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Abstract— Wind resources tend to be significantly stronger
and more consistent with increasing altitude. This effect creates
a potential for power generation that can be reaped by
an Airborne Wind Energy system positioned at elevations
exceeding the height of conventional wind turbines. A frequent
design for such a system includes a flying airfoil tethered to
a ground station. The station can be equipped with a power
generator or for the application considered here mounted to
a sea vessel. We demonstrate a data based method that can
maximize the towing force of such a system by optimizing a
low level tracking controller at the presence of constraints. We
utilise Gaussian Processes to learn the mapping from the set
points of the controller to both the objective and the constraint
function. We then formulate a chance - constrained optimization
problem that takes into consideration uncertainty in the learned
functions. The probabilistic objective function is transformed
into a deterministic acquisition function which indicates set
points with high probability of improving the current optimum
and the constraint function is penalized in regions of high
uncertainty to ensure feasibility. Simulation studies show that
we can find optimal set points for the controller without the use
of significant assumptions on model dynamics while respecting
the unknown constraint function.

I. INTRODUCTION

Friction between the atmosphere and the surface of the
earth produces a boundary layer effect which is responsible
for the low and intermittent winds close to the ground in
contrast to the faster and more persistent ones above a certain
altitude. The relationship that governs the wind variation
at these low heights can be approximated by a power law
and mainly depends on the roughness of the ground [1].
Moreover, the power that can be potentially extracted by the
wind is proportional to the cube of wind speed [2]. For this
reason, among others, modern wind turbines are increasing in
height while also wind height variation is taken into account
both for the design and operation of wind farms. However,
structural and economic limitations of scaling a support mast
imply that the higher and more prevalent winds will probably
remain outside the reach of conventional wind turbines.

A rising interest both from research and commercial
ventures for extracting wind power from higher altitudes
has lead to the introduction of new designs and prototypes
for Airborne Wind Energy (AWE) systems [3], [4], [5].
Most of the designs include a tethered flying airfoil and
are divided between those with airborne generators that
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transmit electricity to the ground via a power cable and
those that exert mechanical line forces which can be used
at the ground station. We focus here on a variation of the
second design, where the tethered airfoil (quite similar to
a kite) exerts a towing force to a unit mounted on a sea
vessel. This system allows large ships to take advantage
of high altitude winds in order to achieve considerable
fuel savings and has been commercialised by the company
Skysails [6]. Skysails has developed low level controllers
that exhibit stable performance at a variety of different wind
conditions and are experimentally validated [7]. However,
such a controller cannot automatically guarantee a power
optimal trajectory nor that the airfoil will not cross an altitude
safety threshold.

We are addressing this problem in the general framework
of constrained optimization

max
x

f(x)

s.t. g(x) ≤ 0
(1)

where f : Rd → R and g : Rd → Rm are the objective and
constraint functions of a multivariable decision input x ∈ Rd

(here the set-points of the low level controller). The functions
can be nonlinear and/or non-convex. We are more specifically
trying to learn the set points that optimize the towing force,
while respecting an altitude constraint. The fact that AWE
systems of this type operate best at crosswind conditions
imply that the constraint will be frequently active for the
lower part of the kite trajectory.

Both functions are considered unknown and we are ac-
tively learning them using measurements under the frame-
work of Gaussian Processes (GP), a methodology mainly
developed and used in Machine Learning [8]. GPs can be
used for regression with relatively few assumptions on the
form of the unknown function and have been extensively
utilised for unconstrained optimization [9], [10].

More challenging situations arise in the presence of non-
trivial constraints that are also being learned from data. A
first approach to this problem but with known constraints
was given in [11] by simply avoiding sampling inside the in-
feasible regions. Another approach assumes that the learned
functions are dependent and requires assumptions on their
coupling [12], while [13] allows for sampling in infeasible
regions if this is deemed sufficiently informative. Finally, the
same authors in [14] use an augmented Lagrangian approach
to account for the constraints.

In our version we follow a generic approach where two
independent GPs are trained for both functions and an
acquisition function based on Expected Improvement (EI)



denotes the next point to sample. We do not explicitly
allow for function evaluations outside the feasible part of
the domain, while we also restrict the augmentation of our
search space by penalising learned inputs that exhibit high
output variance. Simulation results show that this strategy
can optimize the towing force generated without violating
the altitude constraints. The result achieved is similar to
the performance of a numerical optimal control software
(GPOPS - II) [15] where control action is available for
manipulation throughout the trajectory.

