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Abstract— A new method for the design of fixed-order Linear ~ function of the operating point which is, in turn, a functioh
Parameter Varying (LPV) controllers with polytopic representa-  certain scheduling parameters. These scheduling paresmete
tion for LTI plants is proposed. The stability constraints for the can either be endogenous signals, such as the system's state
closed-loop system are presented through a set of Linear Max . . .
Inequalities (LMIs). An additional set of LMIs guarantees H or outputs, or exogepous S'Q”a'S' Wh'ch cause the ‘?'y”a'T"CS
performance for the weighted closed-loop sensitivity funiion. {0 change as a function of time according to the trajectories
The method is successfully applied to the problem of contréér ~ of these signals. In a similar manner, the class of LPV
design for the rejection of a sinusoidal disturbance with tme-  controllers can be defined.
varying frequency.

In [8] a sinusoidal disturbance rejection approach based
I. INTRODUCTION on the internal model principle is developed using Youla-

Disturbance rejection is a practical problem appearing iKucera parame_terization. The internal model is insertéal in
many engineering applications. Performance of the systeffie controller directly by adjusting the parameters of the Q
can be strongly deteriorated by the presence of a distuenanPolynomial. The order of designed controller is equal to _the
The disturbance is often periodic and can be expressed aS'der of the plant model plus the order of Q polynomial,
combination of several sinusoidal signals. Typical exaspl which is relat.ed. to the disturbance model. The closed-loop
of systems with periodic disturbances are hard drives ’(mperformance is influenced only through the closed-loop pole
optical disk drives ([2]), helicopter rotor blades ([3]) can plac_ement and other types of performance cannot be treated
active noise control systems ([4]), to name just a few. I} this framework.

[5] it is pointed out that most periodic disturbance rej@eti ~ The LPV controller design method developed in [9] guar-

methods are based on anteesH.. performance and closed-loop stability for every
« use of the internal model principle, and permitted value of the disturbance frequency. This method
« use of the “phase-locked” loop structure from commuis based on the LPV gain scheduling technique described in
nications systems. [10]. The plant model is augmented by the disturbance model

The internal model principle states that asymptotic réject an(_j weighting functions to obtain the generalize_o[ plant for
of a disturbance is ensured by inserting the disturban¢#lich we can present/,, performance and stability con-
model into the controller. In the case of a sinusoidal disStraints as a set of LMIs. The main limitation of this appitvac
turbance, this model depends on the sinusoid’s frequefcy.i$ that fixe_d_—order controller design in this fre_lmework lead
the disturbance frequency varies over time, the disturbant0 the addition of a non-convex rank constraint.
model changes over time and controller is no longer Linear | this paper, we present a method for the design of fixed-
Time Invariant, but belongs to the class of Linear Paramet@tder LPV controllers for LTI plants with guaranteddi,.
Varying controllers. performance and stability for all values of scheduling para
The notion of LPV system in general comes from manters from a polytope. The important merit of the proposed
control applications in which the real nonlinear plant ismethod is that the order of the controller is an input value to
approximated by a linear system around an operating poifhe design process, so the tradeoff between performance and
Then, the well developed control techniques for linear sysontroller complexity can easily be adjusted. In the paper,
tems are used to control the nonlinear plant. Howevegpecial attention is given to the problem of rejection of a

when the operating point changes considerably the coatfoll sinysoidal disturbance with a time-varying frequency.
system’s performance is degraded. In order to achieve good

performance throughout the entire operating region, biit st e rest of this paper is organized as follows. Section 2
use linear system techniques, the class of Linear Parame#&scribes the main idea of the paper. The LPV controller
Varying systems has been defined ([6], [7]). LPV systems cdifirameterization considered in this approach and robust
be thought of as a weighted combination of linear models$tability conditions for all fixed values of the scheduling

each valid at a specific operating point. The weightings areRfirameter derived as a set of LMIs are presented in Section
3. In Section 4, LMIs that guarante#l,, performance
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[I. THE MAIN IDEA The class of LPV controllers that can be treated by our
As a starting point for the development of the I_Pvapproach is characterized by the polytopic representation

controller design method described in this paper, the re- a a

semblance between parametric uncertainty and scheduling XN =Y ANXi Y =) AV, (4)
parameters will be exploited. Nonetheless, it is important =1 i=1

bear in mind the fundamental difference between unceytainivhere X; = X (6;) andY; = Y (6;) belong toZ./,,. This

