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Abstract

A new nonparametric approach for system identification has been recently proposed
where the impulse response is seen as the realization of a zero–mean Gaussian process
whose covariance, the so–called stable spline kernel, guarantees that the impulse re-
sponse is almost surely stable. Maximum entropy properties of the stable spline kernel
have been pointed out in the literature. In this paper we provide an independent proof
that relies on the theory of matrix extension problems in the graphical model literature
and leads to a closed form expression for the inverse of the first order stable spline
kernel as well as to a new factorization in the form UWU⊤ with U upper triangular
and W diagonal. Interestingly, all first–order stable spline kernels share the same factor
U and W admits a closed form representation in terms of the kernel hyperparameter,
making the factorization computationally inexpensive. Maximum likelihood properties
of the stable spline kernel are also highlighted. These results can be applied both to
improve the stability and to reduce the computational complexity associated with the
computation of stable spline estimators.

1 Introduction

Most of the currently used techniques for linear system identification relies on paramet-
ric prediction error methods (PEMs), [Ljung, 1999, Soderstrom and Stoica, 1989]. Here,
finite–dimensional hypothesis spaces of different order, such as ARX, ARMAX or Laguerre
models, are first postulated. Then, the most adequate model order is selected trading–off
between bias and variance to avoid overfitting. Model–order selection is usually performed
by optimizing some penalized goodness–of–fit criteria, such as the Akaike information cri-
terion (AIC) [Akaike, 1974] or the Bayesian information criterion (BIC) [Schwarz, 1978],
or via cross validation (CV) [Hastie et al., 2008]. Statistical properties of prediction error
methods are well understood under the assumption that the model class is fixed. Never-
theless, sample properties of PEM approaches equipped e.g. with AIC or CV can much
depart from those predicted by standard (i.e. without model selection) statistical theory
([Pillonetto and De Nicolao, 2010, Pillonetto et al., 2011]).

Motivated by these pitfalls, a new approach to system identification has been recently
proposed where the system impulse response is seen as the realization of a zero–mean
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Gaussian process with a suitable covariance that depends on few hyperparameters, learnt
from data via, e.g., marginal likelihood maximization. This procedure can be seen as the
counterpart of model order selection in the parametric paradigm and in many cases it has
been proved to be more robust than AIC-type criteria and CV.

In this scheme, quality of the estimates crucially depends on the covariance (kernel) of
the Gaussian process. A large variety of positive semidefinite kernels have been introduced in
the machine learning literature [Shawe-Taylor and Cristianini, 2004, Scholkopf and Smola,
2001]. Nevertheless, a straight application of standard machine learning kernels in the
framework of system identification is doomed to fail mainly because of the lack of constraints
on system stability. For this reason, several kernels have been recently introduced in the
system identification literature [Pillonetto and De Nicolao, 2010, Chen et al., 2011].

This paper deals with stable spline kernels. Stable spline kernels were introduced in
[Pillonetto and De Nicolao, 2010] as an adaptation of spline kernels that enforces the asso-
ciated process realizations to be asymptotically stable. Some theoretical results that assess
robustness of this class of kernels are described in [Aravkin et al., 2014, Carli et al., 2012a].
Efficient numerical implementations are discussed in [Carli et al., 2012b, Chen and Ljung,
2013]. In this paper we concentrate on first–order stable spline kernels (see [Pillonetto et al.,
2010] and also [Chen et al., 2012], where this class of kernels has also been introduced by us-
ing a totally different, deterministic argument). Maximum entropy properties of first–order
stable spline kernels have been pointed out in [Pillonetto and De Nicolao, 2011]. In this
paper, we provide an alternative proof of the maximum entropy property by resorting to an
independent, algebraic argument that connects to the theory of matrix completion and, in
particular, of band extension problems in the graphical models literature [Dempster, 1972,
Grone et al., 1984, Dym and Gohberg, 1981, Gohberg et al., 1993, Dahl et al., 2008]. This
alternative approach leads to a closed form expression for the inverse of the first–order stable
spline kernel. A factorization of the first–order stable spline kernel in the form UWU⊤ with
U upper triangular and W diagonal is also provided. Interestingly, all first–order stable
spline kernels share the same factor U and W admits a closed form representation in terms
of the kernel hyperparameter, making the factorization inexpensive from a computational
point of view. Moreover it can be proved that the first–order stable spline kernel max-
imizes the likelihood among all covariances that satisfy certain conditional independence
constraints. The above mentioned properties can for example be used both to improve sta-
bility and reduce the computational burden of computational schemes for the evaluation of
the stable spline estimator.

