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Application of Constrained Linear MPC to a Spray Dryer

Lars Norbert Petersen1,2, Niels Kjølstad Poulsen1, Hans Henrik Niemann3,
Christer Utzen2 and John Bagterp Jørgensen1

Abstract— In this paper we develop a linear model predictive
control (MPC) algorithm for control of a two stage spray
dryer. The states are estimated by a stationary Kalman filter.
A non-linear first-principle engineering model is developed to
simulate the spray drying process. The model is validated
against experimental data and able to precisely predict the
temperatures, the air humidity and the residual moisture in
the dryer. The MPC controls these variables to the target and
reject disturbances. Spray drying is a cost-effective method
to evaporate water from liquid foods and produces a free
flowing powder. The main challenge of spray drying is to meet
the residual moisture specification and prevent powder from
sticking to the chamber walls. By simulation we compare the
performance of the MPC against the conventional PID control
strategy. During an industrially recorded disturbance scenario,
the MPC increases the production rate by 7.9%, profit of
production by 8.2% and the energy efficiency by 4.1% on
average.

I. INTRODUCTION

In 2015 the milk quota system in the European Union will
be completely liberalized. The expected effect of this liberal-
ization is that the milk production increases significantly. In
some countries up to 50% in 2020 [1]. The milk production
expansion will mainly affect the milk powder production due
to the short shelf life of dairy products. Consequently, the
capacity for production of milk powder will need to increase
[1]. Industry studies show that advanced control is capable
of increasing the capacity of spray dryers by up to 20% [2].
Optimal control is therefore an effective way to leverage the
future production increase.

The main objective in controlling a spray dryer is to
minimize the energy consumption while bringing the residual
moisture in the powder below the specification and avoid
that the powder sticks to the chamber walls. The dryers
are generally very large. These may have a feed capacity
of up to 4.4 million l/day of raw milk and require 7 MW of
power. Therefore, even small improvement in operation will
have a large impact on the profitability. The challenge is in
maintaining optimal operation since to do so the dryer must
be constantly adjusted to variations in the feed concentration
and ambient air humidity.

Conventional PID control of spray dryers keeps inlet-
and outlet temperatures constant during operation. This is a
simple approach, but known to be insufficient at controlling
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Fig. 1: Illustration of the spray chamber (SD) and the static
fluid bed (SFB) stages of a two stage spray dryer. Hot air
is let into the upper section of the drying chamber where
the nozzles disperse the liquid feed. The droplets dry into
powder particles in these two stages.

the residual moisture and prevent powder from sticking to
the chamber walls [3]. The variations in residual moisture of
the produced powder reflects that the conventional PID con-
troller cannot reject disturbances such as feed concentration
variations and air humidity variations. Still, this conventional
control strategy is the de facto standard in the industry. The
MPC proposed in this paper constantly adjusts the manipu-
lated variables such that the residual moisture, the exhaust
air temperature and exhaust air humidity is controlled to
a reference. The temperature and humidity in the dryer
are closely correlated to stickiness of powder. Therefore,
controlling the temperature and humidity indirectly controls
the stickiness and deposits of the powder in the dryer.
The residual moisture must be controlled to specifications
to avoid bacterial growth and preserve the milk powder.
Conventional control must frequently be manually adjusted
in order to avoid stickiness of the powder and produce at
specified residual moisture content.

A. Process Description

The two stage spray dryer is an energy efficient dryer and
is often used for production of milk and other food powders.
Fig. 1 illustrates the spray chamber (SD) and static fluid



bed stage (SFB). The main hot air is let into the upper
section of the drying chamber (SD) around the high pressure
nozzles. The nozzles disperse the liquid feed into droplets.
The heat is transferred from the hot air to the droplets, and
due to this transfer water evaporates from the droplets. In that
process, the air temperature and the residual moisture of the
droplets decrease. The dried product then enters the static
fluid bed (SFB) where it is dried further. After drying in the
SFB, the powder is transported to the external vibrating fluid
bed (VFB) for gentle drying and cooled to the temperature
desired for handling and storage. The VFB is not illustrated
in Fig. 1.

