead of
the first-principles model leading to even larger model-plant
mismatch.

In Simulation 2, there exists persistent (from t = 0)
variation in fast-roll speed. The speed varies randomly within
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Fig. 5. Simulation 2: Steady state CD thickness profile with fast-roll speed
variation from t = 0s; y-axis of upper plot has a different range from those
in Fig. 4 and Fig. 6
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Fig. 6. Simulation 3: Steady state CD thickness profile with mass flow
variation from t = 3000s

±10% of the desired speed. The proposed controller achieves
a significant improvement over the IMC controller and a
slight improvement over the industrial controller.

A polymer melt is fed into the die at a certain mass
flow rate [2]. In Simulation 3, mass flow rate starts to vary
suddenly from 3000s in contrast to Simulation 2, where the
variation occurs from 0s. The purpose of this simulation is
to see how the controller responds to a disturbance appearing
suddenly. Mass flow rate varies randomly within ±10% of
the desired rate. Fig. 6 shows a significant improvement
achieved by the proposed controller over the industrial con-
troller but almost none over the IMC controller. However,
the dynamic response depicted in Fig. 7 indicates that the
proposed controller rejects the distrubance significantly faster
than the IMC controller.

Figs. 4, 5 and 6 depict that all the controllers have similar
steady state actuator set-points. Despite the similar actuator
set-points, the thickness profiles look quite different when
they may be expected to be also similar. This is because
while the set-points of the industrial controller reach the
steady state with no fluctuation at all, the online optimisation,
such as (36), used for the model-based controllers (i.e.,
proposed and IMC controllers) keeps updating the set-points,
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Fig. 7. Simulation 3: Plots from top to bottom: Dynamic response of
industrial controller, IMC controller and proposed controller

thereby keeping improving the thickness profiles even further
with small but continuous changes to the set-points even at
the steady state as shown in Fig. 7.

VII. CONCLUSION

This paper has reported on the development of a new
model-based CD controller design and its application to a
first-principles model. Simulation results, which provided
comparison between the proposed controller and other exist-
ing controllers under different disturbance scenarios, demon-
strated improvements the proposed controller could possibly
achieve over two other existing controllers.
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