, Which is generally constant and unknown, and schedulingpresentation covers a wide class of dependencies of the
parameters, which are time-varying and measurable. If th@ntroller on the scheduling parameters. The following the
plant model has a parametric uncertainty description, asob orem parameterizes polytopic LPV controllers stabilizihg

LTI controller will guarantee performance and stability fo closed-loop system for every value of scheduling parameter
every model from the uncertainty set, i.e. for every allolgab vectors.

value of the uncertain parameters. On the other hand, if Theorem 2:The set of all stabilizing polytopic LPV con-
we are designing an LPV controller for an LTI plant, wetrollers for the LTI plantG = NM ! is given by:

have to ensure performance and stability for every alloa/abl . ,

value of the scheduling parameter. So, for a given parametri H {K =X;Y; fori=1,....q|F € y} (3
uncertainty/scheduling parameter set and for the same PeRere F, = MY, + NX,.

formance constraint, these two very different problems can  pryof: We use the same line of thought from the proof
be linked through a common mathematical representatiogs Theorem 1 in [12].

For this reason, ideas developed in [11] and [12], where a g iciency:First, from Theorem 1 we can conclude that
method forH controller design for systems with polytopic e cjosed-loop system for every vertex controller is stabl

uncertainty is described, will be adapted for the problemyen we obtain the convex combination of the transfer
described here. functionsF; as
(2

In [12], plants with a polytopic uncertainty descriptiorear

treated: I

q q -1 F(\) = Z)\z‘(MYi—i—NXi)

q q
= M AY | +N Ai X
where \; > 0, >% X\, = 1 and ¢ is the number of (; ) (; )

the polytope’s vertices. Transfer functiod$ and M; are = MY\ +NX(\). (6)

coprime and belong te?Z.7,.,, the set of all proper stable ] . ]
rational transfer functions with a bounded infinity norm.Ne transfer functiod’(}) is also SPR since the sum of SPR

Controller being designed can be represente as XY~ transfer functions weighted by nonnegative weights is SPR.
with X.Y € 24 . Hence, the plant is stabilized by every controller from the

As a basis for the characterization of the sought-aftdtClYtOPEK(A) = XY ). _ _
controllers, the following theorem is used. Necessity: Assume that there exists a polytopic LPV
Theorem 1:[12] The set of all stabilizing controllers for controller stab|I1|2|ng the LTI plant given by its vertices

the polytopic system defined in (1) is given by Ki = X;(Y;")” that does not satisfy; € 7. However, a
polytope of stable characteristic polynomials with vestic
{K:XY*1|MZ-Y+N¢X €S i= 1,...,q}, (2) ¢; can be constructed from the pladt and the vertex
: . ontrollersK . For such a polynomial polytope it has been
where.” denotes thg convex set of all Strictly Positive Rea hown [13] that the phase difference between its elements
(SPR) trar_ISfer _functlonS, . is less thanr. So, according to Theorem 2.1 of [14] (for
The main gain that comes from the polytopic representafiscrete-time systems, for continuous-time systems Tdreor

tion of the plant is that by ensuring the stability afil, 3.1 of the same paper) there always exists a polynomial or
performance for every vertex of the polytope, the same Bansfer functiond such thate, /d is SPR fori — 1,...,q.