B. Modelling and Control
Modelling of the drying process in spray dryers varies in

complexity and purpose. First order transfer function models
as well as first principles engineering models for control
purposes are proposed [4], [5]. [6] proposes a dynamic model
for a complete multi-stage dryer. A number of papers present
control strategies for spray dryers. The focus varies from
pressure control of the chamber pressure to MPC control
of the residual moisture based on industrial software [2].
[7] provides a detailed review on the status and future of
advanced control for spray dryers. In [5] a feed forward
approach is made to help control the residual moisture. Set-
point tracking MPC is a standard methodology for optimizing
the operation of processes and a recognised control method
in both academia and industry due to its ability to handle
coupled dynamics, time delays, constraints and feed forward
of measured disturbances [8], [9]. In this methodology the
economics of operation is optimized in a separate real-
time steady-state optimization (RTO) layer [10]. Recent
advances has shifted to combine these two layers into a single
economically optimizing (E-)MPC layer. [11] use nonlinear
(E-)MPC for economic optimization of a two stage spray
dryer.

C. Content
In this paper we investigate the potential of optimizing

the spray drying process by linear MPC. We compare the
linear MPC to the conventional PID based control method.
The MPC is composed of an optimal regulator and a state
estimator. The regulator has the structure described in [12]–
[14], with the modification that we use a deterministic
linearised first principles engineering model instead of an
innovation form state space model identified from data. The
model used for simulation is also based on the non-linear
first principles engineering model. The proposed model is
identified and validated against two independent experimen-
tal datasets provided by GEA Process Engineering A/S.

D. Organization
The paper is organized as follows. In Section II we

describe the model and show its accuracy by comparing its
output to experimental data. Section III presents the regulator
and state estimator. In Section IV we present two simulations
to validate the MPC and show the benefit of optimizing the
two stage spray dryer. Conclusions are given in Section V.

II. SPRAY DRYER MODEL

In this section, we present the first principles engineering
model for a Multi-Stage Dryer type 20 (MSDTM-20), i.e. a
medium-sized two stage spray dryer, made available by GEA
Process Engineering A/S. The dryer has a maximum water
evaporation capacity of approximately 125 kg/h. The data for
identification is based on drying of sugar water, maltodextrin
DE-18. We use maltodextrin, because milk is difficult to
handle over longer periods due to natural deterioration and
maltodextrin DE-18 has the same drying properties as skim
milk [15].

A. Mass- and Energy Balances

The model consists of four states. The states are the spray
dryer temperature, TSD, the static fluid bed temperature,
TSFB , the humidity in the air of the spray dryer, Y , and the
moisture in the powder, X . The lumped energy and mass
balances describing the evolution of the states are

Ca
dTSD

dt
= −λRw +Hain

−Haout
−Qexc −Qla (1a)

Cb
dTSFB

dt
= Hbin −Hbout

+Qexc −Qlb (1b)

mda
dY

dt
= (Fmain + Fsfb)(Yamb − Y )

+ Fadd(Yadd − Y ) +Rw

(1c)

ms
dX

dt
= Fs(Xf −X)−Rw (1d)

where

Hain = Fmain(cda + cvYamb)(Tmain − T0)+

Fadd(cda + cvYadd)(Tadd − T0)
(2a)

Haout = (Fmain + Fsfb + Fadd)·
(cda + cvY )(TSD − T0)

(2b)

Hbin = Fsfb(cda + cvYamb)(Tsfb − T0) (2c)
Hbout = Fsfb(cda + cvYamb)(TSFB − T0) (2d)
Qexc = k1(TSD − TSFB) + k2Xf + k3Tf − k4 (2e)
Qla = k5(TSD − Tamb) (2f)
Qlb = k6(TSFB − Tamb) (2g)
Fs = FfXf/(Xf + 1) (2h)

