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Abstract— A new method for the design of fixed-order Linear
Parameter Varying (LPV) controllers with polytopic representa-
tion for LTI plants is proposed. The stability constraints for the
closed-loop system are presented through a set of Linear Matrix
Inequalities (LMIs). An additional set of LMIs guarantees H∞

performance for the weighted closed-loop sensitivity function.
The method is successfully applied to the problem of controller
design for the rejection of a sinusoidal disturbance with time-
varying frequency.

I. I NTRODUCTION

Disturbance rejection is a practical problem appearing in
many engineering applications. Performance of the system
can be strongly deteriorated by the presence of a disturbance.
The disturbance is often periodic and can be expressed as a
combination of several sinusoidal signals. Typical examples
of systems with periodic disturbances are hard drives ([1]),
optical disk drives ([2]), helicopter rotor blades ([3]) and
active noise control systems ([4]), to name just a few. In
[5] it is pointed out that most periodic disturbance rejection
methods are based on

• use of the internal model principle, and
• use of the “phase-locked” loop structure from commu-

nications systems.

The internal model principle states that asymptotic rejection
of a disturbance is ensured by inserting the disturbance
model into the controller. In the case of a sinusoidal dis-
turbance, this model depends on the sinusoid’s frequency. If
the disturbance frequency varies over time, the disturbance
model changes over time and controller is no longer Linear
Time Invariant, but belongs to the class of Linear Parameter
Varying controllers.

The notion of LPV system in general comes from many
control applications in which the real nonlinear plant is
approximated by a linear system around an operating point.
Then, the well developed control techniques for linear sys-
tems are used to control the nonlinear plant. However,
when the operating point changes considerably the controlled
system’s performance is degraded. In order to achieve good
performance throughout the entire operating region, but still
use linear system techniques, the class of Linear Parameter
Varying systems has been defined ([6], [7]). LPV systems can
be thought of as a weighted combination of linear models,
each valid at a specific operating point. The weightings are a
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function of the operating point which is, in turn, a functionof
certain scheduling parameters. These scheduling parameters
can either be endogenous signals, such as the system’s states
or outputs, or exogenous signals, which cause the dynamics
to change as a function of time according to the trajectories
of these signals. In a similar manner, the class of LPV
controllers can be defined.

In [8] a sinusoidal disturbance rejection approach based
on the internal model principle is developed using Youla-
Kucera parameterization. The internal model is inserted into
the controller directly by adjusting the parameters of the Q
polynomial. The order of designed controller is equal to the
order of the plant model plus the order of Q polynomial,
which is related to the disturbance model. The closed-loop
performance is influenced only through the closed-loop pole
placement and other types of performance cannot be treated
in this framework.

The LPV controller design method developed in [9] guar-
anteesH∞ performance and closed-loop stability for every
permitted value of the disturbance frequency. This method
is based on the LPV gain scheduling technique described in
[10]. The plant model is augmented by the disturbance model
and weighting functions to obtain the generalized plant for
which we can presentH∞ performance and stability con-
straints as a set of LMIs. The main limitation of this approach
is that fixed-order controller design in this framework leads
to the addition of a non-convex rank constraint.

In this paper, we present a method for the design of fixed-
order LPV controllers for LTI plants with guaranteedH∞

performance and stability for all values of scheduling param-
eters from a polytope. The important merit of the proposed
method is that the order of the controller is an input value to
the design process, so the tradeoff between performance and
controller complexity can easily be adjusted. In the paper,
special attention is given to the problem of rejection of a
sinusoidal disturbance with a time-varying frequency.

The rest of this paper is organized as follows. Section 2
describes the main idea of the paper. The LPV controller
parameterization considered in this approach and robust
stability conditions for all fixed values of the scheduling
parameter derived as a set of LMIs are presented in Section
3. In Section 4, LMIs that guaranteeH∞ performance
for all fixed values of scheduling parameter are derived.
The efficiency of the proposed method is presented using
simulation results in Section 5, and conclusions in Section
6.