In Section II we give an introduction to GPs for regression,
optimization and constraint handling. Section III provides an
overview of the AWE system and the low level controller that
is used for tracking. Section IV presents our simulation setup
and results, while in Section V we provide a conclusion and
discuss future directions.

II. GAUSSIAN PROCESSES FOR CONSTRAINED
OPTIMIZATION

Gaussian processes are used in supervised learning for re-
gression or classification from a Bayesian perspective. They
are an extension of the multivariate Gaussian distribution
to infinite dimensional stochastic processes where any finite
combination of outputs is jointly Gaussian. In this sense a
GP describes a distribution in the function space. Making
predictions in unsampled locations, incorporating new mea-
surements and quantifying uncertainties is straightforward
due to the Gaussianity assumptions. In addition, GPs allow
for more flexibility in the structure of the unknown function
compared to generic parametric models [16].

A. Gaussian Processes - Regression

A GP is fully specified by its mean m(x) and covariance
(or kernel) function k(x, x′) . Given a finite set of N training
data points D = {xi, yi}i=1:N from an unknown function
f : Rd → R, the GP assumes a multivariate distribution

y1:N ∼ N (m1:N ,K(x1:N , x1:N )) (2)

where y1:N = f(x1:N ) and m1:N is also compact notation
for m(x1:N ). The covariance matrix K is calculated ele-
mentwise using the kernel k(., .). For any unobserved point
(or collection of points) x∗, we can analytically predict the
output of the learned function y∗ = f(x∗) as a conditional
distribution

y∗|D, x∗ ∼ N (µ(x∗|D), σ(x∗|D)), (3)

where

µ(x∗|D) = m∗ + k(x∗, x1:N )K−11:N (y1:N −m1:N )

and

σ(x∗|D) = k(x∗, x∗) + k(x∗, x1:N )K−11:Nk(x1:N , x
∗)

with compact notation K1:N = K(x1:N , x1:N ). For most
practical cases the prior mean is either assumed zero or is
fixed to a constant. It is interesting to note that the covariance
does not depend on the mean nor on the function output but
just on the location of the training and sample points. The

crucial ingredient is the kernel, the element that encodes our
assumptions on the learned function. We use here an ARD
(Automatic Relevance Determination) squared exponential
(SE) kernel that is defined as

kSE(x, x′) = σ2
y exp(− (x− x′)T Λ−1(x− x′)

2
) + σ2

nδii′ ,

where Λ = diag(λ1, ..., λd), δii′ is Kroenecker’s delta (= 1
iff i = i′, 0 otherwise) and the parameters θ = {σy, λ1:d, σn}
(usually called hyperparameters in this context) have to be
learned from D. The kernel here includes measurement un-
certainty (σn). To select appropriate hyperparameters θ, we
have to find those that maximize the log marginal likelihood
for the observed data

log p(y1:N |x1:N , θ) = −1

2
logK1:N −

1

2
yT1:NK

−1
1:Ny1:N

−N/2 log 2π,

where K1:N is a function of θ. For many cases this function
is nonconvex and presents an optimization challenge. A
more accurate solution from the Bayesian perspective, but
computationally expensive, would be Monte Carlo sampling
in the hyperparameter space with probability proportional
to the likelihood and then averaging over the outputs over
the different θ values sampled. However, here, we follow the
simpler first approach. Once the selection of hyperparameters
is finalized the learning phase is over. We can now predict
the output at any point of interest using (3).

B. Gaussian Processes - Optimization
To optimize over the learned function we could search

for the optimum of the mean of the GP and sample there.
However, this method is likely to get trapped into suboptimal
solutions. We follow a methodology where an auxiliary
acquisition function is used to indicate the next sampling
point [17]. This function is called Expected Improvement
(EI) and measures the expectation of the magnitude for
improvement over the current best sampled value ymax =
max y1:N+K (where N are the initial training points and K
the additional points that have been sampled). This function
can be analytically derived for any given point x in the search
space as

EI(x) = σ(x)[uΦ(u) + φ(u)], (4)

where u = (y(x) − ymax)/σ(x), σ(x) is the variance as
predicted by the GP and Φ(·), φ(·) are the cumulative and
probability density functions for the normal distribution. EI
promotes points with high variance and/or high mean and
this way can account for both exploration and exploitation.