The air and the product temperatures are assumed in equi-
librium in both stages, i.e. TSD and TSFB are each identical
to the powder temperatures in the SD- and the SFB-stage,
respectively. Hain

, Haout
, Hbin and Hbout

are the enthalpies
of humid air in and out of the SD and the SFB stage,
respectively. The reference temperature is T0 = 25◦C. Ca

and Cb is the heat capacity of the hold-up of air and powder.
Fmain and Fsfb are dry basis inlet air flows. The parameters
Yadd and Fadd are used to correct for air leakage and other
un-modeled inlet air flows such as nozzle cooling air. Qexc

is the heat exchange between the SD and the SFB stages.
Qla and Qlb are heat losses to the surroundings. λRw is
the heat of evaporation. We assume that the evaporation
only takes place in the SD stage. Xf is the dry base feed
concentration and Tf is the feed temperature. ms is the dry



mass of powder and mda is the mass of dry air. The latent
heat of vaporization, λ, and the heat capacities, cda and cv ,
are calculated according to [16].

B. Drying Rate

The drying rate of the product, Rw, is an important
parameter of the model. The thin layer equation describes
the product drying rate, Rw, well [17]

Rw = Ddiff (X −Xeq)ms (3)

Ddiff is an experimentally determined constant called the
drying constant or diffusivity [18]. It may depend on both
the temperature and the moisture of the powder, but in the
present study it is assumed constant.

The equilibrium moisture, Xeq , describes the moisture
content at which water cannot be evaporated from the pow-
der any longer. The Guggenheim-Anderson-de Boer (GAB)
relation is used to describe the equilibrium moisture content
[19] and is fitted to laboratory data obtained specifically from
maltodextrin to get

Xeq =
C ·K ·Xm ·RH

(1−K ·RH)(1−K ·RH + C ·K ·RH)
(4)

where Xm = 0.030723, C = 2.6535 · 10−7 exp
(

6292.1
T

)
and K = 0.057882 exp

(
945.16

T

)
. Xm, C and K are GAB

constants related to monolayer and multilayer properties.
In the computation of Xeq , T = TSFB and RH =
Y/(18.02/28.97 + Y ) · pc/pvapsat(T ). pc is the chamber
pressure and pvapsat is the saturated vapor pressure.

C. Performance

The energy efficiency, the profit of operation and the
product flow rate are the three key performance indicators
(KPIs) for evaluation of the performance of a spray dryer.
There are a number of energy efficiency indices to measure
the energy performance of a dryer. We adopt the definition
given by [20]

η =
λFs(Xf −X)

∆H
(5)

Here λFs(Xf − X) is the energy used to evaporate water
and ∆H is the total energy supplied to the dryer given by

∆H = Fmain(hain − hamb) + Fsfb(hbin − hamb) (6)

in which hamb = (cda + cvYamb)(Tamb − T0). The profit
from operating the spray dryer is the value of the product
minus the raw material and energy costs.

P = ppFs(1 +X)− pfFs(1 +Xf )− pH∆H (7)

The price of the produced powder is pp = 4.47 $/kg, the
price of feed material is pf = 0.447 $/kg, and the price of
energy is pH = 3.4873 · 10−5 $/KJ. The prices are selected
to reflect the industrial prices of natural gas and the price of
the powder. The flow rate of powder is Fp = Fs(1 +X).
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Fig. 2: Model validation dataset. The disturbances i.e. feed
concentration and ambient air humidity are altered from t =
0 to t = 4. The feed flow is altered between t = 4 and t = 8.
The main inlet air temperature, the SFB inlet air temperature
and SFB air flow rate is changed between t = 8 to t = 15.

