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Quantum filter for a non-Markovian single qubit
system

Shibei Xue, Matthew R. James, Alireza Shabani, Valery Umyrskii, and lan R. Petersen

Abstract—In this paper, a quantum filter for estimating the
states of a non-Markovian qubit system is presented in an aug
mented Markovian system framework including both the qubit
system of interest and multi-ancillary systems for represeting the
internal modes of the non-Markovian environment. The coloed
noise generated by the multi-ancillary systems disturbs tl qubit
system via a direct interaction. The resulting non-Markovian
dynamics of the qubit is determined by a memory kernel functon
arising from the dynamics of the ancillary system. In principle,
colored noise with arbitrary power spectrum can be generatd by
a combination of Lorentzian noises. Hence, the quantum filtecan
be constructed for the qubit disturbed by arbitrary colored noise
and the conditional state of the qubit system can be obtainedy
tracing out the multi-ancillary systems. An illustrative example is
given to show the non-Markovian dynamics of the qubit system
with Lorentzian noise.

I. INTRODUCTION

The qubit is a fundamental unit of quantum computation
and information, which has been a research focus for the pa
two decades |1]. The nature of quantum superposition endo
a qubit with the capability of carrying more information tha

In this paper, we represent a non-Markovian qubit system
in an extended Markovian system framework. In particular,
n ancillary systems defined on a Hilbert spagg™ are
introduced to play the role of the internal modes of the
non-Markovian environment converting white noise to cetbr
noise. The structure of the ancillary systems determines th
spectrum of the colored noise. Supposing the qubit system is
defined on a Hilbert spadg and the noise field is defined on
a Fock spaces, the Markovian evolution of the augmented
system is defined oy ® h5" @ §. Such an approach was
named as a pseudo-mode model for non-Markovian quantum
systems [[B], [[@] and was applied to model energy transfer
process in photosynthetic complexes|[10]. Similarly, thye d
namics of non-Markovian quantum systems can be described
by a hierarchy equation approadh [[11] where parts of the
equations describe the pseudo-mode dynamics. This has been
applied to the indirect continuous measurement of a non-
Markovian quantum system [12]. However, this pseudo-mode
gpproach has not yet been systematically described so @s to b

mpatible with quantum control theory, e.g., quantumrfitig
theory.

a classical bit. Hence, qubit-based quantum computation ca  The multi-ancillary systems for representing the internal

speed up calculations in a suitable algorithm.

Many potential systems for constructing qubits have bee?

investigated, e.g., nuclear magnetic resonant systenper-su

conducting systems and quantum dots systems [1]. In thes®

potential systems, solid-state systems have been paid mo
attention due to long coherence times, scalability, and/eon

nient operations and readouts [2]. However, due to the myemora

effects in the nature of solid-state systems, non-Markovia

dynamics of qubit systems have to be dealt with [3], where®

the commutation relation of the colored noise is determine
by a memory kernel function of the environment [4]] [5].
Correspondingly, when considering the non-Markovianaffe
of colored noise in classical control engineering, a whitgn
filter is often used by appending the state of the coloredenois

modes of the environment are described by quantum stochasti
ifferential equations (QSDE) in this paper. For the fiotis
output of each ancillary system with a Lorentzian power
ectrum, the spectrum of the colored noise arising form the
cillary systems is a combination of Lorentzian ones such
that colored noise with an arbitrary power spectrum can be
pproximately generated [13]. This colored noise distihies
gubit system via their direct interactions such that theagiyits

tegral differential equation (QSIDE) or a non-Markovian
angevin equation. In addition, the augmented model of the
non-Markovian quantum system can be conveniently destribe
by an(S, L, H) description in an extended Hilbert space which
is compatible with quantum filtering theory. By applying a

model to that of the plant, resulting in a Markovian dynamics

of the augmented states driven by white noide [6], [7].
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probing field into the qubit system, a quantum filter for the
non-Markovian qubit system can be constructed. Due to the
output quadrature satisfying a non-demolition condititire
augmented system state can be estimated by the filter, with
which the non-Markovian dynamics of the qubit system can
be obtained by tracing out the ancillary systems.