C. Chance Constrained Optimization
Since both our constraints and objective are unknown

functions, approximated by GPg and GPf , we should handle
them appropriately. This means that we have to restate our
initial problem (1) in a chance constrained optimization
formulation

max
x

EIf (x)

s.t. P (GPg(x) ≤ 0) ≥ 1− β
σg(x) ≤ ασn,

(5)



where we replace the learned objective function with the
respective EI and the constraint function with an auxiliary
statement requiring that the probability of satisfying the
constraint at a sample point x is larger than (1 − β). By
setting β appropriately we can adjust the conservativeness
of our approach (common design values are 0.01 − 0.1).
Once more, due to the use of GPs we can easily derive this
probability at any given point x in the search domain

P (GPg(x) ≤ 0) = Φg(x), (6)

where Φg is the cumulative distribution function for a
Gaussian distribution at point x ∈ Rd, with mean mg(x)
and variance σg(x), as provided by GPg .

The second constraint reduces the aggressiveness of our
approach to account for the lack of information in the un-
explored parts of the learned function. We have experienced
that especially in the beginning of the learning process a bad
set of hyperparameters might lead to unrealistic anticipations
of GPg in the unsampled parts of the domain. This way
large violations might occur (even with very low β, since
the GP is essentially wrong on its assumptions). We wish
here to eliminate such occurrences by excluding points with
high variance, even if their mean implies that they are
safe. We observe that this reduces slightly the convergence
rate but almost guarantees that no significant violations will
occur (within measurement accuracy). The full procedure for
learning and optimization can been seen in Algorithm 1. We
have to note here that the constraints will not be sufficient
to analytically describe the feasible domain which might
be non-convex. For optimization over EIf in the feasible
domain we use either MC sampling or SQP.

Algorithm 1 Constrained Optimization with GPs

1: Initial Samples. Select N points in the feasible set and
insert them in D

2: Learning. Train GPg and GPf using D
3: Optimization. Find fmax among the sampled points
4: Calculate EIf using fmax for the objective function
5: Calculate the Chance and Variance Constraints on GPg

6: New Data. Sample in the feasible domain at the point
x̃ with the highest EIf

7: if f(x̃) ≥ fmax and max EIf ≤ tolerance then
8: Terminate and use x∗ = x̃
9: else

10: Add (x̃, f(x̃)) in D and Go To 2
11: end if

III. CONTROLLER DESIGN

A. System Dynamics Description

Skysails has developed simple but robust low level con-
trollers for tracking “figure 8” loops for large scale au-
tonomous kites used in their naval applications. The results
have been experimentally validated and are acceptable for a
point mass model of a kite flying with fixed tether length.
More details can be found in [7], [18].

Fig. 1: Coordinates and switching surfaces for the Skysails
controller

In order to develop their controller Skysails assumes
dynamics where mass is neglected (a reasonable assumption
for the large aerodynamic forces created) and where the
flexible tether is substituted by a rigid rod (also acceptable
in high dynamic regions where the tether is constantly in
tension). The equations of motion are

ϑ̇ =
u0E

L
cosϑ cosψ − u0

L
sinϑ (7)

ϕ̇ = −u0E
L

cosϑ

sinϑ
sinψ (8)

ψ̇ = u0Eg cos (ϑ)δ + ϕ̇ cosϑ (9)

The three states of the system represent the spherical co-
ordinates (ϑ, ϕ) and orientation (ψ) of the airfoil. The rest
are constants with E: glide ratio, g: deflection coefficient,
u0: wind speed, L: tether length. Finally, δ is the deflection
applied to the kite directly affecting its orientation. We use
these dynamics to check against our model-free controller.
Please note that E and L are also potential control variables
for the kite system. We hope to extend the current formula-
tion to include these in the future.

The system exhibits nonlinear behavior even without
considering the more complex effects of aerodynamics that
have been significantly approximated. It is thus difficult
to find closed form solutions for the response surfaces of
interest like the average tether tension or the minimum
altitude generated in a periodic loop. Even with numerical
optimization the results obtained would not be necessarily
valid in the actual setting where the model mismatch and
environmental conditions are unknown.

B. Skysails Control

The controller employed is a model free feedback control
scheme. A low level controller tracks a given set point on
the yaw angle by applying appropriate deflections on the
kite. On a higher level the set point is provided based on
the position of the kite in its loop and certain predefined
switching positions and their corresponding set point values.
The scheme is shown below in Figure 2.

When the kite crosses a particular section the set point is
changed to a predefined level such that the kite flies a stable



Fig. 2: Behavior of the Skysails control for different set
points

loop. While originally the controller uses only two switching
surfaces it is not difficult to extend this to a higher dimension,
granting a higher degree of control.