II. T HE MAIN IDEA

As a starting point for the development of the LPV
controller design method described in this paper, the re-
semblance between parametric uncertainty and scheduling
parameters will be exploited. Nonetheless, it is importantto
bear in mind the fundamental difference between uncertainty
, which is generally constant and unknown, and scheduling
parameters, which are time-varying and measurable. If the
plant model has a parametric uncertainty description, a robust
LTI controller will guarantee performance and stability for
every model from the uncertainty set, i.e. for every allowable
value of the uncertain parameters. On the other hand, if
we are designing an LPV controller for an LTI plant, we
have to ensure performance and stability for every allowable
value of the scheduling parameter. So, for a given parametric
uncertainty/scheduling parameter set and for the same per-
formance constraint, these two very different problems can
be linked through a common mathematical representation.
For this reason, ideas developed in [11] and [12], where a
method forH∞ controller design for systems with polytopic
uncertainty is described, will be adapted for the problem
described here.

In [12], plants with a polytopic uncertainty description are
treated:

G =

(

q
∑

i=1

λiNi

)(

q
∑

i=1

λiMi

)

−1

, (1)

where λi ≥ 0,
∑q

i=1
λi = 1 and q is the number of

the polytope’s vertices. Transfer functionsNi and Mi are
coprime and belong toRH∞, the set of all proper stable
rational transfer functions with a bounded infinity norm.
Controller being designed can be represented asK = XY −1,
with X, Y ∈ RH∞.

As a basis for the characterization of the sought-after
controllers, the following theorem is used.

Theorem 1:[12] The set of all stabilizing controllers for
the polytopic system defined in (1) is given by

{

K = XY −1|MiY + NiX ∈ S , i = 1, . . . , q
}

, (2)

whereS denotes the convex set of all Strictly Positive Real
(SPR) transfer functions.

The main gain that comes from the polytopic representa-
tion of the plant is that by ensuring the stability andH∞

performance for every vertex of the polytope, the same is
guaranteed for every model inside the polytope.

In this paper we consider a SISO LTI plantG given by
its rational transfer function representation:

G = NM−1,

where coprime transfer functionsN andM belong toRH∞.
We will suppose that the scheduling parameter vectorθ, com-
ing for example from the time-varying disturbance model,
belongs to the polytope

θ =

q
∑

i=1

λiθi. (3)

The class of LPV controllers that can be treated by our
approach is characterized by the polytopic representation

X(λ) =

q
∑

i=1

λiXi Y (λ) =

q
∑

i=1

λiYi, (4)

whereXi = X(θi) andYi = Y (θi) belong toRH∞. This
representation covers a wide class of dependencies of the
controller on the scheduling parameters. The following the-
orem parameterizes polytopic LPV controllers stabilizingthe
closed-loop system for every value of scheduling parameter
vectorθ.

Theorem 2:The set of all stabilizing polytopic LPV con-
trollers for the LTI plantG = NM−1 is given by:

K :
{

K = XiY
−1

i for i = 1, . . . , q |Fi ∈ S
}

, (5)

whereFi = MYi + NXi.
Proof: We use the same line of thought from the proof

of Theorem 1 in [12].
Sufficiency:First, from Theorem 1 we can conclude that

the closed-loop system for every vertex controller is stable.
Then, we obtain the convex combination of the transfer
functionsFi as

F (λ) =

q
∑

i=1

λi(MYi + NXi)

= M

(

q
∑

i=1

λiYi

)

+ N

(

q
∑

i=1

λiXi

)

= MY (λ) + NX(λ). (6)

The transfer functionF (λ) is also SPR since the sum of SPR
transfer functions weighted by nonnegative weights is SPR.
Hence, the plant is stabilized by every controller from the
polytopeK(λ) = X(λ)Y −1(λ).

