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Maximum Likelihood Estimation of Diffusion and
Convection in Tokamaks using Infinite Domains

Matthijs van Berkel1,2, Gerd Vandersteen3, Hans Zwart1, Dick Hogeweij2, Marco de Baar1,2

Abstract—A new method to identify the spatial dependent
parameters describing the heat transport, i.e. diffusion and
convection, in fusion reactors is presented. These parameters
determine the performance of fusion reactors. The method
is based on local transfer functions, which are defined
between two measurement locations. Estimation of the
local transfer functions results in a model of the spatial
dependent diffusion and convection. The parameters of
the local transfer functions are estimated using Maximum
Likelihood Estimation in the frequency domain. This is
necessary, because both measurements (input and output of
the transfer function) contain noise. Moreover, confidence
bounds and validation tests can be used in this framework.
Finally, experimental results are presented, which show that
the diffusion and convection can be estimated. In this case,
the uncertainty bounds are significant on the convection.

I. INTRODUCTION

In the future, sustainable, clean, and safe power
plants are needed. A possible future energy source
that fulfills these requirements is nuclear fusion, in
which hydrogen isotopes are fused to produce abun-
dant amounts of energy. The most successful nuclear
fusion reactor to date is the tokamak.

A tokamak uses magnetic fields to confine a
plasma (ionized gas). The magnetic field-lines to
which the one-dimensional transport is perpendicular
form a topology of flux-surfaces, which the charged
particles are forced to follow [1]. Therefore, it is
difficult for particles to move from one flux surface
to another. Consequently, the transport of particles
and heat from the center to the wall is limited. Un-
fortunately, this magnetic confinement is not perfect
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due to turbulence inside the plasma, thus limiting the
performance of fusion machines [2], [3].

Experimental evidence suggests that this turbulent
transport is associated with the distribution of the
angular momentum and the current density inside the
plasma [4]. These distributions can be manipulated
(locally) using a number of actuators such as neutral
beam injection, electron current drive [5], [6]. It
is shown that by manipulating these distributions,
the performance of tokamaks can be significantly
increased [7]. However, to study the effect of these
actuators on the thermal transport requires modeling
and estimation of this transport.

Thermal transport can be described as the effective
thermal diffusivity, D (ρ) and the convective velocity,
V (ρ) [8], [9]. These quantities are functions of
the plasma minor radius which is expressed in the
normalized radius ρ [2]. A well established method
to measure the thermal transport is the analysis of
heat pulses in the plasma induced by localized de-
position of modulated power. Their propagation and
their dispersion carry the information to deduce the
profiles: D (ρ) and V (ρ) [8], [10]. These methods,
however, do not take the effect of noise into account
and usually neglect convection.

In this contribution, we will develop an alternative
method to estimate the profiles of D (ρ) and V (ρ).
The merit of this approach is that, contrary to [8],
[10] the new method includes the convection and
takes the noise into account. Non-rational Single-
Input Single-Output (SISO) transfer functions can be
defined between two measurement locations due to
the infinite domain description. Consequently, only
SISO transfer functions that depend on two param-
eters per location need to be estimated. Another
advantage of this local modeling is that disturbances
or non-linearities at other locations are less likely
to influence the estimation. Here, only local transfer
functions are estimated on locations where no source
term is present due to the uncertainty of the source
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term itself.
The noise is taken into account by using Maxi-

mum Likelihood Estimation in the frequency domain
allowing the use of non-rational transfer functions.
As a consequence, the method allows for a system-
atic estimate of the spatial dependent diffusion and
convection including confidence bounds. More im-
portantly, the resulting models can also be validated
or rejected using a number of tests.

This article is structured as follows: Section 2,
describes the heat transport and modeling inside
tokamaks. Also the sensors and the actuator used
are explained. Then, the local transfer functions used
for the identification of the parameters are derived.
In Section 3, the Maximum Likelihood Estimation
scheme is explained. In addition, the optimization
and validation methodologies are discussed. Section
4 shows experimental results including the validation
tests introduced in Section 3. Finally, a number of
conclusions are summarized and discussed.