The remaining contents are organized as follows. We
briefly review the model of Markovian quantum systems in
Section[l. In Sectiori_1ll, multi-ancillary systems driveay
white noise are introduced for generating multi-Loremzia
noise. In Sectiof 1V, a description of the qubit system isgiv
In Sectior Y, we show that the qubit system satisfies a QSIDE
disturbed by the colored noise from the noise model which is
a combination of Lorentzian noises. A quantum filter for the
non-Markovian qubit system is discussed in Secfioh VI. An
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illustrative example is given in Sectidn VII. Conclusiong®a D. (S, L, H) description

drawn in Sectiol VTII. . . . . :
To concisely describe the interconnection of Markovian

subsystems, thes, L, H) description of quantum systems [15]
has been developed. In terms of tfe L, H) description, the
A. White noise field Markovian system introduced in the above subsection can be

Il. BRIEF REVIEW OFMARKOVIAN QUANTUM SYSTEMS

A Markovian quantum system refers to a quantum systen?yStemat'Ca”y denoted as
interacting with white noise fields. The white noise field can G=(S,L,H) (6)
be defined as e

1 Foo ot where a scattering matri¥ describes the input-output relation
b(t) = \/T/ blw)e™ dw (1) of fields passing through beam splitters, the operator vdcto
T —oo is a collection of system operators interacting with themal
satisfying the delta commutation relations fields, andH is the system Hamiltonian.
[b(t), 7 (¢)] = 6(t — '), [b(t), b(t")] = 0, 2 The (S, L, H) description can also concisely describe the

where the operatdris an annihilation operator of the field on INt€rconnection among subsystems.When we consider tke cas

the Fock space. This white noise field may be described that the input field of the second subsystém is the output
as a quantum stochastic process. With the definitidn (1)’|eld of the first subsyster&, they can be denoted as a series

. . AN productG, <1 G1. In addition, the case that two subsystems
an integrated operator can be defined /s = jto b(t')dt are assembled together without any other connections can be

.. . -t .
whose adjoint isBf = [, bf(#')dt’. They satisfy[B;, B]] =  described by a concatenation prodGgtB G5 [15]. With these
min(t, '), [B, By] = 0 and thus the operatap, = B, + B]  basic notations, a quantum feedback network can be dedcribe
is the quantum analog of the Wiener process aj = by an(S, L, H) description.

b(t)-+b' () is quantum white noise. Note that we have assumed
that the initial state of the field on the Fock spages a

vacuum state such that this process is analogous to Gaussi
white noise with zero mean. The dynamics of the Markovian quantum system can also

_ _ _ be described in the Sdbdinger picture by using a master
B. Dynamical equation of the Markovian quantum system equation for the density matrix of the systethin a Lindblad

En Master equation

Considering a quantum system interacting with the whitg©'™m as
noise field, a QSDE for an arbitrary operatdf of the pi = —i[Hs, pi] + L1.(p); (7)
g;ggmirgssgztem can be written down to describe its Iv'arkO\/la(/]vhere the superoperatd!*(-) is the adjoint of the Lindblad

superopertor calculated &3, (0) = 1 N[O, NT]+ 1[N, O|NT

dX, = (—i[Xy, Hs(t)] + L, (Xy))dt for operatorsV andO with suitable dimensions. Note that we

] T have assumed the field is in a vacuum state. And this Lindblad
+ABXe, L] + [Ly, Xild By ®) form master equation is a differential equation where théest
with a generator variation only depends on the present state showing Maakovi
G(X) = —i[X, Hs] + L£1(X), 4) nature of the dynamics.

where [ is the coupling operator of the system a#d(-) IIl. M ULTI-ANCILLARY SYSTEMS DRIVEN BY WHITE
defines a Lindblad superoperator which can be calculated as "
Lx(0) = $NT[O,N]+1[NT, O]N for two arbitrary operators NOISE
N and O with suitable dimensions. The two terms in the A_ pynamics of multi-ancillary systems driven by white aois
first row on r.h.s. of Eq.[{3) describe the free evolution and
the dissipation process, respectively. And the terms in the To generate colored noise with a multi-Lorentzian spec-
second row describe the influence of the white noise field otrum, we consider: ancillary systems driven by white noise
the system. Such an equation describes the dynamics of th this section. We assume that theth ancillary system is a
system driven by an external white noise field, which has beeMarkovian linear quantum system which is described by an
widely used in the analysis and control of Markovian quantum(S, L, i) description as
systems[[18]. Note that throughout the paper we assumd.