D. Parameter Estimation

The parameters, θ, in the model (1)-(4) are estimated
from data (not shown here) by minimizing the least squares
simulation error (not 1-step prediction error). The model is
validated against the data in Fig. 2. Generally the model fits
the data well. Table I provides the parameters and all param-
eters are significantly identified. The mass of dry powder and
dry air are determined from physical considerations and fixed
to mda = 10 kg and ms = 15 kg.

The model of the dryer is a deterministic system of
ordinary differential equations, i.e.

dx̄(t)

dt
= f(x̄(t), u(t), d(t), θ) (8)

in which

x̄ =
[
TSD TSFB Y X

]T
(9)

u =
[
Ff Tmain Tsfb

]T
(10)

d =
[
Fmain Fsfb Xf Tf Tamb Yamb

]T
(11)

x̄ is the state vector, u is the manipulated input vector, d
is the disturbance vector and θ is the parameter vector. The
measurement vector, y, and the controlled output vector, z,
are

y =
[
TSD TSFB Y X

]T
, z =

[
TSD Y X

]T
E. Stochastic Model

The deterministic system in (8) is augmented by two
stochastic terms. Consequently, the state evolution and mea-
surement equation of the dryer is described by

x̄(tk + Ts) = F (x̄(tk), u(tk), d(tk), θ) + w̄(tk) (12a)



TABLE I: Estimated parameters for the model (1)-(4)

Symbol Value Unit Symbol Value Unit
Ca 68.266 KJ/K Fadd 256.46/3600 kg/s
Cb 141.36 KJ/K Yadd 8.1799·10−3 kg/kg
k1 0.29268 KW/K Tadd 100.03+273.15 K
k2 1.6207 KW k3 0.073198 KW
k4 31.111 KW k5 0.26981 KW/K
k6 -0.023367 KW/K Ddiff 0.091922

y(tk) = h(x̄(tk)) + v(tk) (12b)
z(tk) = g(x̄(tk)) (12c)

where Ts = 10 s. The state and measurement noise covari-
ances are w̄(tk) = Niid(0, R̄w) and v(tk) = Niid(0, Rv).
The two noise-terms are assumed to be uncorrelated. The
system is simulated using a 4th and 5th order accurate
Runge-Kutta method with variable step size.

III. MODEL PREDICTIVE CONTROL

In this section we present the regulator and the state
estimator in the linear MPC.

A. Background and control objectives

The controlled variables are the exhaust air temperature
TSD, the absolute air humidity, Y , and the product specific
residual moisture content, X . TSD and Y are closely related
to the stickiness of the powder. The set-points for TSD and
Y are a result of empirical experience, and can only be
exactly determined from product and spray dryer specific
trials. Generally, there is a lower limit to TSD and an upper
limit to Y . A simple RTO layer can be designed to provide
such set-points depending on the type of product being
dried. The set-point for X is also product specific. The
manipulated variables are the feed flow, Ff , the inlet main
air temperature, Tmain, and the inlet SFB air temperature,
Tsfb. The inlet air flows, the feed concentration Xf , the
feed temperature, Tf , the ambient air humidity, Yamb, and
the indoor temperature, Tamb, are all measured disturbances.
The states and disturbances are measurable, also in industrial
practice.

B. Plant and Sensors

The non-linear model of the dryer is numerically lin-
earised, by applying small perturbations to the steady-state,
and represented in state space form. To guarantee offset-free
control of the outputs, z, we augment the process model with
a number of integrating disturbances equal to the number
of measured outputs y [21]. Thus, the presence of constant
unmeasured disturbances and plant model mismatch do not
affect the tracking performance. The augmented model has
the following form

xk+1 = Axk +Buk + Edk + σx + wk (13a)
yk = Cyxk + σy + vk (13b)
zk = Czxk + σz (13c)

with x, u, d, y and z being the same variables as in (8), but x
also including the disturbance states. w and v are distributed