II. THERMAL TRANSPORT INSIDE TOKAMAKS

In this section, the experimental set-up is described
such as the sensors and microwave source. Then, it
is explained how thermal transport in tokamaks can
be modeled.

A. Excitation and Sensors

A plasma can be locally heated by means of
Electron Cyclotron Resonance Heating (ECRH) (mi-
crowave heating) [2]. The resonance frequency and
the angle of the mechanical steering mirror are used
to position the heat source on the minor radius.
The local ECRH power-density can be modulated to
create heat pulses which perturb the plasma and allow
for the identification of the diffusion and convection.
However, most gyrotrons are limited to block wave
modulation.

The resulting temperature fluctuations are mea-
sured by means of Electron Cyclotron Emission
(ECE). Measuring the fluctuation of intensity in a
small interval of the gyration frequency gives the
temperature perturbation on that location [11]. The
gyration frequency depends on the magnetic field B,
which depends on the radius via B ∼ 1/R. Therefore,
it is possible to measure the temperature at many
locations in the plasma.
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Figure 1. Graphical representation of nested flux surfaces
inside a Tokamak, heat source and measurement channels (left).
Simulation of temperature fluctuations at different measurement
locations due to the heat-source (right).

A graphical depiction of the flux surfaces and tem-
perature fluctuations due to a heat-source is presented
in Fig. 1.

The dominant measurement noise contribution on
ECE is the so-called thermal noise, which originates
from the fact that not all electrons gyrate with the
same frequency but rather have a normal distribution
at the considered flux surface [12]. This also means
that the thermal noise is additive normally distributed
noise and therefore will be modeled as such.

B. Mathematical description

Inside a tokamak different transport mechanisms
determine the heat transport. These consist of elec-
trical, particle, and the thermal transport of both
ions and electrons. The electron heat transport is the
fastest transport and is therefore considered as the
important transport. Moreover, the other quantities
like density and electric fields can be considered
in steady-state ( ∂

∂t
= 0) when only the electron

temperature (Te ) is perturbed by ECRH.
A tokamak has a special magnetic topology of

nested flux surfaces (the ellipsoids in Fig. 1). This
allows the heat-transport to be modeled as a one-
dimensional heat equation in cylindrical coordinates
[9]. In spite of specific toroidal effects, the plasma
can be modeled to sufficient accuracy as a cylinder
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by introducing a dimensionless minor radius ρ

∂Te
∂t

=
1

ρ

∂

∂ρ

(
rD (ρ)

∂Te
∂ρ

+ rV (ρ)Te

)
+Pecrh (ρ, t) . (1)

At the plasma center ρ = 0 and at the last closed flux
surface ρ = 1 (see Fig. 1). Therefore, knowledge
of the magnetic topology is necessary to transform
the absolute radius into the normalized radius. The
ECRH power is denoted by Pecrh; it is locally applied
and modulated in time. In the literature, [8], [10], (1)
is simplified when the heat transport is analyzed in
the intermediate region between center and the wall
of the tokamak. The reason is that in this region the
radial effects are less strong such that transport can be
approximated by a linear heat equation with varying
coefficients

∂Te
∂t

= D (ρ)
∂2Te
∂ρ2

+ V (ρ)
∂Te
∂ρ

+ Pecrh (ρ, t) . (2)

This model forms the basis for our estimation of the
diffusion D (ρ) and convection V (ρ). It is important
to note that the heat equation (2) describes many
other processes in physics as well, such as heat
transfer in solids and fluids [13], [14]. In the next
section transfer functions are derived allowing the
modeling of the diffusion and convection.

III. LOCAL MODEL DESCRIPTION

The spatial dependent diffusion and convection in
equation (2) need to be estimated. Here, an approach
is chosen whereby the coefficients are estimated by
defining a transfer function between two measure-
ment locations. By defining such a transfer function
between all consecutive measurement locations and
estimating the parameters for every transfer function
allows for the reconstruction of D (ρ) and V (ρ). This
modeling has some similarity to methods used in
fusion [8], [10], however, this type of modeling also
includes the estimation of convection. In this section
the derivation of the transfer function is explained.