Necessity:Assume that there exists a polytopic LPV
controller stabilizing the LTI plantG given by its vertices
K∗

i = X∗

i (Y ∗

i )−1 that does not satisfyFi ∈ S . However, a
polytope of stable characteristic polynomials with vertices
ci can be constructed from the plantG and the vertex
controllersK∗

i . For such a polynomial polytope it has been
shown [13] that the phase difference between its elements
is less thanπ. So, according to Theorem 2.1 of [14] (for
discrete-time systems, for continuous-time systems Theorem
3.1 of the same paper) there always exists a polynomial or
transfer functiond such thatci/d is SPR fori = 1, . . . , q.
As a result, there exists a transfer function

L = (MY ∗

i + NX∗

i )−1ci/d

such that(MY ∗

i +NX∗

i )L is SPR fori = 1, . . . , q. Note that
L does not depend oni because the numerator of(MY ∗

i +
NX∗

i ) is equal toci and cancels it out in the expression for
L. Finally, the polytopic LPV controller

K(λ) =

(

q
∑

i=1

λiXi

)(

q
∑

i=1

λiYi

)

−1

belongs toK taking Xi = X∗

i L andYi = Y ∗

i L.



III. C ONVEX SET OF STABILIZING LPV CONTROLLERS

Our first goal is to propose the parameterization of LPV
controllers for which the stability of the closed-loop system
is guaranteed for every controller lying in the polytope de-
scribed by (4). To do that, a suitable controller structure must
be chosen. Using the fact that every controller in the polytope
should depend affinely on the scheduling parameters, vertex
controllers can be represented in the form

Xi(θi, z) = x(θi)
T φ(z), Yi(θi, z) = y(θi)

T φ(z), (7)

where x(θi) and y(θi) are the vector of the controller
parameters affine with respect to the scheduling parameters.
A good choice of basis function vectorsφ are orthonormal
basis functions such as Kautz, Laguerre or generalized or-
thonormal functions [15].

The SPRness condition in 5 can be represented as a set of
constraints in the frequency domain:

Re{M(e−jω)Yi(e
−jω) + N(e−jω)Xi(e

−jω)} > 0,

∀ω ∈ [0, ωN ], for i = 1, . . . , q (8)

whereRe(·) represents the real part of a complex number,
and ωN is the Nyquist frequency of the system. To solve
this problem, frequency gridding is necessary. As a result,
constraint violation between the grid frequencies could occur.

The SPR condition in (5) can alternatively be presented us-
ing the KYP lemma. For the discrete-time systems (similarly
for continuous-time systems), the KYP lemma states that the
transfer functionFi(z) = Ci(zI − A)−1B + Di belongs to
S if and only if there exists a matrixPi = PT

i > 0 such
that

[

AT PiA − Pi AT PiB − CT
i

BT PiA − Ci BT PiB − (Di + DT
i )

]

< 0. (9)

If we choose (A, B, Ci, Di) as a controllable canonical
realization ofFi = MYi + NXi, then the controller and the
plant parameters which are in the numerator ofFi appear
only in Ci and Di, so the inequality (9) becomes an LMI
with respect toPi, Ci and Di. Matrices A and B are
the same for all the vertices because of the properties of
controllable canonical form and the fact that denominators
of all transfer functionsFi are the same (where also the fact
that all the transfer functionsXi andYi have the same poles
is used). Unknown controller parameter vectorsx(θi) and
y(θi), which appear in matricesCi and Di, are found as a
feasible point of the LMI constraints.

IV. H∞ PERFORMANCE CONSTRAINTS

For fixed values of the parameterλ, we can discuss
the H∞ performance considering the weighted closed-loop
transfer functions. The motivation for this lies in the above-
mentioned problem of sinusoidal disturbance rejection. If
we take, for example, that the frequency of the sinusoid
is fixed over some period, our aim during that time is to
reject the disturbance, but also not to amplify the noise too
much in other frequencies. To ensure this, we could design
the controller by shaping the frequency response of the

output sensitivity functionS using the performance filterW1.
The output sensitivity functionS is defined as the transfer
function from the output disturbance to the output of the
closed-loop system and is given by the expression

S = (1 + GK)−1 = MY (MY + NX)−1.