Algorithm 1 MPC algorithm

Require: yk, dk, rk, x̂k|k−1, uk−1
Filter:
ek = yk − (Cyx̂k|k−1 + σy)
x̂k|k = x̂k|k−1 +Kfxek
Regulator:
uk = µ(x̂k|k, rk, dk, uk−1)
One-step predictor:
x̂k+1|k = Ax̂k|k +Buk + Edk + σx
Return: uk, x̂k+1|k

by wk ∼ Niid (0, Rw) and vk ∼ Niid(0, Rv). The initial
state is, x0 ∼ N(x̃0, P0). σx, σy and σz contain the constants
related to the linearisation of the model, i.e. σx = x0−Ax0−
Bu0−Ed0, σy = y0−Cyx0 and σz = z0−Czx0. (A,B) is
stabilizable and (Cy, A) is detectable. Thus, we can control
and estimate the states of the dryer.

C. Regulator

The output tracking problem with input and input rate
constraints may be formulated as

min
uk∈Nu

φ (14a)

s.t. xk+j+1|k = Axk+j|k +Buk+j|k

+ Edk+j|k + σx, j ∈ Nu (14b)
zk+j|k = Czxk+j|k + σz, j ∈ Nz (14c)
umin ≤ uk+j|k ≤ umax, j ∈ Nu (14d)
∆umin ≤ ∆uk+j|k ≤ ∆umax, j ∈ Nu (14e)

where

φ =
1

2

Nz∑
j=1

‖zk+j|k − rk+j|k‖2Qz
+

1

2

Nu∑
j=0

‖∆uk+j|k‖2Su

in which ∆uk = uk − uk−1 and Nz = {1, 2 . . . , Nz − 1},
Nu = {0, 1 . . . , Nu−1}. The control and prediction horizons
are, Nz = 20 min/10 s = 120 and Nu = 120. These are
selected sufficiently long such that any end effects have no
influence on the solution in the beginning of the horizon. No
forecasts are available for the references and disturbances,
so we use the same-as-now forecasts, i.e. rk+j|k = rk and
dk+j|k = dk.

The problem in (14) can be converted to a constrained
quadratic problem. Appendix A shows the details of the
derivation of the regulator, the tuning parameters Qz and Su

and the constraints. Algorithm 1 list the on-line computations
in the linear MPC algorithm. The computation of uk =
µ(x̂k|k, rk, dk, uk−1) is performed by solving (14). The
solution of the QP (14) is the computational expensive step in
the MPC algorithm. The QP is solved using quadprog()
in Matlab R© and the worst-case execution time is approx.
12.5 msec.

IV. CLOSED-LOOP SIMULATIONS

In this section we demonstrate the performance of the lin-
ear MPC and compare it to the performance of a conventional
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(a) Measured outputs of the system. The controlled variables are shown with
the associated reference.
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Fig. 3: Closed-loop simulation showing that the MPC tracks
the set-points and rejects the unknown disturbances without
steady-state error.

PID controller. The stochastic system model in (12) is used
in the simulations.

A. MPC Validation

In the following the MPC will be validated against
reference- and disturbance step changes. Fig. 3a shows the
measured and controlled variables and Fig. 3b shows the
manipulated variables. The ambient air humidity changes
from 3 g/kg to 4 g/kg at t = 2.25 hours and the feed
concentration decreases from 50.6% to 45.6% at t = 2.92
hours. The disturbances are treated as unknown to the MPC
in this simulation. At t = 0.25 to t = 1.6 three reference
steps are introduced for each controlled variable. The exhaust
air temperature and humidity, TSD and Y , change slightly
faster than the residual moisture content, X . The MPC tracks
the references and rejects disturbances without any offset.
The system is controlled to a steady-state within reasonable
time. The MPC handles the highly cross coupled system

0 10 20 30 40 50 60 70
75.4
75.6
75.8

76
76.2
76.4

T
em

p.
 [o C

]

 

 
TPID

SD

TMPC
SD

T
min

0 10 20 30 40 50 60 70

71
72
73
74
75

T
em

p.
 [o C

]

 

 

TPID
SFB

TMPC
SFB

0 10 20 30 40 50 60 70
26

28

30

A
bs

. h
um

. [
g/

kg
]

 

 

YPID

YMPC

Y
max

0 10 20 30 40 50 60 70
3.8

3.9

4

4.1

Time [hours]

R
es

. m
oi

. [
%

 t.
m

.]