A. General solution in the Laplace domain

The heat-equation (2) only needs to describe local
domains. Therefore, it is assumed that the parame-
ters are constant between two measurement locations

which are close to each other. Moreover, the heat-
source Pecrh is localized such that almost all domains
do not contain this source term. At the domain(s)
containing the source domain it is difficult to estimate
the parameters as the exact deposition of the heat
source is unknown. Hence, only sourceless domains
will be considered. In addition, the Laplace transform
is applied to (2) resulting in the complex valued
Ordinary Differential Equation (ODE)

sΘ (ρ, s) = D
d2

dρ2
Θ (ρ, s) + V

d

dρ
Θ (ρ, s) , (3)

where s is the Laplace variable and Θ the Laplace
transform of Te [15]. The general solution of (3) is

Θ (ρ, s) = A1 (s) exp (λ1ρ) + A2 (s) exp (λ2ρ)

with λ1,2 =
−V
2D
∓

√(
V

2D

)2

+
s

D
. (4)

The (spatial) constants A1 (s) and A2 (s) are deter-
mined by the choice of the boundary conditions. This
choice and its consequences will be explained next.

B. Infinite domain description
The boundary conditions should be chosen such

that the most local description is achieved. One
boundary condition is chosen to be the temperature
at the spatial location of the measurement point
ρi, i.e. one of the measurement points. The second
boundary is chosen as infinity. Consequently, only
two measurements will be necessary to estimate the
parameters.

An infinite domain boundary condition is defined
as follows, if ρ→∞, then Θ→ 0. This means that
at ρ = ∞ all perturbations need to have vanished.
Since, we follow the standard convention that the
arg (z) ∈ (−π, π] and that arg (

√
z) = 1

2
arg (z),

z ∈ C, we can see that for ρ → ∞, exp (λ1ρ) → 0
and exp (λ2ρ) → ∞. Therefore, A2 (s) should be
equal to zero, otherwise the solution (4) would not
converge to zero ρ→∞. At location ρi the temper-
ature is Θ (ρ) = Θ (ρi) such that

A1 (s) = exp (−λ1ρi) Θ (ρi) .

Then, the temperature at the consecutive measure-
ment location Θ (ρi+1) is considered. Now, the non-
rational transfer function is given by

H (θ, s) =
Θ (ρi+1)

Θ (ρi)
= exp (λ1 (ρi+1 − ρi)) . (5)
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The parameters of the transfer function will be esti-
mated for all measurement locations making it possi-
ble to reconstruct D (ρ) and V (ρ). This local transfer
function description has a number of advantages: 1)
It gives the most local estimate as only measurements
at two spatial locations are necessary; 2) the resulting
transfer function has been significantly simplified
because A2 (s) = 0; 3) only SISO transfer functions
need to be estimated. On the other hand, it has a few
disadvantages: 1) it is assumed that the parameters
are constant everywhere even outside the domain
(ρ → ∞). Thus, if the parameter varies outside the
considered domain then a bias will be introduced;
2) when domains are close to the real boundary, a
difference between the modeled and real boundary
will introduce a bias. However, the introduced bias
due to miss-modeling is partly suppressed in practice.
This is because (5) acts as a low-pass filter. The
amount of suppression depends on the distance of
the domain to the boundary. It also depends on the
fluctuation of the parameters outside the domain and
the distance of this fluctuation to the considered
domain. These errors will be more present in the
low-frequency information as high-frequency errors
are suppressed more strongly.

Summarizing, these errors will only be present
when considering fast changing profiles and when
domains are close to the boundary. However, there
is a more important issue and that is the effect of
noise. The temperatures will be measured including
a significant amount of noise because it is measured
by means of ECE (see Section II-A). In the next
section is explained how to handle this noise such
that a consistent estimate of (5) can be achieved.

IV. PARAMETER ESTIMATION

The measurements at two neighboring locations
are used to estimate the local parameters. However,
both measurements are prone to noise, which means
that the real temperatures are unknown. If these
measurements are considered as the real temperatures
this would result in a bias when applying standard
estimation schemes e.g. least-squares estimation [16].