The kite is said to cross the ith switching surface when:

φ− φi = 0 & kφ̇ > 0; k = 1 or− 1 (10)

Each surface is defined by a constant φi giving its position
in the φ space and a constant k taking values 1 or -1, thus
defining its orientation. Each surface considers crossings only
in one direction and ignores crossings in the other direction.
Moreover, when the kite crosses the ith section, the reference
signal to the low level tracking controller is changed to
Ψi

ref . The reference Ψi
ref is then tracked by a combined

feedforward and feedback loop.

IV. RESULTS

We implement our algorithm in Matlab and the Skysails
controller in Simulink. For the GP regression we have used
the object-oriented toolbox TacoPig [19].

We start our simulations using N=7 or 15 initial training
points in the feasible set. This is usually possible from prior
experience of the operator. Each pair of set points is used for
10 loops, until the kite reaches a stationary trajectory. Then a
measurement is taken (we add noise to emulate sensor errors)
both for the power (or tension) produced and the lowest
altitude of the loop. Figure 5 shows the evolution of the GPs
and the sampling points as Algorithm 1 progresses. The al-
gorithm on average shows quick convergence to the optimum
(within 20-30 samples) even with varying initial training sets
and decision space (varying number of switching surfaces).
Figure 4 shows the measured objective values and the best
objective found by the algorithm for different numbers of
switching surfaces. This result is summarized in Table I and
the algorithm is compared to the optimum calculated using
the numerical optimal control solver GPOPS-II, which uses
the model and has full control throughout the trajectory and
not just at the 2 or 4 switching surfaces.

The true response surfaces were estimated in simulation
by taking random i.i.d samples throughout the input space
without constraints. Figure 3 shows the response surface of
power for reference.

Fig. 3: GP for the power function computed at a large
number of sample points. Yellow circles represent measure-
ment points. Green lines represent the chance constraints
for different β and black dashed lines the actual altitude
constraint (for a different altitude threshold, here 200, 150
and 100 m).

Fig. 4: Convergence of the algorithm for different number of
switching surfaces and initial training points.

Algorithm 1 can be used in varying wind conditions while
also satisfying altitude constraints without any substantial
modifications. A sinusoidal wind disturbance with a 200
second time period and 3 m/s amplitude was added to the
base wind speed of 10 m/s and the response surfaces were
obtained as before with an additional input measurement of
wind. Figures 6 and 7 show that the algorithm adapts the
set points as the wind changes between 7 m/s to 13 m/s
periodically to remain close to the optimum power with only
marginal violation of the constraints.

V. CONCLUSIONS

We present here an algorithm for optimizing the towing
force produced by an AWE system while also respecting alti-



(a) GPg with initial training points (b) GPf with initial training points

(c) GPg after incorporating 3 sample points (d) GPf after incorporating 3 sample points

(e) GPg after convergence to the optimal solution (f) GPf after convergence to the optimal solution

Fig. 5: Evolution of the GP learning and optimization procedure at the initial (a,b) intermediate (c,d) and final stage (e,f).
The figures to the left concern the learning process for the altitude constraint function and the figures to the right for the
power function. Yellow circles represent measurements, a black circle indicates the next sampling point and a green circle
the projection of this point on the EI surface. The opaque coloured surface is the mean of the learned GP and the transparent
ones represent a variation of 2σ around it. The black dashed lines represent the actual altitude constraint (200 m), and the
green lines the chance constraints for different β. The blue gridded surface is the negative EI for visualisation reasons, so
here we look for its minimum.



TABLE I: Performance comparisons

Decision space Final value Max Violation (m) Iterations
2 surfaces 71.80 3.23 32
4 surfaces 72.60 4.77 30
GPOPS-II 74.61 0.00 -

Fig. 6: Maximum Power tracking under varying wind condi-
tions. The red circles represent the current set point selected
and the black ones the best found. When the wind changes
the set point follows.

Fig. 7: GP learned for different wind conditions and a
common set point for the two switching surfaces. Slight
violations might occur since for different wind conditions
the last set point does not satisfy the constraints temporarily

tude constraints. We base our method on Gaussian Processes
and we assume no prior knowledge of the model dynamics.
The algorithm utilises an underlying model-free controller
for which it learns adaptively the appropriate set points. The
results are comparable to the ones obtained by a numerical
optimal control solver (which has knowledge of the model

and full input control). Finally, the algorithm is able to adapt
into varying wind conditions with no further modifications.

For future work we plan in extending our method in higher
dimensions and more control inputs (such as variable tether
length and glide ratio).
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