 

 

XPID

XMPC

X
max

(a) Measured outputs of the system. The controlled variables are shown with
the associated reference.

0 10 20 30 40 50 60 70
80

90

100

F
ee

d 
ra

te
 [k

g/
hr

]

 

 

FPID
f

FMPC
f

0 10 20 30 40 50 60 70

165

170

175

M
ai

n 
te

m
p.

 [o C
]

 

 

TPID
main

TMPC
main

0 10 20 30 40 50 60 70
85
90
95

100
105

Time [hours]

S
F

B
 te

m
p.

 [o C
]

 

 

TPID
sfb

TMPC
sfb

(b) Manipulated inputs to the system.

0 10 20 30 40 50 60 70
59

60

61

62

F
ee

d 
c.

 [%
 t.

m
.]

 

 

X
f

0 10 20 30 40 50 60 70

6

8

10

A
m

b.
 h

um
. [

g/
kg

]

Time [hours]

 

 

Y
amb

(c) Disturbance inputs to the system. The changes are used in feedforward
to the controller i.e. dk+j|k = dk .

Fig. 4: Closed-loop simulation of an industrial disturbance
scenario using an MPC and the conventional PID controller.
The MPC tracks the set-points and rejects the disturbances.
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Fig. 5: The production rate, the energy efficiency and the
profit of drying during the closed-loop simulation in Fig. 4.

dynamics well. The manipulated variables are kept within the
input constraints and input rate constraints. The constraints
are expected to become active occasionally as the load on
the dryer is increased, i.e. as the feed flow, Ff , and the heat
inputs, Tmain and Tsfb, are increased.

B. Industrial scenario

We also perform a closed-loop simulation with a realistic
disturbance scenario from an industrial spray dryer. Thereby
we can compare the achieved performance of the MPC to
the conventional PID controller. Fig. 4 shows the spray dryer
operation when controlled by the MPC and the conventional
PID controller. Fig. 5 shows the KPIs. The disturbances are
known to the MPC as these measurements are normally
available in industry. The disturbances are recorded at a
spray dryer producing whey protein concentrate in the period
8/13/2013 21:30 to 8/17/2013 04:00.

Fig. 4 shows the measured and controlled outputs, the
manipulated variables and the disturbances. The simulation
reveal that the proposed MPC is able to maintain a correct
and constant residual moisture content, X , as well as main-
taining the stickiness related variables, TSD and Y , at their
setpoints. The MPC constantly adjusts the feed flow and inlet
air temperatures to maintain the controlled variables at their
set-points. An increase in the ambient air humidity increases
the humidity in the dryer. Thus, the MPC must decrease
the feed rate i.e. production. An increase in feed water
concentration has the same effect and is also compensated
by a decrease in the feed rate i.e. production.

The conventional PID controller maintains a constant
exhaust air temperature, TSD, by manipulating the feed rate,
Ff . The two inlet air temperatures are fixed. With this
control methodology, no correcting action is taken when
the ambient air humidity increases. Changes related to the
feed concentration are compensated for as the feed water
affects the exhaust air temperature. Thus, on average the
dryer need to dry the powder more than necessary to satisfy
the specifications. The MPC only dries the powder to the
specified level.

Fig. 5 shows the production rate, energy efficiency and
profit of operation during the simulation. On average the
MPC increases the production rate by 7.9%, the energy
efficiency by 4.1% and profit of production by 8.2%. Thus,
the dryer is used both more energy efficiently and increases
the profit of operation significantly.