Therefore, an Errors-in-Variables (EIV) approach
is used since it considers the noise spectra on both
measurements including possible correlations. The
EIV treats the real noiseless temperatures as unknown
parameters, connected by the parametric transfer

function. If the connection between the parametric
transfer function and the noise variances from the
spectra are known, it is possible to eliminate these
unknown parameters. However, to estimate the noise
variances it is necessary to have information about
the Probability Density Function (PDF) of the noise.
Based on physical knowledge, the dominant mea-
surement noise is additive normally distributed noise
in the time domain. This results in additive circular
complex normally distributed noise in the frequency
domain [17].

In addition, periodic measurements (in time) are
used such that the average and variance per frequency
line can be determined. Thereby, estimating the deter-
ministic spectra and the noise spectra. Note, that this
is under the assumption that the number of periods
is high enough.

A. Maximum Likelihood Estimation

The Maximum Likelihood Estimator (MLE) is
based on the properties of the noise spectra. There-
fore, a consistent estimate of the parameters of the
transfer function can be achieved even in the presence
of noise. The MLE cost function is derived on the
basis of the PDF and the transfer function. The MLE
cost function basically requires that the resulting PDF
of the temperature minus the simulated temperature
is white. As the MLE cost function is infeasible to
minimize, the log likelihood cost function VML is
used [16]. It has the same global minimum and is
defined as

VML =
1

F

F∑
k=1

∣∣∣Θ̂ (ρi+1,Ωk)−H (θ,Ωk) Θ̂ (ρi,Ωk)
∣∣∣2

σ2
e (θ,Ωk)

,

(6)
with Ωk the excited frequency lines, Θ̂ the average
over the periods, F the number of frequencies used,
and θ = [D, V ]. The variability is given by

σ2
e (θ,Ωk) = σ2

i+1 + σ2
i |H (θ,Ωk)|2

−2 Re
(
σ2
i+1,i H (θ,Ωk)

)
(7)

where σ2
i+1 and σ2

i are the variances estimated over
the different periods of Θ (ρi+1) and Θ (ρi) respec-
tively. The estimated covariance between these two
noise spectra is denoted as σ2

i+1,i. H is the complex
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conjugate of H . The parameters are estimated by
minimizing the log likelihood cost function VML

θ̂ = arg min
θ

VML (Ωk, θ) . (8)

Minimizing the resulting cost function gives the
estimated parameters. The cost function (6) can be
naturally interpreted as a weighting of the error with
the uncertainty of the measurements. Frequency lines
with a small variance have a higher weighting than
frequency lines with a high variance. The uncertainty
on the frequency lines can be mapped to the un-
certainty of the parameters via a first order Taylor
expansion based on [16]

Cov
(
θ̂
)
≈ Re

(
2JHθ Jθ

)−1
with

Jθ =
∂

∂θ

(
Θ̂ (ρi+1,Ωk)−H (θ,Ωk) Θ̂ (ρi,Ωk)

σe (θ,Ωk)

)∣∣∣∣∣
θ=θ̂

.

(9)
Minimizing (6) results in the parameter estimates
and (9) allows the construction of the corresponding
uncertainty bounds.

B. Optimization
The minimization of the cost function (6) is a non-

convex problem, because of the non-rational transfer
function and the division by the parameter dependent
variability σ2

e (θ,Ωk). However, the transfer function
has a simple form and only depends on two variables.
Therefore, it is easy to minimize the cost function.
Not only standard gradient methods are applicable
but also more advanced algorithms, which do not
require the start values to be in the neighborhood
of the global minimum [18]. In addition, a parameter
transformation can be used to change the gradient
map resulting in a wider region of convergence of
gradient based methods.

Here, we have chosen for a Levenberg-Marquardt
minimization scheme, a modified Newton-Gauss gra-
dient method, which uses the Jacobian presented in
(9) and a variable step size [19].

C. Validation
Two tests will be used to validate the model: a

cost function analysis and a whiteness residual test.
In addition, the transfer function can be estimated on
the basis of data and can be compared to the transfer

function based on estimated parameters. In principle,
a different data set should be used for the validation.
However, due to the limited data the same data set
will be used.