The paper is organized as follows. In Section 2 the problem is introduced and Gaussian
process regression via first order stable–spline kernels is briefly reviewed. In Section 3
relevant theory of matrix completion problems is introduced. Section 4 contains our main
results. Section 5 ends the paper.

Notation. Let Sn denote the vector space of symmetric matrices of order n. We write
A � 0 (resp. A ≻ 0) to denote that A is positive semidefinite (resp. positive definite).
Moreover, we denote by Ik the identity matrix of order k, by 1k the k–dimensional vector
of all ones, and by 0k the k–dimensional vector of all zeroes. The diagonal matrix of order
k with diagonal elements {a1, a2, . . . , ak} will be denoted by diag {a1, a2, . . . , ak}. If A is a
square matrix of order n, for index sets β ⊆ {1, . . . , n} and γ ⊆ {1, . . . , n}, we denote the
submatrix that lies in the rows of A indexed by β and the columns indexed by γ as A(β, γ).
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If γ = β, the submatrix A(β, γ) is abbreviated A(β).

2 Linear system identification via Gaussian Process Regres-

sion

2.1 Statement of the problem

We consider the measurement model

yt =

∞
∑

k=1

fkut−k + et (1)

where {yt} denote the noisy output samples of a discrete–time linear dynamical system fed
with a known input {ut}. f = {ft}

∞
t=1 is the unknown impulse response and {et} is white

Gaussian noise with variance σ2. Suppose that N measurements are available. We can
collect these measurements in the N–dimensional column vector y = [y1, . . . , yN ]⊤. Let
e denote N–dimensional vector of the noise samples e = [e1 . . . eN ]⊤. Thinking of f as
an infinite–dimensional column vector, and using notation of ordinary algebra to handle
infinite–dimensional objects, model (1) can be expressed in matrix form as

y = Gf + e (2)

where G ∈ R
N×∞ is a matrix whose entries are defined by the system input, so that Gf

represents the convolution between the system impulse response and the input. We consider
the problem of estimating f from y.

2.2 Gaussian process regression via Stable Spline Kernels

In the classical system identification set up, the impulse response is searched for within
a finite–dimensional space, e.g. postulating ARX, ARMAX or Laguerre models. Under
the framework of Gaussian process regression [Rasmussen and Williams, 2006], f is instead
modeled as a sampled version of a continuous–time zero–mean Gaussian process with a
suitable covariance (kernel), independent of e. We denote with K the infinite–dimensional
matrix obtained by sampling K(·, ·) on N× N and write

f ∼ N (0,K(η)), f ⊥ e (3)

where η is a vector of hyperparameters governing the prior covariance. According to an
Empirical Bayes paradigm [Berger, 1985, Maritz and Lwin, 1989], the hyperparameters can
be estimated from the data via marginal likelihood maximization, i.e. by maximizing the
marginalization with respect to f of the joint density of y and f

η̂ = argmin
η

{

log detΣy(η) + y⊤Σy(η)
−1y

}

(4)

with
Σy(η) = GK(η)G⊤ + σ2IN . (5)
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Once η is estimated, the impulse response can be computed as the minimum variance
estimate given y and η̂, i.e.

f̂ := E [f |y, η̂] = K(η̂)G⊤

(

GK(η̂)G⊤ + σ2IN

)−1
y . (6)

Prior information is introduced in the identification process by assigning the covariance
K(η). The quality of the estimates crucially depends on this choice as well as on the quality
of the estimated η̂.

