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Identifying parameters in active magnetic bearing system using LFT
formulation and Youla factorization

Jonas S. Lauridsen1, André K. Sekunda2, Ilmar F. Santos3 and Henrik Niemann4

Abstract— In this paper, a method for identifying uncertain
parameters in a rotordynamic system composed of a flexible
rotating shaft, rigid discs and two radial active magnetic
bearings is presented. Shaft and disc dynamics are mathe-
matically described using a Finite Element (FE) model while
magnetic bearing forces are represented by linear springs
with negative stiffness. Bearing negative stiffness produces an
unstable rotordynamic system, demanding implementation of
feedback control to stabilize the rotordynamic system. Thus, to
identify the system parameters, closed-loop system identification
techniques are required.

The main focus of the paper relies on how to effectively
identify uncertain parameters, such as stiffness and damping
force coefficients of bearings and seals in rotordynamic systems.
Dynamic condensation method, i.e. pseudo-modal reduction, is
used to obtain a reduced order model for model-based control
design and fast identification.

The paper elucidates how nodal parametric uncertainties,
which are easily represented in the full FE coordinate system,
can be represented in the new coordinate system of the reduced
model. The uncertainty is described as a single column vector
of the system matrix A of the full FE model while it is
represented as several elements spread over multiple rows
and columns of the system matrix of the reduced model.
The parametric uncertainty, for both the full and reduced FE
model, is represented using Linear Fractional Transformation
(LFT). In this way the LFT matrices represent the mapping
of the uncertainties in and out of the full and reduced FE
system matrices. Scaling the LFT matrices easily leads to the
amplitudes of the uncertainty parameters.

Youla Parametrization method is applied to transform the
identification problem into an open-loop stable problem, which
can be solved using standard optimization methods.

An example shows how to decouple and identify an un-
certainty in the linear bearing stiffness of a reduced FE
rotordynamic system.

I. INTRODUCTION

The Active Magnetic Bearing (AMB) has many advan-
tages compared to conventional fluid film bearings and ball
bearings, such as no mechanical contact, no lubrication,
low maintenance, practically no friction, low vibration level
and high rotational speed, which makes it extremely useful
in special environments such as cleantech, subsea among
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others. Today the AMB is widely used on several types of
industrial applications such as centrifugal compressors, turbo
expanders, blood pumps, centrifuges, machine drilling tools,
energy storage flywheel etc. The AMBs have been applied in
turbomachinery equipment with capacities that range from a
few kilowatts up to 29,000 kW and with operation speed up
to 60,000 RPM.

Rotors levitated by AMB’s are essentially unstable sys-
tems whose properties cause several challenges to the design
of active control system due to: gyroscopic effects, mass
unbalance, rotor flexibility, aerodynamic excitations among
others. It is essential to have a global mathematical model
which precisely predicts the real plant dynamics, in order to
design a high performance control system and to predict its
stability and performance.

Due to assembly tolerances and simplified model assump-
tions, discrepancies between the model and real plant typi-
cally exist and adjustment of some of the model parameters
are often needed. System identification techniques should
therefore be applied to find the deviation between model
and the real plant, toward more accurate global mathematical
models, which in turn makes improved controller design
possible.

Due to the fact that AMB systems are open-loop unstable,
input-output data is only possible to gather in a closed-
loop scheme with a stabilizing controller. Standard open-loop
identification methods are therefore ill suited [3] since they
typically assume that the measurement noise is uncorrelated
with the system inputs and outputs, which does not holds,
once the controller action links input and output signals.

There are several methods which take into account that
the plant is part of a closed loop scheme [3], [7], [14]. Each
method has advantages and the method used in this paper is
chosen for the easy translation to fault diagnosis of param-
eters. In this paper a method for closed-loop identification
of the rotordynamic system (turboexpander) using a coprime
factorization is proposed. The method is based on the well
known Hansen scheme [17]. However classical identification
using the Hansen scheme makes it difficult to take advantage
of physical knowledge of the plant. The method proposed in
this paper is therefore an extension which makes it possible
to identify specific plant parameters through the identification
of the open loop error dynamics. The method proposed in
this paper has also been applied to estimate parametric faults
in systems[1], [2].