guaranteed for every model inside the polytope. As a result, there exists a transfer function
In this paper we consider a SISO LTI pla@t given by

its rational transfer function representation: L=(MY}+NX}) " e;/d

G=NM1, such thaf{ MY;*+N X)L is SPR fori = 1,. .., q. Note that

] ) ) L does not depend ohbecause the numerator 3/ Y;* +
where coprime transfer functioé and/ belong 0% ... N x*) is equal toc; and cancels it out in the expression for

We will suppose that the scheduling parameter vettoom- | Finally, the polytopic LPV controller

ing for example from the time-varying disturbance model, )
q q -
K(\) = <Z /\in'> <Z Aﬂ@')
=1 =1

belongs to the polytope
q
0= \ibi. .
P belongs to.# taking X; = XL andY; = Y,*L. [ |



I1l. CONVEX SET OF STABILIZINGLPV CONTROLLERS  output sensitivity functior$ using the performance filté#/; .

Our first goal is to propose the parameterization of Lp\he output sensitivity funct.ioﬁ; is defined as the transfer
controllers for which the stability of the closed-loop syst function from the output disturbance to the output of the
is guaranteed for every controller lying in the polytope de€'0Sed-loop system and is given by the expression
scribed by (4). To do that, a suitable controller structuresim S=(1+GK)'=MY(MY +NX) "
be chosen. Using the fact that every controller in the pqlgto )
should depend affinely on the scheduling parameters, vertex! h€ following should be ensured fcr.
controllers can be represented in the form Wi MY

<7 (10)

Xi(05,2) = 2(0:)76(2), Yil6:,2) = y(0:) 6(2),  (7) MY + NX o

where v is a bound on theH., norm of the weighted
where x(6;) and y(6;) are the vector of the controller o0t sensitivity function. As we see, the controller para

parameters affine with respect to the scheduling parameteggers appear both in the numerator and denominator of the
A good choice of basis function vectogsare orthonormal onsfer functioniv, S, so the application of Bounded Real
basis functions .such as Kautz, Laguerre or generalized Qlaimma on the state-space representation of the weighted
thonormal functions [175]' ] sensitivity function would result in a nonconvex problern. T
The SPRness condition in 5 can be represented as a seghyexify this performance constraint, the relation betwe
constraints in the frequency domain: the Bounded Real Lemma and the Positive Real Lemma can
i i i i be employed ([16], [17]).
Re{M(e™*)Yi(e™™) + N(e™*) Xi(e™")} > 0, In [11] it is shown that Inequality (10) is satisfied if and
Vw € [0,wn], fori=1,...,q (8) only if the following stands:
where Re(-) represents the real part of a complex number, - (MY + NX) -~y ‘Wi MY & 11
and wy is the Nyquist frequency of the system. To solve T (MY + NX) + 7y 'Wi MY €7 (11)
this problem, frequency gridding is necessary. As a resu
constraint violation between the grid frequencies coultlioc
The SPR condition in (5) can alternatively be presented u
ing the KYP lemma. For the discrete-time systems (similarly He, {K=XY'|Hc.7}.
for continuous-time systems), the KYP lemma states that the
transfer functionF;(z) = C;(2I — A)~'B + D; belongs to
< if and only if there exists a matri¥’, = P7 > 0 such

W1 S]joo =

I*’herefore, the set of all controllers for which the ineqyali
QW1S||oo < ~ is satisfied is given by