A class of prior covariances which has been proved to be very effective in the system
identification scenario, is the class of stable spline kernels ([Pillonetto and De Nicolao, 2010,
Pillonetto et al., 2010, 2011]), that, besides incorporating information on smoothness, guar-
antees that the estimated impulse response is almost surely stable.

First–order stable spline kernels (equivalently, stable spline kernels of order 1) were
introduced in [Pillonetto et al., 2010] (see also [Chen et al., 2012], where they are referred
to as Tuned/Correlated (TC) kernels) and are defined as

Kij = λαmax(i,j), λ ≥ 0, 0 ≤ α < 1,

so that η = [λ, α].

3 Maximum Entropy band extension problem

Covariance extension problems were introduced by A. P. Dempster [Dempster, 1972] and
studied by many authors (see e.g. [Grone et al., 1984, Dym and Gohberg, 1981, Johnson,
1990, Gohberg et al., 1993, Dahl et al., 2008] and references therein, see also [Carli et al.,
2011, Carli and Georgiou, 2011, Carli et al., 2013] for an extension to the circulant case).
In the literature concerning matrix completion problems, it is common practice to describe
the pattern of the specified entries of an n × n partial symmetric matrix by an undirected
graph of n vertices which has an edge joining vertex i and vertex j if and only if the (i, j)
entry is specified. If the graph of the specified entries is chordal (i.e., a graph in which
every cycle of length greater than three has an edge connecting nonconsecutive nodes, see
e.g. [Golumbic, 1980]), and, in particular, if the specified elements lie on a band centered
along the main diagonal, then the maximum entropy covariance extension problem admits
a closed form solution in terms of the principal minors of the matrix to be completed (see
[Barrett et al., 1989], [Fukuda et al., 2000], [Nakata et al., 2003]). In this section, we briefly
review some fundamental results about maximum entropy band extension problems that will
be used to prove our main results in Section 4.

Recall that the differential entropy H(p) of a probability density function p on R
n is

defined by

H(p) = −

∫

Rn

log(p(x))p(x)dx. (7)

In case of a zero–mean Gaussian distribution p with covariance matrix Σn, we get

H(p) =
1

2
log(detΣn) +

1

2
n (1 + log(2π)) . (8)

Let I ⊂ {1, . . . , n} × {1, . . . , n} denote a set of indices and Ī the complement of I with
respect to {1, . . . , n} × {1, . . . , n}. Let x be the vector, say k–dimensional, obtained by
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stacking the xij’s one on top of the other. A partial matrix is a parametric family of n× n

matrices Σn(x) with entries [Σn(x)]i,j = σij , (i, j) ∈ I specified, and entries [Σn(x)]i,j = xij ,
for (i, j) ∈ Ī, which are left unspecified. Here, both σij and xij are taken to be real. A
completion (extension) of Σn(x) is a n× n matrix [C]i,j = cij which satisfies

cij = σij ∀(i, j) ∈ I .

In particular, let

I
(m)
b := {(i, j) | |i− j| ≤ m} .

If I ≡ I
(m)
b , we refer to Σ

(m)
n (x) as a partially specified m–band matrix.

Consider the following optimization problem

minimize
{

− log detΣ
(m)
n (x) | Σ

(m)
n (x) ∈ Sn

}

(9a)

subject to Σ
(m)
n (x) � 0 (9b)

e⊤i Σ
(m)
n (x) ej = σij , (i, j) ∈ I

(m)
b (9c)

with optimization variable x, namely the problem of computing the maximum entropy

extension of the partially specified symmetric m–band matrix Σ
(m)
n (x). Problem (9) is a

convex optimization problem. Denote by xo its optimal value and by Σ
(m),o
n ≡ Σ

(m)
n (xo) the

associated extension. Moreover from now on, we will drop the dependence on x in Σ
(m)
n (x)

and refer to a m-band partially specified n× n matrix as Σ
(m)
n .