GZ = (L \/%Qk,bdkaliak), (8)

_ _ _ e.g., an optical mode in a cavity, whetsg, is the angular
The input-output relation of the Markovian quantum sys-frequency and, (az) is the annihilation (creation) operator of
tem is an important issue for observing the dynamics of thehe k-th ancillary system. Here the coupling operator is chosen

C. Input-output relations

system, which can be written as as /rax, Where, /7, is a damping rate with respect to the
dBous(t) = Ledt + dB:. 5) white noise field[(lL). For each ancillary system, the scafger

matrix is an identity matrix, which means no scattering pssc
This relation shows the output fieldB,,:(t) not only car- for the fields is involved. Supposing theth ancillary system
ries information of the system but also is affected by noisds defined on a Hilbert spadg, it evolves on a Hilbert space
dB, [19]. he @ 3.



The multi-ancillary systems can be defined as diag[€1(t), &a(t), - -+, &n(t)] with &i(t) = 7_;6—(%+iwk)t,

P ) . k=1,2,-,n.
G, = G,HG:8B.---BG,;B---BG,
(I, M, Hy) E=1.9---.n 9) The power spectral density for each component of the
Y ’ 7 fictitious outputC|(¢) is Lorentzian and calculated to be
on the spacehy” @ §, where M = T'A is a coupling

operator for the multi-ancillary systems with respect tateh %

noise with a damping matri¥ = diag[\/71, /A2, » /7, ] Sk(w) = T k=1,--,n (16)

and a collection of the annihilation operators for the raulti Tt w—w)

ancillary systemsd = [a1, as,--- ,a,])". The internal Hamil-  \where the center frequency, and the linewidthy, are de-

tonian of the multi-ancillary system& 4 can be expressed as termined by thek-th ancillary system’s the angular frequency

Hy = ATQA, whereQ) = diaglwi, ws, -+ ,w,] with angular  and the damping rate with respect to the white noise fieid,

frequencyw for the k-th ancillary systemf = 1,2,---,n.  respectively. The commutation relation f6(¢) is determined

Note that we assume that all the multi-ancillary systems argy a memory kernel function, i.e., the Fourier transform of

driven by the same white noise field. the spectrum|C(t), Ct(t')] = F~'[diag[S1(w),- - - , Sn(w)]],
The unitary evolution for the multi-ancillary systems canWhich is different from that of white noise.

be described by an evolution operat®f in the interaction

picture with respect to the white noise field satisfying a @SD IV. PRINCIPAL SINGLE QUBIT SYSTEM

as follows . : . : :
A single qubit system is a basic unit of quantum compu-

de, = { - (iHA+EMTM)dH—dBIM—MTdBt}@t, (10) tation and quantum information, which is defined on a two-
2 dimensional complex Hilbert spade The quantum informa-

wheredBy = [dB(t),dB(t), - ,dB(t)]T describes the white tion can be encoded in the ground and excited states of asing|
noise process. The generator for the multi-ancillary systess  qubit which are denoted &) = (1) and 1) = [ (1) ,
Go(X,) = —i[Xa, Hal + L (Xa), where X, is an operator )
of the ancillary systems. respectively.
Hence, a QSDE for the annihilation operators veetdior More generally, a density matrip? is introduced to
the multi-ancillary systems can be written as describe the state of an open single qubit system, i.e., one
qubit system interacting with external environments oreoth
dA(t) = _(FT_F i) A(f)dt — TdB; (11) guantum systems, which can be expanded as
1
qa —
with A(t) = @IA@t, where the variation of the operatdris Pr=3 ([ + 200 +yoy + 20%) 17
driven by the white noise proced®;. where
We define " 0 1
F t =
o) = — 2() (12) T 1 o}’
as a fictitious output. Then the fictitious outpUtt) satisfies oy = (1) 61 } )
a QSDE as follows L
rir rir o, = (1) 01 }
dC(t) = _(T +iQ)C(t)dt + TdBt (13) -

are Pauli matrices and is the 2 x 2 identity matrix and

whose formal solution can be expressed as [z,y, z]T is the Bloch vector. For more details, séé [1].

t T .. .
Ct) = ef(r%rﬂmt(j(to) +/ e*(ﬁ%ﬂﬂ)(t#)EdBT In addition, the ladder operators for the qubit system
! (14) [0 o0
with an initial stateC'(¢o). 9- = 1 0|
_ ) . 0 1
B. Multi-Lorentzian spectrum o+ = 0 0