The main originality of the work relies on parametrization
and identification of uncertainties in FE rotordynamic sys-
tems. Focus is put on how LFT representation of a reduced



system can be obtained based on a full FE representation of
a rotordynamic system.

This paper deals with a 700 kW turboexpander supported
by AMB designed for air separation units. The turboexpander
can essentially be considered as a flexible rotor spinning
at angular velocities up to 31500 RPM, levitated by AMB
forces. In this paper the modelling of the shaft is carried
out using FE method including gyroscopic effects [11], [12],
and the forces of the AMB have been characterized using
the basic laws of electromagnetism [10].

The paper is structured as follows: Section II introduces
the identification method of unstable systems based on Youla
parmetrization; Section III contains a description of the
system to be identified, modelling and reduction of the sys-
tem, followed by representation of the uncertainty; Section
IV discuss results obtained from a simulation example of
applying the identification method to a plant with parameter
uncertainties; Section V contains a conclusion on the results
presented in the paper.

II. METHOD

Identification of system using Coprime factorization

In this section a method for identification of closed-loop
systems using coprime factorization is given. The method
uses the coprime factorisation of plant and controller and is
based on the theory outlined in [4]. The closed-loop scheme
is given as shown in Fig. 1. Let G = G(0) be the nominal

r2

r1 + K + G(θ) yū u

Fig. 1. Closed-loop system representation.

plant i.e. initial model guess and K be a stabilising controller
to both the real plant G(θ) and the nominal plant G, where
θ is the parameter uncertainty. Then G and K are given as:

G = NM−1 = M̃−1Ñ (1)

K = UV −1 = Ṽ −1Ũ (2)

For the 8 matrices given in Eq. (1) and Eq. (2) to be coprime
factors, the double Bezout identity shown in Eq. (3) have to
be satisfied.[
I 0
0 I

]
=

[
Ṽ −Ũ
−Ñ M̃

] [
M U
N V

]
=

[
M U
N V

] [
Ṽ −Ũ
−Ñ M̃

]
(3)

With a coprime factorization of the nominal plant G and
of the controller K stabilizing both the real plant G(θ) and
the nominal plant G(0), Eq. (4) gives a parametrization of
all stabilizing controllers, for the nominal plant, using the
stable transfer matrix Q, from ε to η shown in Fig. 2 [4].

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃) (4)

This controller can be represented as a LFT [6].

K(Q) = Fl

([
UV −1 Ṽ −1

V −1 −V −1N

]
, Q

)
(5)

= Fl(Jk, Q) (6)

Equivalent, all plants stabilized by K can be parameterized

+ Jk

Q

+ G(θ)r1
e

η

ū

ε

u

r2

y

Fig. 2. Closed-loop system representation with all stabilizing controllers
parametrised using a stable transfer matrix Q.

as Eq. (9). Taking advantage of the relationship given in
Eq. (7) between the parametrized controller K(Q) and the
parametrized plant G(S) [4], it is possible to show that
Eq. (9) is a parametrization of all plants stabilized by the
controller K using the stable system S(θ) being the transfer
matrix from η to ε shown in Fig. 2.

S = Fl(Jk, G(S)) (7)
ε = S(θ)η (8)

G(S) = (M̃ + SŨ)−1(Ñ + SṼ )−1 (9)

If the nominal plant is equal to the real plant, S(θ) is
zero. As the nominal plant differs from the real plant, S(θ)
increases and can thus be considered as a expression of the
deviation between the nominal and the real plant.

A standard Luenberger observer is used for implementa-
tion of S(θ) for simulation examples. However any controller
with its associated coprime factorization can be used. For a
system such as shown in Fig. 2, the closed-loop transfer
function can be written as [1].

yu
ε

 = Tcl(S)

r1

r2

η

 (10)

Tcl(S) =

(N + V S)Ũ (N + V S)Ṽ N + V S

(M + US)Ũ (M + US)Ṽ M + US

M̃ + SṼ Ñ + SŨ S

 (11)

With input and output of the system defined, the uncertainties
need to be given in regards to S(θ). Parameter uncertainties
are given using a LFT description. Plant uncertainties are
therefore given as in Eq. (12).