To enable the calculation of the controller parameters the
set .7, will be represented via LMIs. Lef{ in (11) be
defined as the ratio of two coprime transfer functions

that
ATPA-P ATP,B - CT ]<o © H=H,/H,,
BTPA-C; B"P,B—(D;+ D) ' where H,, and H, are given by
If we choose (A4, B,C;,D;) as a controllable canonical H, = (MY + NX) -~y "W, MY (12)
realization of F; = MY; + N X;, then the controller and the .
plant parameters which are in the numeratorfpfappear Hy= (MY + NX)+~ WiMY. (13)

only in C; and D;, so the inequality (9) becomes an LMI Then, the set of all stabilizing controllers that ensuregLra-
with respect toP;, C; and D;. Matrices A and B are ity (10) is given by:

the same for all the vertices because of the properties of .
controllable canonical form and the fact that denominators s« : {i = XY |H, and H; are CL-SPR,

of all transfer functiong”; are the same (where also the factyhere CL-SPR stands for Common Lyapunov - SPR. We say
that all the transfer function¥’; andY; have the same poles that two transfer functions are CL - SPR if they satisfy the
is used). Unknown controller parameter vecta(®;) and  inequality of KYP lemma with the same Lyapunov matrix
y(6;), which appear in matrice§; and D;, are found as a p [11].

feasible point of the LMI constraints. Using the fact that transfer functiod, and H, have the
same denominators, their controllable canonical reétinat

) ) can be represented ds4, B,C,,,D,) and A, B,Cy, Dy,

For fixed values of the parametev, we can discuss (ggpectively. Then, the condition that the transfer fuordi

the H,, performance considering the weighted closed—loopfn and I, are CL-SPR is expressed using the following set
transfer functions. The motivation for this lies in the abov 5t matrix inequalities:

mentioned problem of sinusoidal disturbance rejection. If
we take, for example, that the frequency of the sinusoid [

IV. H,, PERFORMANCE CONSTRAINTS

T _ T _ T
is fixed over some period, our aim during that time is to gTﬁ,f_ g BTﬁBﬁsz (?:DT) } <0, (14)
reject the disturbance, but also not to amplify the noise too " " n
much in other frequencies. To ensure this, we could design [ ATPA-P ATPB-CY

the controller by shaping the frequency response of the BTPA-C; BTPB-—(Dgq+ DY) ] <0. (15



As this design approach is for controllers with a polytopic l"'
structure, the LMIs have to be adapted in a similar manner to

the stability constraints. First, for the controller regating Ds
the polytope vertex, the transfer function&,,; andH,, are l”i
defined by
G primary
Hyi = (MY; + NX;) — 4~ 'WiMY, ¢ | path
b(‘(«)u&la.r‘v
pa

Hyi = (MY; + NX;) + 7 'W MY;.
Their controllable canonical representations will be labde /Ti- K ¢

as (A, B,Cy;, D,;) and (A, B, Cy;, Dy;), respectively, with
A and B the same for all the vertices (similar explanation
as in the case of the stability constraints (9)).

By writing Inequalities (14) and (15) for everif,,; and
Hgy; we get that thef ., performance is guaranteed for the
closed-loop system with every polytope vertex controller:

ATPA - P, ATPB-CT,
BTP,A—-C,; BTP,B— (D, + DT,

Fig. 1. Block diagram of the active suspension system

possible combination of vertices of two polytopes, i.e. by
) } <0, (16) ensuring the SPRness of

F,; = M;Y; + N; X,

fori = 1,...,g andj = 1,...,p. It is easy to show,
e . _ by taking convex combinations of thege LMIs, that the
But, if thésp:i SE‘:lt'SfIE.d’ alL the transfer f‘;)r_‘c“‘?'ﬂm fanﬁj h stability (and performance) of any model from the plant
Hg; are - BY taking the convex combination of a _t qmcertainty polytope will be guaranteed by application of
transfer functiondd,,;, we get the new SPR transfer functlonany controller from the controller LPV polytope
a a . Remark 3:All of the results can easily be extended to the

Hy(A) =Y NiHni = Y N[(MY;+NX;)—y 'WiMYi],  continuous-time case. The only difference is that the LMIs

=1 =1 of the KYP lemma should be expressed for continuous-time
which can be rewritten as systems.