We have assumed that the multi-ancillary systems are g iilized to describe a state flip betweléh and|[1), e.g.,
part of the environment such that the dynamics of the multi-

. \ o_|1) = |0) ando4|0) = |1). The ladder operators are also
ancillary systems are assumed to start from a long time ago §se to describe the interaction with external systems, ie.g
as to letty — —oo. Hence, a stationary version 6f(¢) can

be obtained as the Jaynes-Cummings model [14].

t The Hamiltonian of the single qubit system we considered
C(t) = GICGt = / E(t — 7)b(7)dT, (15) is given as .
o HS = _qaza (18)
which is a convolution involving the white noise 2

field b(t) = [b(t),---,b(t)]T and a kernelZ(t) =  wherew, is the qubit working frequency.
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Fig. 1. Schematic diagram for the direct coupling betweenntlulti-ancillary
systems and the qubit system.

V. SINGLE QUBIT SYSTEM INTERACTING WITH
MULTI-ANCILLARY SYSTEMS

A. Dynamics of the augmented system

In particular, forX’ = X a qubit system operator, Eq. {22)
reduces to

dX; = —i[X,, Hs(8)]dt + (C] [ X, 5] 4 [S], X4]Cy)dt (23)
with X; = U/ XU, and Hg(t) = U/ HsU;. When X’ = C,

i.e., for the operator vector of the multi-ancillary systeme
have

_ rir ~ T _ rr
Thus the solution of’; can be written as
_ 1 [t _
Ol =0l + / =(t — )5 dr (25)
to

which shows the ancillary systems not only depends on the
multi-Lorentzian noise vecto€'(t) but also is disturbed by
the qubit system as indicated by the integral terni.id (25)s Th

In this section, we consider a general case that the singleack action from the system to the ancillary systems will not
qubit system is strongly coupled with ancillary systems via happen in Markovian systems.
their direct interaction as shown in Figl 1, where the multi-
ancillary systems have dyna_m|cs as discussed in the Sect|cg1_ Interaction picture with respect to the multi-ancillasys-
[l The augmented system is defined on an extended SPaGE s
h®bS"™ ® F. Note that the dynamics of the ancillary systems
cannot be eliminated via the adiabatic elimination which is  To show that the qubit system is driven by colored noise,
valid for the off-resonant case, i.e., there exists largemag we can move to the interaction picture with respect to the
frequencies between the qubit system and the multi-angilla multi-ancillary system by defining an evolution operator as
systems|[1]7]. V; = ©1U,, whose evolution satisfies

We assume that the interaction Hamiltonian for the cou-
pling between the qubit system and the multi-ancillary exyst
is In this interaction picture, the system is described by

—i(Ccty = »f
Hy =i(CTE - 210), (19) Gl_,=(—— Hs+i(CIH)T -2TC()  (27)

Vi={—-iHs— (£TC(t) - CT(H)T)}Vi.  (26)

where the direct coupling operator of the qubit systéngan ) .

be expressed a& = [\/R101, /202, ,\/Fnon)" With where C(t) has a Lorentzian spectrum. Hence, it is clearly
the coupling strengtheg/rz and the qubit system operators S€€n that the system is driven by multi-Lorentzian noiséén t
ok, k=1,2,--- n. Note thatC = —%T as given in[(IR). Interaction picture.

Note that in the interaction picture, the system is driven
aﬁy multi-Lorentzian noise as given in Eg$. (26) amnd](27).
The evolution of an operatoX for the qubit system in
the interaction picture is equivalent to that in the augreént
system due to

This augmented system can be described by using
(S, L, H) description as

Gq_QZ(I,]\/f,Hs-FH[-FHA). (20)

The evolution operatot/; of the total system satisfies a

QSDE as foll ViIXV, =Ufe.xelU, = Ufxe,0[U, = U/XU,.
as 1oliows

(28)

1 Hence, the operator evolution for the qubit system in Eq) (23

AU, = {—i(Hs+ H;+ Ha)dt — MM+ is disturbed by multi-Lorentzian noise as well.
2

dB{M — MTdB¢}T,. (21)

C. Non-Markovian dynamics of the qubit system and its
Markovian limit
Let X’ denote any operator for the augmented qubit and an-

cillary system. Its evolution can be defined &= U, X'U,,
which satisfies a QSDE written as

+([X1, OS] + [£]C,, X{))dt

with E[t = U:(HS + HA)Ut, Mt = UJMUt, ét = U:CUt,

and¥, = U/xU,.