The cost function analysis is used to detect model
errors. If the noise is indeed normally distributed, no
model errors are present, and if a number of (weak)
assumptions are fulfilled [16], the expected value of
(6) at the global minimum θ̂ i.e. E

{
VML

(
θ̂
)}

=

Vnoise equals approximately

Vnoise ≈
(
F − nθ

2

)
. (10)

with nθ the number of free real-valued parameters. In
addition, the variance of VML

(
θ̂
)

should also equal

Vnoise i.e. var
{
VML

(
θ̂
)}
≈ Vnoise. Hence, confi-

dence bounds can be constructed such that VML

(
θ̂
)

resides between these bounds. Model errors generally
lead to a higher value of the cost function at the
global minimum.

The whiteness residual test is used to test the
amount of deterministic signal information left in the
residual. In other words, if all dynamics has been
captured by the model, then the residual should con-
tain no correlation over the different frequency lines
i.e. the residuals should be white. The correlation
residuals are calculated as defined in [20]

R̂δδ (m) =
1

F −m

F−m∑
k=1

δ
(

Ωk, θ̂
)
δ
(

Ωk+m, θ̂
)

(11)

with δ
(

Ωk, θ̂
)

=
ĤML (Ωk)−H

(
Ωk, θ̂

)
σ̂H (Ωk)

.

If all transients are neglected (died out), then
ĤML (Ωk) = Θ̂ (ρi+1) /Θ̂ (ρi) and σ̂H (Ωk) can be
calculated by

σ̂H =
∣∣∣ĤML (Ωk)

∣∣∣2
 σ2

i+1∣∣∣Θ̂ (ρi+1)
∣∣∣2 +

σ2
i∣∣∣Θ̂ (ρi)
∣∣∣2

−2Re

(
σ2
i+1,i

Θ̂ (ρi+1) Θ̂ (ρi)

)}
, (12)

Hence, some correlation will be present in the resid-
ual. Therefore, uncertainty bounds on the correlation
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Figure 2. Temperature measurements at the different locations in RTP
in terms of the normalized radius ρ (Discharge r19960403.006). The
amplitude of the perturbations decreases with the distance to the source.
Hence, it is also clear that the ECRH is localized near the center of
the Tokamak. (color online)

residuals need to be constructed once more, which is
explained in [20]. Both, the value of the cost function
and whiteness residual test give insight in how well
the model describes the measurement data set at hand.

V. EXPERIMENTAL RESULTS

The MLE identification method is applied to es-
timate the local parameters at different locations. A
real discharge (measurement) from a tokamak will
be analyzed and the results will be validated and
discussed.

A. Set-up RTP tokamak

The measurement data to be analyzed is acquired
from the Rijnhuizen Tokamak Project (RTP). RTP is
a tokamak with major radius R0 = 0.72 m, which is
the distance from the center of the tokamak to the
plasma center. The minor radius a = 0.16 m is the
distance from the plasma center to the wall of the
vessel. The toroidal magnetic field can be up to 2.5 T
[21]. The modulated power applied to the discharge
analyzed is Pecrh = 0.6 MW with a duty cycle of
20% and a period of 3.2 ms.

The resulting temperature fluctuations are shown
in Fig. 2 in terms of normalized radii. These ECE
temperature measurements are used to estimate the
parameters D and V in terms of normalized radius ρ.
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Figure 3. Estimated Da and Va with corresponding uncertainty bounds
where the estimates are plotted at (ρi+1 + ρi) /2 (some estimates
outside plotted intervals).

Note, that the central measurements are discarded as
they contain the source. The full power modulation
time window is included in the estimation process,
including the initial heating phase and the final phase
where the peripheral channels cool down due to a
ramp-down of the plasma current, because this infor-
mation also contributes to better estimates compared
to decreasing the interval.