[ ATPA— P, ATP,B - CT,

BTPA~Cy BYP.B ~ (Das + DY) ] <0 40

q q q
Ho(\) = MZ)\iYi " NZ/\iXi B 7*1W1MZ)\1-Y1-. V. SIMULATION RESULTS
i=1 i=1 ; As a test system, the model of the active suspension system
_ (18) in the Control Systems Department in Grenoble (GIPSA -
This means that for any controller from the polytofi¢))  |ap) was used. A detailed description of the system can be
the transfer functior,,(\) is SPR. In a similar manner, we t5und in [18]. The proposed method was used to design a
can conclude that for the controlléf(}), the transfer func- controller capable of rejecting a sinusoidal disturbanitk w
tion Hy()) is SPR. Therefore, for any controller belongingime.-varying frequency. The disturbance frequency is kmow
to the polytope (4), thé., constraint in (10) is satisfied. g jie in the interval betweet and105Hz, and the sampling
Remark 1:As we can notice, from the fact that thefrequency for both data acquisition and control is set to
transfer functionsi,; and Hy; are SPR we can obtain ggoHz. The block diagram of the active suspension system
that the transfer functiortd; = H,; + Hg is SPR t00. s shown in Figure 1.
But, from the expressions foff,; and Hy; we get that  The sinusoidal disturbancs (t) can be represented as a
H; = 2(MY;+N X;) is also SPR. Then, according to Sectionyhjte noisee filtered through the disturbance moda}. The
II, the closed-loop system is stabilized for every conéll ransfer functionG,; between the disturbance input and the
from the polytope. It practically means that if we set L’V”Sopen-loop system output,(t) is called the primary path.
(16) and (17) as design constraints, we don't need a separgige measured output affected by the measurement noise is
set of LMIs defined by (9) for stability. denoted ag(t) and it is fed back to the controller. The
Remark 2:The results can be extended to the case Qfocondary path denotes the transfer functibhetween the
an uncertain plant model with polytopic uncertainty. Leg th output of controlleru(¢) and the system output in the open
polytopic plant model be given by loop. Both the primary (red line on Figure 2) and the sec-
G(n) = N(p)M~1(n), pndary path (blue line) contain sgveral high-resonant mode
in the disturbance frequency region, as can be observed on
where N(n) = >>%_ n;Nj, M(n) = >2%_, n;Mj, n; > 0, the amplitude Bode diagram of the identified test model.
Zle n; = 1, andN; and M; belong to%.77. If we have By the application of the Internal Model Principle (IMP)
to design an LPV controller, given by (4), for such a systenthe controller is parameterized as a function of the distur-
we would have to set LMI (9) (or (16) and (17) for bothbance frequency. Note that the denominator of the discrete-
stability and performance) as a design constraint for evetyme model (withT; as the sampling period) of the sinusoidal
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disturbance with frequency is given by As a representative solution to the given problem a 10-th
order controller is chosen. The optimabbtained isl.03 (for
the purpose of comparison, for the 6-th order controller the

For a given disturbance frequency interal, ws], it can be op.timalw equalsl_.16, and for the 12-th order one the optimal
rewritten as a linear function of one paramefet [0;,6,], 7 '5_0'95)_' Solving th? p“?b'em tal_<es aro_und 5 seco_nds
with 6, = —2cos(2nTyw1) and By = —2cos(2rTyws). So, PET iteration of the bisection algorithm. Figure 3 depicts

0 enters the denominator of the controller affinely. We wilSUPerimposed Bode amplitude plots of the transfer function
label the controller foff = 6; ask () = X1(2)Y; () and S for a fine grid of disturbance frequenciébetween 45 and

that for @ = 6, as K»(2) = Xo(2)Y, 1(2), whereY;(z) = 105Hz (agr!d step of 0.5Hz was used). The upper part of the
Y}(2)(22 + 6;z + 1)). Then the stabilizing controller for any graph satisfies the performance constraint. In the lower par

0 c [01,0-] that incorporates? + 6z + 1 in the denominator asymptotic rejection in the area of disturbance frequencie
is given by can be observed, which comes from the presence of the

disturbance model in the denominator of the LPV controller.