G(θ) = Fl

([
Gyu Gyw

Gzu Gzw

]
, θ

)
(12)

Here θ is a diagonal matrix with a parameter uncertainty
in each diagonal element. It is worth noticing that G(0) is
equivalent to the nominal plant. A description of how to
represent the parameter uncertainties as an LFT is shown in
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Fig. 3. Cross-section of the turboexpander testrig.

Section III-.7. With the uncertainties defined as in Eq. (12),
S(θ) is found in [1] to be

S(θ) = Fl

([
0 M̃Gyw

GzuM Gzw +GzuUM̃Gyw

]
, θ

)
(13)

Due to η not being correlated with the disturbances r1 and
r2, Eq. (10) can be used for identification of the open loop
error S. Estimation of the open loop error S from η to ε
simplifies to Eq. (14), which can be considered as an open-
loop identification problem of the stable system S(θ) with
uncorrolated noise in the prediction [4].

ε = S(θ)η +D1r1 +D2r2 (14)

Identification of parameter uncertainties using a LFT scheme
is a well studied subject in open-loop identification of Linear
Parameter Varying (LPV) systems [7], [8], [9]. The approach
is to define a cost function and minimize the error between
the measured and calculated output of the system. The cost
function is given in Eq. (15) in its approximate quadratic
form.

J(θ) =

∫ t

0

1

2
(ε− S(θ)η)2dt (15)

The goal is to find the global minima of (15) which can
be done using several different methods. In this paper
the MATLAB function fminsearch is used, which is an
general unconstrained nonlinear optimization method. Other
methods, like gradient methods, has shown to yield faster
convergence for specific types of plants, however this has
not been the main focus.

III. SYSTEM AND UNCERTAINTY
REPRESENTATION

In this section, the rotordynamic system is described
and it is shown how dynamic uncertainties from such a
system can be extracted and represented in Linear Fractional
Transformation (LFT) form.

1) The real system: A cross-section schematic of the
turboexpander investigated is shown in Fig. 3. The turboex-
pander essentially consists of a shaft levitated using axial and
radial AMBs. It is assumed that the only forces acting on the
rotor are the left and right radial AMB. The displacement
sensors are placed close to the AMBs. The placement of the
sensors and actuators will be denoted by Ax, Ay and Bx,
By .

The analysis will be focused on rotor lateral movements
and for simplicity the rotor axial movements will not be
investigated. The term AMB will therefore refer to the radial
AMBs in the following.

2) Model of AMBs: The model of the magnetic bearing
is simplified to describe the forces acting on the rotor as
function of the rotor lateral displacements s and the control
current ix. The linearized expression of the forces are given
as [10]

fb(ix, s) = Kiix +Kss (16)

where Ki are Ks are constants. Ks can be considered as
the stiffness of the bearing forces which is negative and thus
makes the system open-loop unstable. The dynamics of the
electromechanical system including the inductance of the coil
and the amplifiers have been neglected.

3) Model of shaft: The rotating shaft has been modelled
using the FE method and Bernoulli-Euler beam theory taking
into account the gyroscopic effects of the shaft and discs

AMB AMBSensor Sensor

Fig. 4. Discretization of the shaft. Placement of sensors and AMBs are
shown.



[11], [12]. The shaft have been dicretized in 40 node points
with 4 degrees of freedom each, which is x and y direction,
and the rotation around the x and y axes, which yields
320 states in total. The discretization of node points of the
shaft and the placement of sensors and AMBs is shown in
Fig. 4. The goal is to control the rigid body motion of the
rotating shaft and it is possible to obtain a reduced model
of the rotor-bearing system with 8 states by using pseudo-
modal reduction [15], [16] and removing all flexible modes,
described in the following section. The reduction method
are later used for LFT representation of uncertainties in the
reduced FE plant model G.

Hence a MIMO system with 4 inputs (control current)
and 4 outputs (rotor displacement) and 8 states have been
obtained.