Theorem 3.1 ([Dempster, 1972, Dym and Gohberg, 1981]). (i) Feasibility: Problem (9)

is feasible, namely Σ
(m)
n admits a positive definite extension if and only if







σi,i · · · σi,m+i

...
...

σm+i,i · · · σm+i,m+i






≻ 0, i = 1, . . . , n−m (10)

(ii) Bandedness: Assume (10) holds. Then (9) admits a unique solution with the addi-
tional property that its inverse is banded of bandwidth m, namely the (i, j)–th entry

of
(

Σ
(m),o
n

)−1
is zeros if |i− j| > m.

The positive definite maximum entropy extension Σ
(m),o
n is also called central extension

of Σ
(m)
n .
Let Σ̄ be such that

[

Σ̄
]

ij
= σij (i, j) ∈ I

(m)
b . Then, it can be shown [Dempster, 1972,

Dahl et al., 2008] that Problem (9) is equivalent to the following optimization problem

minimize log detΣ
(m)
n + trace

(

Σ̄
(

Σ
(m)
n

)−1
)

(11a)

subject to Σ
(m)
n � 0 (11b)

e⊤i

(

Σ
(m)
n

)−1
ej = 0, (i, j) ∈ Ī

(m)
b (11c)
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If we denote with θ =
[

θ1, . . . , θn
]⊤

a zero–mean Gaussian random vector with covariance

Σ
(m)
n , then (11c) holds if and only if the random variables θi, θj in θ are conditionally

independent given the others (see e.g. [Dempster, 1972]). In other words, if we denote with
Σ̄ the sample covariance of θ, the equivalence between Problem (9) and Problem (11) states
that the covariance matrix that maximizes the entropy among all the covariance matrices
with given first m+ 1 covariance lags, is also the one that maximizes the likelihood among
all the covariance matrices satisfying the conditional independence constraints (11c).

For banded sparsity pattern like those considered so far, Problem (9) admits a closed
form solution that can be computed recursively in the following way. We start by considering
a partially specified n× n symmetric matrix of bandwidth (n− 2)

Σ(n−2)
n =















σ1,1 σ1,2 . . . σ1,n−1 x

σ1,2 σ2,2 . . . σ2,n−1 σ2,n
...

...
...

...
σ1,n−1 σ2,n−1 . . . σn−1,n−1 σn−1,n

x σ2,n . . . σn−1,n σn,n















(12)

and consider the submatrix
L = [σij]

n−1
i,j=1 . (13)

We call one–step extensions the extensions of n× n, (n− 2)–band matrices. The following
theorem gives a recursive algorithm to compute the extension of partially specified matrices
of generic bandwidth m by computing the one–step extensions of suitable submatrices. It
also gives a representation of the solution in factored form.

Theorem 3.2 ([Gohberg et al., 1993], [Dym and Gohberg, 1981]). (i) The one–step cen-

tral extension of Σ
(n−2)
n is given by

xo = −
1

y1

n−1
∑

j=2

σnjyj (14)

with










y1
y2
...

yn−1











= L−1











1
0
...
0











. (15)

Let Σ
(m)
n be an n × n partially specified m–band matrix. The central extension C =

[cij ]
n
i,j=1 of Σ

(m)
n is such that for all m + 1 < t ≤ n and 1 ≤ s ≤ t − m − 1 the

submatrices

C({s, . . . , t}) =







cs,s · · · cs,t
...

...
ct,s · · · ct,t






(16)

are the central one–step extensions of the corresponding (t− s− 1)–band matrix.
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(ii) In particular, the central extension of the partially specified symmetric m-band matrix

Σ
(m)
n admits the factorization

C =
(

L(m)
n V U (m)

n

)−1
(17)

where L
(m)
n = [ℓij ] is a lower triangular banded matrix with ones on the main diagonal,

ℓjj = 1, for j = 1, . . . , n, and







ℓαj
...
ℓβj






= −







σαα . . . σαβ
...