The following should be ensured forS:

‖W1S‖∞ =

∥

∥

∥

∥

W1MY

MY + NX

∥

∥

∥

∥

∞

< γ, (10)

where γ is a bound on theH∞ norm of the weighted
output sensitivity function. As we see, the controller param-
eters appear both in the numerator and denominator of the
transfer functionW1S, so the application of Bounded Real
Lemma on the state-space representation of the weighted
sensitivity function would result in a nonconvex problem. To
convexify this performance constraint, the relation between
the Bounded Real Lemma and the Positive Real Lemma can
be employed ([16], [17]).

In [11] it is shown that Inequality (10) is satisfied if and
only if the following stands:

H =
(MY + NX) − γ−1W1MY

(MY + NX) + γ−1W1MY
∈ S . (11)

Therefore, the set of all controllers for which the inequality
‖W1S‖∞ < γ is satisfied is given by

Ks∞ : {K = XY −1|H ∈ S }.

To enable the calculation of the controller parameters the
set Ks∞ will be represented via LMIs. LetH in (11) be
defined as the ratio of two coprime transfer functions

H = Hn/Hd,

whereHn andHd are given by

Hn = (MY + NX) − γ−1W1MY (12)

Hd = (MY + NX) + γ−1W1MY. (13)

Then, the set of all stabilizing controllers that ensure Inequal-
ity (10) is given by:

Ks∞ : {K = XY −1|Hn andHd are CL-SPR},

where CL-SPR stands for Common Lyapunov - SPR. We say
that two transfer functions are CL - SPR if they satisfy the
inequality of KYP lemma with the same Lyapunov matrix
P [11].

Using the fact that transfer functionsHn andHd have the
same denominators, their controllable canonical realizations
can be represented as(A, B, Cn, Dn) and A, B, Cd, Dd,
respectively. Then, the condition that the transfer functions
Hn andHd are CL-SPR is expressed using the following set
of matrix inequalities:

[

AT PA − P AT PB − CT
n

BT PA − Cn BT PB − (Dn + DT
n )

]

< 0, (14)

[

AT PA − P AT PB − CT
d

BT PA − Cd BT PB − (Dd + DT
d )

]

< 0. (15)



As this design approach is for controllers with a polytopic
structure, the LMIs have to be adapted in a similar manner to
the stability constraints. First, for the controller representing
the polytope vertexi, the transfer functionsHni andHdi are
defined by

Hni = (MYi + NXi) − γ−1W1MYi,

Hdi = (MYi + NXi) + γ−1W1MYi.

Their controllable canonical representations will be labeled
as (A, B, Cni, Dni) and(A, B, Cdi, Ddi), respectively, with
A and B the same for all the vertices (similar explanation
as in the case of the stability constraints (9)).

By writing Inequalities (14) and (15) for everyHni and
Hdi we get that theH∞ performance is guaranteed for the
closed-loop system with every polytope vertex controller:
[

AT PiA − Pi AT PiB − CT
ni

BT PiA − Cni BT PiB − (Dni + DT
ni)

]

< 0, (16)

[

AT PiA − Pi AT PiB − CT
di

BT PiA − Cdi BT PiB − (Ddi + DT
di)

]

< 0. (17)

But, if this is satisfied, all the transfer functionsHni and
Hdi are SPR. By taking the convex combination of all the
transfer functionsHni, we get the new SPR transfer function

Hn(λ) =

q
∑

i=1

λiHni =

q
∑

i=1

λi[(MYi+NXi)−γ−1W1MYi],

which can be rewritten as

Hn(λ) = M

q
∑

i=1

λiYi + N

q
∑

i=1

λiXi − γ−1W1M

q
∑

i=1

λiYi.

(18)
This means that for any controller from the polytopeK(λ)
the transfer functionHn(λ) is SPR. In a similar manner, we
can conclude that for the controllerK(λ), the transfer func-
tion Hd(λ) is SPR. Therefore, for any controller belonging
to the polytope (4), theH∞ constraint in (10) is satisfied.