4) Model Reduction: The full order rotordynamic system
Gf consisting of the finite element model of the shaft and
negativ stiffness forces from the AMB can be written in state
space form

ẋf = Afxf +Bfu, y = Cfxf (17)

The system left and right eigenvectors (Ul and Ur) are found
by solving the eigenvalue problem

AfUr = λUr (18)

AT
f Ul = λUl (19)

The system can be sorted by the undamped natural frequen-
cies, |I(λ)|, since only the low frequency dynamics are of
interest. The eigenvectors for the corresponding eigenvalues
are used to create right and left transformation matrices

Tr =
[
Ur1 Ur2 ... Urn

]
(20)

Tl =
[
Ul1 Ul2 ... Uln

]
(21)

The reduced system is then given as

ẋc = Acxc +Bcuc, yc = Ccxc (22)

where

xc = Tl
Txf (23)

Ac = Tl
TAfTr (24)

Bc = Tl
TBf (25)

Cc = CfTr (26)

In this way the system is decomposed into a reduced system
Ac which contains the dominant dynamics and the residual
system Ares containing the residual dynamics, as shown
below [

ẋc
ẋres

]
=

[
Ac 0
0 Ares

] [
xc
xres

]
+

[
Bc

Bres

]
u (27)

Fig. 5 shows the singular values of the full and the reduced
system. It is seen that the reduced 8 states system fits the
dynamics very well up to approx. 20× 103 rad/s which is
above the frequency range of interest. The singular values are
shown for the rotordynamic system when angular velocity is
31500 RPM since the system identification is assumed to
take place at nominal operational conditions.
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Fig. 5. Singular values of the full and the reduced rotor dynamic system
shown at nominal angular velocity of 31500 RPM

5) Complex separation: The reduced state space model
obtained by modal reduction consist of complex coefficients.
This model can be rewritten to real form with 2n states, one
state to represent the real part and one for the imaginary part
[13]. This can be done by transforming the TT

l and Tr to

Trsep =
[
R(Tr1) −I(Tr1) ... R(Trn) −I(Trn)

]
(28)

Tlsep =
[
R(Tl1) I(Tl1) ... R(Tln) I(Tln)

]
(29)

Such that the new system Gs with new state vector xs and
the matrices As, Bs and Cs are given as

ẋs = Asxs +Bsu, y = Csxs (30)

xs =
[
R(xc1) I(xc1) ... R(xcn) I(xcn)

]T
, (31)

As =


. . . 0

Acii

0
. . .

 , Acii =

[
R(λi) −I(λi)
I(λi) R(λi)

]
,

(32)
Bs = [R(Bc1), I(Bc1)...R(Bcn), I(Bcn)]

T
, (33)

Cs = [R(Cc1),−I(Cc1)...R(Ccn),−I(Ccn)] , (34)

6) Reduction of uncontrollable and unobservable modes:
After complex separation the system consist of 2n states.
By considering which states that is controllable and which
are observable it becomes clear that some states are uncon-
trollable and can be removed. A similarity transform Tsim
exists which transforms the complex separated system Gs

into a controllable part and an uncontrollable part which can
be removed

Ā = TsimAsT
T
sim (35)

B̄ = TsimBs (36)

C̄ = CsT
T
sim (37)

and the transformed system has the form

Ā =

[
Ancon 0
A21 Acon

]
, B̄ =

[
0

Bcon

]
, C̄ =

[
0

Bcon

]
(38)



where Acon, Bcon, Ccon represents the controllable system.
The final transformation matrices denoted TR and TL can

thus be found as the lower part of the products TrsepT
T
sim

and TT
lsep

Tsim

Tr∗ = TrsepT
T
sim (39)

Tl∗ = TsimT
T
lsep (40)

TR = Tr∗(: , n+1:2n) (41)
TL = Tl∗(n+1:2n , :) (42)

Thus the final reduced system matrices can be written as

A = TLAfTR (43)
B = TLBf (44)
C = CfTR (45)

The transformation matrices TR and TL will later be used
to map the uncertainty from the full system to the reduced
system.

7) Identification of parameter uncertainty using LFT of
full system: LFT can be used for representing a nominal
system with a parameter uncertainty. A lower LFT can be
written as [6]

Fl(G, θ) = Gyu +Gywθ(I −Gzwθ)
−1Gzu (46)

If Gzw is zero, the LFT representation can be simplified to

Fl(G, θ) = Gyu +GywθGzu (47)

Gyw and Gzu can be considered as the mapping of the
uncertainty in and out of the the states of the system, where
Gyu can be considered as the nominal system as if the
uncertainty is zero (G(0)).