. . .
...

σβα . . . σββ







−1 





σαj
...

σβj






(18)

for j = 1, . . . , n− 1, U
(m)
n =

(

L
(m)
n

)⊤

and V = [vij ] diagonal with entries

vjj =













σjj . . . σjβ
...

. . .
...

σβj . . . σββ







−1





1,1

, (19)

for j = 1, . . . , n, where

α = α(j) = j + 1 for j = 1, . . . , n − 1 ,
β = β(j) = min(j +m,n) for j = 1, . . . , n .

4 Maximum Entropy properties of the First-order Stable

Spline kernel and Its Implications

In this section, we provide an independent proof of the maximum entropy property of first–
order stable spline kernels that relies on the theory of matrix extension problems introduced
in the previous section. This argument leads to a closed form expression for the inverse of
the first order stable spline kernel as well as to a new factorization. Maximum likelihood
properties of the stable spline kernel are also highlighted.

Proposition 4.1. Consider Problem (9) with m = 1 and

σij = Kij = αmax(i,j), (i, j) ∈ I
(1)
b (20)

i.e. consider the partially specified 1–band matrix

Σ(1)
n (x) =























α α2 x13 . . . . . . x1n
α2 α2 α3 x24 . . . x2n

x13 α3 α3 α4 ...
...

. . .
. . .

. . . xn−2,1
... αn−1 αn−1 αn

x1n . . . . . . xn−2,1 αn αn























Then Σ
(1)
n (xo) = K, i.e. the solution of the Maximum Entropy Problem (9) coincides with

the first order stable spline kernel.
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Proof. By Theorem 3.2, the maximum entropy completion of Σ
(1)
n (x) can be recursively

computed starting from the maximum entropy completions of the nested principal subma-
trices of smaller size. The statement can thus be proved by induction on the dimension n

of the completion.

• Let n = 3, then by (14)–(15), the central extension of





α α2 x13
α2 α2 α3

x13 α3 α3





is given by xo13 = α3 = K(1, 3), as claimed.

• Now assume that the statement holds for n = k, k ≥ 3, i.e. that K({1, . . . , k}) is

the central extension of Σ
(1)
n ({1, . . . , k}). We want to prove that K({1, . . . , k + 1}) is

the central extension of Σ
(1)
n ({1, . . . , k + 1}). To this aim, we only need to prove that

the (k − 1) submatrices K({s, . . . , k + 1}), 1 ≤ s ≤ k − 1, are the central one–step
extensions of the corresponding (k − s)–band matrices













αs . . . αk xs,k+1
...

. . . αk+1

. . .
...

xs,k+1 αk+1 . . . αk+1













.

or, equivalently, that xos,k+1 = K(s, k+1), for s = 1, . . . , k− 1. In order to find xos,k+1,
we consider (15), which, by the inductive hypothesis, becomes













y
(s,k+1)
1

y
(s,k+1)
2
...

y
(s,k+1)
k













= K({s, . . . , k})−1











1
0
...
0











.

By considering the adjoint of K({s, . . . , k}) one can see that y
(s,k+1)
2 = −y

(s,k+1)
1 while

all the others y
(s,k+1)
i , i = 3, . . . , k are identically zero. It follows that

xos,k+1 = −
1

y
(s,k+1)
1

y
(s,k+1)
2 αk+1 = αk+1 = K(s, k + 1) ,

as claimed.

From the equivalence between the maximum entropy problem 9 and the maximum like-
lihood problem 11 we get the following.

Proposition 4.2. Let m = 1 and
[

Σ̄
]

ij
=

[

θθ⊤
]

ij
= αmax(i,j), (i, j) ∈ I

(1)
b , then the

first-order stable spline kernel maximizes the likelihood in (11a) among all covariances that
satisfies (11b) and the conditional independence constraints (11c).
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Proposition 4.3. The following are equivalent

(i) K solves Problem (9) with m = 1 and moment constraints as in (20).