Remark 1: As we can notice, from the fact that the
transfer functionsHni and Hdi are SPR we can obtain
that the transfer functionHi = Hni + Hdi is SPR too.
But, from the expressions forHni and Hdi we get that
Hi = 2(MYi+NXi) is also SPR. Then, according to Section
II, the closed-loop system is stabilized for every controller
from the polytope. It practically means that if we set LMIs
(16) and (17) as design constraints, we don’t need a separate
set of LMIs defined by (9) for stability.

Remark 2:The results can be extended to the case of
an uncertain plant model with polytopic uncertainty. Let the
polytopic plant model be given by

G(η) = N(η)M−1(η),

whereN(η) =
∑p

j=1
ηjNj, M(η) =

∑p

j=1
ηjMj, ηj ≥ 0,

∑p

j=1
ηj = 1, andNj andMj belong toRH∞. If we have

to design an LPV controller, given by (4), for such a system,
we would have to set LMI (9) (or (16) and (17) for both
stability and performance) as a design constraint for every

Fig. 1. Block diagram of the active suspension system

possible combination of vertices of two polytopes, i.e. by
ensuring the SPRness of

Fi,j = MjYi + NjXi

for i = 1, . . . , q and j = 1, . . . , p. It is easy to show,
by taking convex combinations of thesepq LMIs, that the
stability (and performance) of any model from the plant
uncertainty polytope will be guaranteed by application of
any controller from the controller LPV polytope.

Remark 3:All of the results can easily be extended to the
continuous-time case. The only difference is that the LMIs
of the KYP lemma should be expressed for continuous-time
systems.

V. SIMULATION RESULTS

As a test system, the model of the active suspension system
in the Control Systems Department in Grenoble (GIPSA -
lab) was used. A detailed description of the system can be
found in [18]. The proposed method was used to design a
controller capable of rejecting a sinusoidal disturbance with a
time-varying frequency. The disturbance frequency is known
to lie in the interval between45 and105Hz, and the sampling
frequency for both data acquisition and control is set to
800Hz. The block diagram of the active suspension system
is shown in Figure 1.

The sinusoidal disturbancev1(t) can be represented as a
white noisee filtered through the disturbance modelDs. The
transfer functionGd between the disturbance input and the
open-loop system outputyp(t) is called the primary path.
The measured output affected by the measurement noise is
denoted asy(t) and it is fed back to the controller. The
secondary path denotes the transfer functionG between the
output of controlleru(t) and the system output in the open
loop. Both the primary (red line on Figure 2) and the sec-
ondary path (blue line) contain several high-resonant modes
in the disturbance frequency region, as can be observed on
the amplitude Bode diagram of the identified test model.

By the application of the Internal Model Principle (IMP)
the controller is parameterized as a function of the distur-
bance frequency. Note that the denominator of the discrete-
time model (withTs as the sampling period) of the sinusoidal
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Fig. 2. Frequency response of the primary and secondary paths

disturbance with frequencyω is given by

Ds(z, ω) = z2 − 2cos(2πTsω)z + 1.

For a given disturbance frequency interval[ω1, ω2], it can be
rewritten as a linear function of one parameterθ ∈ [θ1, θ2],
with θ1 = −2cos(2πTsω1) and θ2 = −2cos(2πTsω2). So,
θ enters the denominator of the controller affinely. We will
label the controller forθ = θ1 asK1(z) = X1(z)Y −1

1
(z) and

that for θ = θ2 as K2(z) = X2(z)Y −1

2
(z), whereYi(z) =

Yf (z)(z2 + θiz + 1)). Then the stabilizing controller for any
θ ∈ [θ1, θ2] that incorporatesz2 + θz +1 in the denominator
is given by

K(z, λ) = (λX1(z) + (1 − λ)X2(z))

× (λY1(z) + (1 − λ)Y2(z))−1, (19)

whereλ = (θ2 − θ)(θ2 − θ1)
−1.