It is chosen to investigate the possibility of identifying the
uncertainty of a parameter in the system. A change in the
negative bearing stiffness in a single direction, in a single
position, is considered, which happens at e.g. By , see Fig.
4.

It is therefore investigated if the change in negative stiff-
ness can be described by an LFT using Gywf

and Gzuf

scaled by θ, on the form shown in Eq. (47). The subscript
f denotes the full system i.e. the full finite element system
with 40 nodes and 320 states (before model reduction). It
can be proved that a change in stiffness (or damping) at a
single direction at e.g. By corresponds to a change in a single
column of system matrix A, which corresponds to the node
j where the stiffness has changed.

A∆f
=


0 . . . 0 a1,j 0 . . . 0
0 . . . 0 a2,j 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 ai,j 0 . . . 0

 (48)

Gywf
and Gzuf

can then easily be obtained by selecting
Gywf

to be the column of system matrix A which has

changed

Gywf
=


a1,j

a2,j

...
ai,j

 (49)

and select Gzu to be

Gzuf
=
[
0 0 ... 1 ... 0 0

]
(50)

where 1 should be placed at the position of column which
has changed in A (node position). θ is simply selected to
1 which would correspond to a 100% change in the system
parameter.

8) LFT of reduced system: The LFT of the reduced
system can now simply be described using the transformation
matrices given in Eq. (41) and Eq. (42) to transform the
uncertainty mapping Gywf

and Gzuf
from the full finite

element system to the reduced system on modal form given
by Eq. (43).

Gyw = TLGywf
(51)

Gzu = Gzuf
TR (52)

IV. RESULTS

This section demonstrates that it is possible to identify
an uncertainty using the method introduced in Section II
on a rotordynamic system and uncertainty representation as
presented in Section III.

Before identification of the plant is conducted, it is shown
why open-loop identification of the plant is not possible.
On Fig. 6 the poles and zeros of real plant G(θ) is shown,
hence the real plant to be identified. It is easy to see that
any input given to the plant would make the output increase
to infinity, due to poles in the right half plane. Such right
half plane poles are not present in S(θ), as can be seen in
Fig. 7, why open-loop identification of S(θ) is possible.
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Fig. 6. Pole-Zero plot of G(θ). Poles are marked using ×’s and zeros are
marked using ◦’s.

A simulation is conducted with a controller stabilizing both
nominal model plant and the real plant. A stiffness reduction
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Fig. 8. Comparison of the singular values of the real system to be identified
and the nominal system

of 50 % (θ = 0.5) is introduced to the real plant compared
to the nominal plant model.

The frequency response of the nominal and real plants are
shown in Fig. 8. The plot shows that the uncertainty injected
through the LFT change the dynamics of the system.

For the identification, a random binary signal is chosen for
η and both r1 and r2 are set to 0. The variables η, r1 and r2

are shown in Fig. 2. A time period of 0.5 s and a time step
of 0.001 s are chosen. The uncertainty, θ, is identified to be
0.502 which is practically the same as the theoretical result
(θ = 0.5).

V. CONCLUSION

The problem of estimating uncertain dynamics in a ro-
tordynamic system supported by AMB is considered. Finite
element and modal reduction methods are applied to establish
a reduced model of the system and to parametrize uncertain
dynamics in the system into uncertain parameters, which then
can be identified. Youla parametrization theory is applied to
show how the unstable system in connection with a standard
observer based feedback structure can be used to transform

the identification problem into an open loop stable formula-
tion describing the change of dynamics between the modelled
system and the real system. This method is proposed for
rotordynamic systems, in which the finite element model of
shaft is known in advance, but where e.g. bearing or seal
dynamics is uncertain.

From the example it can be concluded that the method
works when considering an ideal case where the bearing
stiffness in one direction is uncertain. The ideal case is
used to give a clear overview of the methodology proposed.
The example shows that the bearing stiffness is efficiently
identified, while the shaft is spinning at nominal angular
speed.

There are various possibilities to be investigated with
this method such as to extend the shaft model to include
flexible modes, identify multiples parameters simultaneously,
investigate the effect of disturbances, investigate the effect of
uncertain shaft dynamics and carry out experimental tests.
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