(ii) K admits the factorization
K = UWU⊤ (21)

with

U =











1 1 . . . 1
0 1 . . . 1

0 0
. . .

...
0 . . . 0 1











, (22)

and

W = (α− α2)diag

{

1, α, α2, . . . , αn−2,
αn−1

1− α

}

. (23)

(iii) K−1 is tridiagonal banded and is given by

1

α− α2

















1 −1 0 . . . 0

−1 1 + 1
α

− 1
α

. . .
...

0 1
α
+ 1

α2 0
...

. . .
. . . − 1

αn−2

0 . . . 0 − 1
αn−2

1
αn−2 + 1−α

αn−1

















(24)

Proof. That K admits the factorization (21)–(23) follows from Theorem 3.2 (ii). In fact, by
(17)–(19) the inverse of the stable spline kernel of order 1 can be factored as

K−1 = L(1)
n V U (1)

n (25)

where L
(1)
n takes the form

L(1)
n =

(

U (1)
n

)⊤

=

















1 0 0 . . . 0
−1 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 1

















(26)

and

V =
1

α− α2
diag

{

1,
1

α
,
1

α2
, . . . ,

1

αn−2
,
1− α

αn−1

}

(27)

Bandedness of K−1 follows from Theorem 3.1 (ii) and expression (24) for K−1 is an imme-
diate consequence of the factorization (21)–(23).

Remark 4.1. Let A =
[

In−1 | 0n−1

]

. It is an immediate consequence of (24) that

(

AK−1
)

1n−1 = 0n−1 (28)

i.e. the first n− 1 columns of K−1 sum up to zero.
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Corollary 4.1. The stable spline kernel of order 1 has determinant

det (K) =
[

(1− α)n−1α
1

2
n(n+1)

]

. (29)

Proof. The first (resp., third) factor in the right hand side of (25) is a lower (resp., upper)
triangular matrix with diagonal entries equal to one, and hence the positive definite matrix
K−1 and V have the same determinant, i.e.

det(K−1) = det(V ) =
1

αn(α − α2)n−1

n
∏

i=2

1

αi−2
.

The thesis follows immediately by recalling that
∑n−2

i=1 i = 1
2(n− 2)(n − 1) .

Remark 4.2. A key point in the evaluation of the stable spline estimator lies in solving the
marginal likelihood maximization problem (4), that is usually nonconvex. No matter what
solver is used, the tuning of the hyperparameters requires repeated evaluations of the marginal
likelihood. Here we observe that, whatever the value of α, all the stable spline kernels of
order 1 share the same factor U (22). Moreover, being W available in closed form, once
α is known the factorization (21) is computationally inexpensive. The same applies to the
factorization of K−1. This fact, together with the closed form expression for the determinant
of the stable spline kernel in (29), can be exploited both to improve the stability and to reduce
the computational burden associated with computational schemes for the evaluation of the
stable spline estimator like those in [Carli et al., 2012b, Chen and Ljung, 2013].

We conclude this section by highlighting an additional property of the first–order stable
spline kernel that originates from the maximum entropy property of Proposition 4.1.

5 Conclusions

Empirical Bayes estimation for system identification problems has recently become popu-
lar, mainly due to the introduction of a family of prior descriptions (the so–called stable
spline kernels) which encode structural properties of dynamical systems such as stability.
Maximum entropy properties of first–order stable spline kernels have been highlighted in
[Pillonetto and De Nicolao, 2011]. In this paper we provide an alternative proof that leads
to a closed form expression for the inverse of the first order stable spline kernel as well as to
a new, computationally advantageous factorization. Maximum likelihood properties of the
stable spline kernel are also highlighted. These properties can be exploited both to improve
the stability and to relieve the computational complexity associated with the computation
of stable spline estimators.
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