Due to the “waterbed effect”, we have to allow ampli-
fication at other frequencies to have strong attenuation at
the disturbance frequency and still preserve the stabilityof
the closed-loop system. To guarantee that the noise at other
frequencies won’t be strongly amplified, the performance
constraint‖S‖∞ < 6dB is set using the performance filter
W1 = 0.5. The value of 6dB is a general practical recom-
mendation [19]. For both polytope vertices (for the limiting
frequencies of 45 and 105Hz) two appropriate LMIs are set to
ensure the performance. For defining the constraints Yalmip
[20] is used as a Matlab interface. The chosen semidefinite
programming (SDP) solver is SDPT3 [21].

For the sake of simplicity, the denominators of the transfer
functions X1(z), X2(z), Y1(z) and Y2(z) are set to have
all poles at0.2 (the sensitivity of the design approach to
this choice is not high). The numerators of these transfer
functions, as well as two Lyapunov matricesP1 and P2,
represent the optimization variables in this problem (bearing
in mind thatY1(z) andY2(z) have a fixed partDs(z, θ) for
θ ∈ {θ1, θ2}). The exact problem to be solved is given as
‖W1(z)S(z, θ)‖∞ < γ, for θ ∈ {θ1, θ2} and fixedγ. If our
SDP problem can be solved forγ = 1 it means that the
desired performance level can be obtained. The optimalγ is
the minimal value for which the problem can be solved. To
find the optimalγ, the bisection algorithm is used.
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Fig. 3. Joint sensitivity plot for a fine grid ofθ

As a representative solution to the given problem a 10-th
order controller is chosen. The optimalγ obtained is1.03 (for
the purpose of comparison, for the 6-th order controller the
optimalγ equals1.16, and for the 12-th order one the optimal
γ is 0.95). Solving the problem takes around 5 seconds
per iteration of the bisection algorithm. Figure 3 depicts
superimposed Bode amplitude plots of the transfer function
S for a fine grid of disturbance frequenciesθ between 45 and
105Hz (a grid step of 0.5Hz was used). The upper part of the
graph satisfies the performance constraint. In the lower part
asymptotic rejection in the area of disturbance frequencies
can be observed, which comes from the presence of the
disturbance model in the denominator of the LPV controller.

To illustrate the controller’s performance, simulations were
performed on the plant model. Since the objective of this
paper is controller design for the rejection of a sinusoidal
disturbance with varying but known frequency, estimation
of the disturbance frequency was omitted in the simulation.
Different indirect adaptation schemes applicable to this prob-
lem can be found in the literature ([19]). For the purpose
of simulation, the disturbance frequency was directly fed to
the controller, which corresponds to the situation when it is
possible to measure the disturbance (or a signal correlated
to it) and directly obtain the disturbance frequency.

The initial disturbance frequency was set to 45Hz, and
was then modified every 2 seconds via a step change to
105Hz, 75Hz, 60Hz and 90Hz, in that order. In Figure 4,
the open-loop simulation response to such a disturbance is
represented in red. The blue plot in Figure 5 depicts the
closed-loop response to the same disturbance. Both plots are
shown on the same scale, so the asymptotic rejection can
easily be noticed. For a closer view of the transient after the
disturbance frequency changes, the open-loop and closed-
loop responses from2.0 to 2.1 seconds are superimposed
in Figure 6. The closed-loop transient after each frequency
change is rather short and the peak value is less than in the
open-loop case.

VI. CONCLUSIONS

In this paper a fixed-order LPV controller design method
for LTI plants is described, with a focus on the problem of
rejection of a frequency-varying sinusoidal disturbance.Two
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different sets of LMIs are proposed which ensure stability
of the system for all values of the scheduling parameter (i.e.
the disturbance frequency) and desiredH∞ performance.
Simulations results show that sensitivity function shaping
ensures good performance for fixed values of the scheduling
parameter, and that stability of the closed-loop system is
preserved during the scheduling parameter variations. How-
ever, the method cannot the guarantee of the closed-loop
system stability during fast scheduling parameter variations.
Although this does not pose a practical problem for this
application, from a theoretical point of view it is interesting
to study the global stability of the system. Other issues that
will be addressed in future work are the rejection of multiple
sinusoidal disturbances and uncertainty in the scheduling
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parameter.
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