B. Estimates of D and V

The estimates are calculated in terms of the nor-
malized radius ρ, however, this means that the dif-
fusion and convection are also dimensionless. There-
fore, in fusion it is common practice to rescale the
parameters with the minor radius such that they are
expressed in SI units again i.e. ρ = r/a. This results
in Da = a2 · D and Va = a · V . However, this
also requires the uncertainty bounds to be rescaled
using propagation of uncertainty Cov (Da, Va) =

JaCov
(
θ̂
)
JTa with Ja = [a2 0; 0 a]. The dimension-

less radius is ρ retained instead of representing in
terms of r.

Fig. 3 presents the estimates, using (8)
at the excited frequency lines Ω1:6 =
312.5, 625, 937.5 , 1250 , 1562.5 Hz. The uncertainty
of the convection estimates seem rather high
compared to the signal to noise ratios (SNR)
achieved on the measurements (see Table I for the
SNR of the first three harmonics). Note, however,
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Table I
SNR IN DB OF THE FIRST THREE HARMONICS AT DIFFERENT ρ.

ρ 0.23 0.33 0.43 0.52 0.6 0.69 0.77 0.84
Ω1 27.5 20.7 22.2 21.6 21.3 21.8 20.8 19.4
Ω2 27.4 19.7 15.8 14.3 12.1 13.3 13.2 12.2
Ω3 20.2 11.7 10.3 6.1 4.9 7.7 5.8 7.4
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Figure 4. Whiteness residual test at ρ = 0.65 where it is clear the
model is validated. Comparison between the estimated transfer function
HML with its uncertainty bounds and the parametrically estimated H .

that both the input and output of the transfer function
contain noise. Moreover, the transfer functions are
non-rational, i.e. Da and Va are in the exponent,
such that a small variation of amplitude can lead
to a big difference in D and V . This shows the
importance of MLE estimation as it takes the noise
into account when making the estimate.

C. Validation of the estimates
A validation procedure is necessary to determine

which estimated transfer functions are a good de-
scription of the measurement data. Therefore, three
tests are carried out: the cost function validation test
introduced in (10); the whiteness residual test (11);
and the transfer function comparison (12). The latter
two are presented at one radial location in Fig. 4. The
whiteness residual test validates this transfer function.
In addition, the transfer function using the estimated
parameters Hest is within the uncertainty bounds of
the measured transfer function HML. Considering,
the excitation the ground harmonic has the highest
amplitude and as such the lowest noise level. There-
fore, the weight is stronger in the estimates (see Fig.
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Figure 5. Validation of the estimated transfer functions using VML

and the fraction of |Rδδ| inside the 95% uncertainty bound. Every
model which is under the uncertainty bound of 95% is validated for
both the fraction plot and cost function validation. The fractions refer
to the number of points outside the confidence bounds in Fig. 4(a).

3). The cost function validation test is presented and
the fraction inside the 95% uncertainty bound of the
whiteness residual tests for all estimates is shown in
Fig. 5.

The estimates at ρ = 0.38 and ρ = 0.81 are
rejected by the validation tests. On the other hand, the
estimates at ρ = 0.28 and between ρ = 0.48−0.73 are
validated, however, the uncertainty on the convection
is high.

This is especially the case for the convection term,
because convection is more sensitive to low-frequent
excitation frequencies i.e. if ω is large, Da dominates
over Va in (5). This is a clear indication that the
chosen excitation frequency is to high. Therefore,
in future experiments lower modulation frequencies
could lead to better estimates. This has an additional
advantage because the perturbation will have an
higher amplitude and will penetrate deeper into the
plasma.

VI. SUMMARY AND CONCLUSIONS

This article presents a new methodology to esti-
mate the spatial dependent diffusion and convection
locally. This methodology is based on local transfer
functions derived between two measurement loca-
tions. These transfer functions are estimated using
Maximum Likelihood Estimation. This results in a
consistent estimate of the parameters. The necessity
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of using a MLE estimation scheme is supported by
the high uncertainty bounds on the estimated Va.
Moreover, this high uncertainty shows the importance
of constructing uncertainty bounds around the esti-
mates.

Validation tests show that not all models describe
the data well and hence need to be rejected. Con-
cluding, it is important to improve the excitation
signal to arrive at better measurements by lowering
the frequency range and increasing the number of
excited frequencies.
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