Substituting the solutior (25) int@_(23), a non-Markovian
Langevin equation for the qubit system can be obtained as

Xy = —i[Xy, Hs(t)] + C1(1)[Xe, S + [5f, X ]C (1)
+D(E", £N):[X,, 2 + £, X,IDEZ).  (29)
where the convolution terms are expressed as
_ 1 [t _
D(EX); = 3 /t0 E(t—7)%,dr (30)
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Fig. 2. Schematic diagram for probing a non-Markovian quansystem.

In particular, whens; = o5 - = o, = o, i.e., every
ancillary systems couples with the qubit system via an idaht
operatoro, the non-Markovian equatiof (R9) is simplified as

—i[Xy, Hs(t)] + T () [Xy, 5¢] + [6], X]e(t)
+D(¢*, M), [ Xy, 5] + 6], Xi)D(C, 7)s,

wheres, = U, oU,. The kernel functior(t) can be expressed

X,

(31)

as .
t) = rré(t) (32)
k=1
whose corresponding power spectrum density
w) =Y kpSk(w) = Z (33)
k=1 k=1 ’“ + (W wk)?

is a combination of Lorentzian spectrum with weigkis k =
1,2,--- ,n determined by the coupling strengthes siggé&)

has a Lorentzian spectra as [n](16). The colored noise ter

¢(t) can be expressed as

0= [ (3 vRes(t—)otriar,
k=1

to

(34)

which is driven by the white noisi(t).

system adJ, which satisfies a QSDE as follows

dU, =

1

{—i(Hs+ Hr+ Ha)dt — 5MTMdt
1

—ELTLdt +dB{M — M1dB,

+dBJL — L1dB}T. (36)

Then a QSDE for an operatd¢’ of the augmented qubit and
ancillary systems defined dn® h$™ can be derived as

X; = -i[X}, Ht]dt + (X, CI%] + [2ICy, X{))dt
(L (Xp) + L3, (X7))dt
+(d~Bi[~X£,~ (t)] + [JYIT(t},Xé]dBt)
+dB] X/, L] + [L}, X})dB;, (37)
WhereX’ Ui x't,, Ht U/ (H5+HA)Ut, ¢, =U/cU,,
Et Ut EUt, L, = Ut LUt, M( ) Ut MU; anddBt is the

probing field process.

Note that supposing an operator of the augmented system
can be denoted a§’ = X,® X, the generator can be written

as
Or(X') = Gu(X,) ®X,+ X, ®G,(Xa)
—i[X’,HI], (38)
where
Gq(Xq) = —i[Xg, Hs]+ LL(Xg) (39)
ga(Xa) = _i[Xav HA] + ‘CM(XG) (40)

are the generators for the qubit system and the ancillary

System, respectively.

One can write down the Langevin equations for the oper-
ators of the qubit system. However, due to the commutation
relations for the operators of the qubit system, these amqsat
are nonlinear. Hence, it would be better to describe the
augmented system by using a master equation.

This Langevin equation (81) coincides with the existingB. Unconditional Master equation

non-Markovian Langevin equations whose integral terms rep
resent the memory effedt![3]./[4]. Note that by choosing the.
the aargul

parameters of the multi-ancillary systems, e.g.,
frequencywy, and the damping ratg,, or the coupling strength

ki, the resulting noise spectruf {33) can be approximatel

shaped as an arbitrary noise spectrum [13].

VI. QUANTUM FILTERING FOR NON-MARKOVIAN

QUANTUM SYSTEM

A. The augmented system under a probing field

To estimate the dynamics of the non-Markovian qubit

By using the fact that the expectation of an operaXdr
in the Heisenberg picture is equal to that in the Sdhmger
picture, we can obtain an unconditional master equation for
the augmented qubit and multi-ancillary systems as

—i[Hgs + Ha, pt] + Ly (pt) + L, (p1)
+[OT23 Pt] + [ptv ZTC]? (41)

where p; is the unconditional state of the augmented system
and the superoperatof*(-) is the adjoint of the Lindblad
superoperator.