K(z,A) = (AX1(2) + (1 — M) Xa(2)) To illustrate the controller's performance, simulatioreres
1 performed on the plant model. Since the objective of this
X (AYi2) + (1= )Y2(2)) 7, (19) paper is controller design for the rejection of a sinusoidal
where\ = (0, — 0)(0y — 6;) L. disturbance with varying but known frequency, estimation
Due to the “waterbed effect”, we have to allow ampli-Of the disturbance frequency was omitted in the simulation.

fication at other frequencies to have strong attenuation Bfferentindirect adaptation schemes applicable to thibp
the disturbance frequency and still preserve the stakility |em can be found in the literature ([19]). For the purpose
the closed-loop system. To guarantee that the noise at otiférsimulation, the disturbance frequency was directly fed t
frequencies won't be strongly amplified, the performancghe controller, which corresponds to the situation whes it i
constraint||S|. < 6dB is set using the performance filter possible to measure the disturbance (or a signal correlated
Wi = 0.5. The value of 6dB is a general practical recomi0 it) and directly obtain the disturbance frequency.
mendation [19]. For both polytope vertices (for the limiin ~ The initial disturbance frequency was set to 45Hz, and
frequencies of 45 and 105Hz) two appropriate LMIs are set fyas then modified every 2 seconds via a step change to
ensure the performance. For defining the constraints Yalm#?)5Hz, 75Hz, 60Hz and 90Hz, in that order. In Figure 4,
[20] is used as a Matlab interface. The chosen semidefinitde open-loop simulation response to such a disturbance is
programming (SDP) solver is SDPT3 [21]. represented in red. The blue plot in Figure 5 depicts the
For the sake of simplicity, the denominators of the transfeflosed-loop response to the same disturbance. Both plets ar
functions X1 (z), X2(z), Y1(z) and Ya(z) are set to have shown on the same scale, so the asymptotic rejection can
all poles at0.2 (the sensitivity of the design approach toeasily be noticed. For a closer view of the transient after th
this choice is not high). The numerators of these transfélisturbance frequency changes, the open-loop and closed-
functions, as well as two Lyapunov matricéy and P, loop responses from.0 to 2.1 seconds are superimposed
represent the optimization variables in this problem (ingar In Figure 6. The closed-loop transient after each frequency
in mind thatY; (z) and Y»(z) have a fixed parD;(z, §) for change is rather short and the peak value is less than in the
6 € {61,602}). The exact problem to be solved is given agpen-loop case.
(IW1(2)S(z,0)]lc0 <, for 8 € {0,062} and fixed~. If our
SDP problem can be solved for = 1 it means that the
desired performance level can be obtained. The optirial In this paper a fixed-order LPV controller design method
the minimal value for which the problem can be solved. Tdor LTI plants is described, with a focus on the problem of
find the optimaly, the bisection algorithm is used. rejection of a frequency-varying sinusoidal disturbariceo

Dy(z,w) = 2* — 2cos(2nTsw)z + 1.

VI. CONCLUSIONS
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different sets of LMIs are proposed which ensure stability
of the system for all values of the scheduling parameter (i.€1]
the disturbance frequency) and desireld, performance.
Simulations results show that sensitivity function shgpin[12]
ensures good performance for fixed values of the scheduling
parameter, and that stability of the closed-loop system '[§3]
preserved during the scheduling parameter variations.-How
ever, the method cannot the guarantee of the closed-loPla]
system stability during fast scheduling parameter vamieti
Although this does not pose a practical problem for this
application, from a theoretical point of view it is intenest

to study the global stability of the system. Other issue$ th<I;115]
will be addressed in future work are the rejection of mugtipl
sinusoidal disturbances and uncertainty in the scheduliftf!

[17]
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