V. CONCLUSIONS

This paper presents a solution to the control problem
of a two stage spray dryer. The controller is based on a
set-point tracking MPC with output feedback. The states
used in the regulator are estimated by a Kalman filter.
The regulator and the estimator is designed based on the
linearised non-linear system model. The simulations show
that the air temperature and air humidity of the outlet air
from the dryer can be controlled to a set-point as well as the
residual moisture content in the powder. On average during
the disturbance scenario the MPC increases the production
rate by 7.9%, the energy efficiency by 4.1% and the profit
of production by 8.2%. These numbers may be even greater
in industry, as the conventional PID controller is often used
more conservatively than presented in this paper. Thus, the
dryer is used both more efficiently and increases the profit
of operation significantly.

GEA Process Engineering A/S is currently implementing
and testing the proposed control strategy at industrial scale
spray dryers. The control methodology is generally applica-
ble to other foods, chemicals and pharmaceuticals and not
limited to two-stage dryers.
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APPENDIX

In this section we briefly describe the details of the
regulator design.

A. Regulator

The tracking problem in Sec. III-C is solved by for-
mulating the corresponding convex quadratic problem. The
tracking problem is similar to [12]–[14].

Define the vectors Z, R, U and D as

Z =


zk+1|k
zk+2|k

...
zk+Nz|k

 R =


rk+1

rk+2

...
rk+Nz

 U =


uk|k
uk+1|k

...
uk+Nu|k


D =

[
dk|k dk+1|k . . . dk+Nz|k

]T
Then the predictions are

Z = Φxxk|k−1 + ΓuUk + ΓdDk + ΩΣx + Σz

Using the predictions in vector form we can write the
objective function as

φ =
1

2

Nz∑
j=1

‖zk+j|k − rk+j|k‖2Qz
+

1

2

Nu∑
j=0

‖∆uk+j|k‖2Su

=
1

2
‖Zk −Rk‖2Qz

+
1

2
‖ΛU − I0uk−1‖2Su

=
1

2
U ′kHUk + g′Uk + ρ

with

H = ΓT
uQzΓu + ΛTSuΛ

g = −ΓT
uQz (Rk − b)− ΛTSuI0uk−1

ρ =
1

2
‖ − b−Rk‖2Qz

+
1

2
‖I0uk−1‖2Su

where

b = −Φxxk|k − ΓdDk − ΩΣx − Σz

The constraints are assumed constant over the prediction
horizon and umin ≤ uk+j|k ≤ umax and ∆umin ≤
∆uk+j|k ≤ ∆umax may be denoted

Umin ≤ Uk ≤ Umax (15)
bl ≤ ΨUk ≤ bu (16)

where

bl = ∆Umin + I0uk−1, bu = ∆Umax + I0uk−1 (17)

We solve the tracking problem by solution to the following
convex quadratic problem

min
Uk

1

2
UT
k HUk + gTUk + ρ (18a)

s.t. Umin ≤ Uk ≤ Umax (18b)
bl ≤ ΨUk ≤ bu (18c)

The MPC only apply the first u∗0 of U∗k to the process. The
open-loop optimization is repeated at the next sample where
it also utilize the new state estimate x̂k.

The regulator is tuned to penalize deviation in the exhaust
air temperature and humidity by 10 and the residual moisture
content the most by 500. Movements of the feed pump and
inlet air temperatures are penalized, so that the feed pump
is allowed to change very fast.

Qz = diag(
[
10 10 500

]
), Su = diag(

[
0.5 50 50

]
)

The maximum capacity of the feed pump limits the feed
flow. The inlet temperatures, Tmain and Tsfb must be higher
than the ambient temperature, Tamb. Furthermore, the risk of
powder explosions and the risk of scorched particles puts
upper limits on the allowable inlet temperatures. Thus, we
have

0 kg/hr ≤Ff ≤ 200 kg/hr
Tamb ≤Tmain ≤ 220◦C
Tamb ≤Tsfb ≤ 120◦C

We do not impose input rate constraints.