Yy

b

As can be seen from Eq._(41), the state evolution of the

system, a quantum filter can be constructed by using a probirgugmented system is Markovian, where the state variation

field defined on a Fock spa@, as shown in Fig.]2. The total
systemGr can be described as

Gr (35)

(Iv( ]\L/[ )7HS+HI+HA)

only depends on the present state. One can also obtain the
unconditional statey} of the qubit system by calculating

pi = tralpd], (42)
which will not satisfy a Markovian evolution. Note that,[]

where L is the coupling operator of the qubit system for themeans the partial trace with respect to the multi-ancillary
probing field. We denote the evolution operator of the totalsystems.



C. Belavkin quantum filter White Noise
Homodyne Detector

Using the probing field, the system can be continuously
monitored via homodyne detection, where a quadrature of the —~
probing field is detected and can be used as an input to a

guantum filter. Probing Field

It is easy to check that the probing field in a vacuum Beam Qubit System&
state satisfies a non-demolition condition which means the Splitter Quantum
continuous measurement of the field does not change the . Filter
observable of the qubit systerh [19]. Also, we assume the Ancillary System
detection efficiency of the homodyne detector is perfechwit N
100% detection efficiency.

Fig. 3. An illustrative example of the non-Markovian qubyjstem
Hence, we can follow an orthogonal projection approach to

obtain a Belavkin quantum filter [19], [20] for the augmented

system as 0.05 ‘ ‘ ‘ ‘
-005F — @) [
dm(X') = m(Gr(X")dt — (e (X'L+ LTX") = m(X') 03] — .0 |]
xmi (L + LY)(AY; — m(L 4+ LT)dt)  (43) ~0.25) — @y
. . =035 20 40 60 80 100
where X’ is an operator of the augmented systém.is the 08 ‘ ‘ ‘ —
output field andiW = dY; — (L + L1)dt whereW is called 0.4 — @0
the innovation process and is equivalent to a classical &vien 0.0 - <”<;n(t>f u
process. The estimate of an observalilg is defined by a -0.4p — e @)
conditional expectation aX; = m(X’) = E[X]|)}], where _?'zo 20 10 60 80 100
Y, is a commutative subspace of operators generated by tt 08 — w0
measurement resulis(7), 0 < 7 < t. Note that the increment 0.4 _ <U"(m 1
dW is independent ofr.(X'),0 < 7 < t. 0.0 _ <a”m o]
-0.4f v /4
~0% 20 40 60 80 100
D. Stochastic master equation “at

The conditional expectationr;(X’) is defined for the
augmented system and thus a conditional dengityor the

- Fig. 4. The d i f ob bles for th bit system ith bon-
augmented system can be defined by ig e dynamics of observables for the qubit system i n

Markovian and Markovian cases. The unconditional and aegtaonditional
expectation of observables in the non-Markovian case anetdd as(c.(t))
Wt(X/) = tr[ﬁtX/]. (44) (green lines) anda.(t)) (blue lines), respectively. For the Markovian qubit,
the unconditional expectation of observables are denote& (t)) (red
Hence, a stochastic master equation for the augmentedrsysté"®s
can be obtained from the quantum filter as

VII. AN ILLUSTRATIVE EXAMPLE

dpe = Gp(pe)dt + Fr(pe)dW (45)
In this section, an example of a single qubit system coupled
with with one ancillary system (i.en = 1) which converts white
noise to Lorentzian noise is given in Fig. 3. Here, the direct
Fr(pt) = Lpe+peLT —tr[(L+ LYp)p,  (46)  and field coupling operators are specifiedsas: k1o, and

L = \/740., respectively. The corresponding parameters are
which is a Markovian stochastic master equation. The supeset asv; = w, = 10GHz, x; = 1, andy, = 0.8. The damping
operatorGr. is the adjoint ofGr. rate of the ancillary system with respect to the white noisiel fi

. . .is v1 = 0.6. The single qubit system is initialized in a state
However, a stochastic master equation for the densm(?ﬂra ) geq y
z)-

operatorp] of the qubit system is not in a Markovian form. 2
Instead, we can trace out the ancillary system to obtain the Fig.[4 shows the evolution of both the unconditional and

conditional state of the qubit systepd as averaged conditional expectation values of the obsersable
oy, ando, for the qubit system. The conditional stagige for
Pl = tralpt]- (47)  the augmented system can be obtained from the quantum filter

(45) and thus the conditional expectation of observables fo
In practice, one cannot obtain an exact descriptiopfotlue  the qubit system can be calculated @ = tr[(c ® I)p],
to the infinite dimensional nature of the ancillary systemswhereos is an observable of the single qubit system, esg.,
However, a truncation can be made for the ancillary systemgan beo,, o, or o,. Here,I is the identity matrix defined on
i.e, we can assume it is/s-level system and thus it is possible the Hilbert space of the multi-ancillary systems. The ageda
to calculate an approximation to the partial trace (47). conditional expectationgs, , .) are plotted as blue lines,



which are obtained from the average for 500 realizations ofi0] J. Roden, W. T. Strunz, and A. Eisfeld, “Non-Markovianagtum state
the trajectories. The green lines represent the uncoaditin diffusion for absorption spectra of molecular aggregatésChem. Phys.
expectations(c. , .) which are obtained from the results of Vol 134, p. 034902, 2011. _ _

the master equation of the augmented sysfer (41). It show&! J- Ma, Z. Sun, X. G. Wang, F. Nori, “Entanglement dynasnaf two

the quantum filter can estimate the non-Markovian evolutiort12 q:b'tssh'nba gon:n dbathphélsk RSV'VCEO:' 85;5 ) 0:.32323’ 2012. "
Of the Single qult SyStem. ] . apanli, J. rRoden, an . b. aley, ontinuous meAven

of a non-Markovian open quantum systerRhys. Rev. Left.vol. 112,
Compared with the non-Markovian trajectories, the uncon- P- 113691’ 2014. - _ _
ditional expectation values of the observables o,, ando [13] P. Stenius and A. Imangtu, “Stochastic wavefunction methods beyond
Y z

. . . the Born-Markov and rotating-wave approximation€uantum Semi-
for the qubit system in the Markovian case are also plotted  (jass. Opt. vol. 8, pp. 283-292, 1996. i N

as the req Ilnes_ In F'@Mv where the_qu!t IS d"'eCt.Iy OP€N14] D. F. walls and G. J. Milburn, “Quantum optics (2nd eg.Berlin:
to the white noise field and the probing field. In this case, ~ springer, 2008.

the system dynamics obeys a Markovian master equation g&] J. Gough and M. R. James, “The series product and itsicaioh
pg = —i[Hs,p?] + ﬁg(pg) + ﬁ*i(pg)_ It shows that not only to quantum feedforward and feedback networkEEE Trans. Autom.
the qubit in the Markovian case damps faster than that in the ~ Control vol. 54, no. 11, pp. 2530-2544, 2009.

non-Markovian case but also the stationary states of thé quil16] J. Gough, "Quantum Stratonovich calculus and the quantong-
in the two cases are different Zakai theorm,”J. Math. Phys.vol. 47, no. 11, p. 113509, 2006.

[17] A. C. Doherty and K. Jacobs, “Feedback control of quantystems
using continuous state estimatiofhys. Rev. Avol. 60, no. 4, pp. 2700-
2711, 1999.

[18] C. W. Gardiner and P. ZolleQuantum noiseBerlin: Springer, 2000.
In this paper, we have investigated a non-Markovian quanpg] L. Bouten, R. V. Handel, M. R. James, “An introduction dgoantum
tum system in an extended Markovian representation frame- filtering” SIAM J. Control Optim.vol. 46, no. 6, pp. 2199-2241, 2007.
work, where multi-ancillary systems are introduced to @hv [20] V. P. Belavkin, “Quantum diffusion, measurement, areting” Theory
white noise to colored noise with multi-Lorentzian spestru Probab. Appl, vol. 38, no. 4, pp. 573-585, 1994.
The multi-ancillary systems of this model play the role of th
internal modes of the environment resulting in non-Markovi
dynamics of the qubit system. Such a model is also compatible
with methods of quantum control theory so that a quantum
filter can be constructed to estimate the state of the non-
Markovian system. An illustrative example involving qubit
cavity systems has shown the quantum filter can estimate the
non-Markovian dynamics of the qubit system. In principle,
our multi-ancillary model can approximately capture a non-
Markovian environment with an arbitrary spectrum by redis-
tributing the multi-Lorentzian spectrum. Then, a robusamtu
tum filter for any non-Markovian systems can be constructed
in future work.

VIIl. CONCLUSION
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