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Fault Tolerance for Industrial Actuators in Absence of Accurate Models
and Hardware Redundancy

Dimitrios Papageorgiou1, Mogens Blanke1,2, Hans Henrik Niemann1 and Jan H. Richter3

Abstract— This paper investigates Fault-Tolerant Control for
closed-loop systems where only coarse models are available and
there is lack of actuator and sensor redundancies. The problem
is approached in the form of a typical servomotor in closed-loop.
A linear model is extracted from input/output data to describe
the system over a frequency range. Two methods based on
the Kalman Filter and Statistical Change Detection techniques
are proposed for detecting degradation faults and component
failures, respectively. Finally, a reference correction setup is
used to compensate for degradation faults.

I. INTRODUCTION

Maximum system availability and optimal performance
are quintessential in all modern automated processes. As
a consequence, fault-tolerant operation is highly desirable
in technologically complex tasks, especially in industrial
applications, where system failures often lead to costly sit-
uations, such as unplanned production stops, or even worse,
in situations where safety of persons is compromised.

Most existing methods for Fault Detection and Isolation
(FDI) are model-based, both with respect to the techniques
used for detecting faults and to fault accommodation. An
approach to FDI for linear time-invariant (LTI) systems with
no prior model knowledge was presented in [1], where only
the structural characteristics of the system and the faults
were assumed to be known. Results from Distribution Theory
were used to estimate selected fault characteristics, the time
evolution of which formed the basis for a decision policy
(to decide whether a fault appears to be present). A different
approach was pursued in [2] where Active Fault Detection
and Isolation (AFDI) was applied in uncertain systems and
in [3], where normal changes in use-modes of a system were
exploited to isolate faults.

The approach suggested in this paper to the general
Fault-Tolerant Control (FTC) problem is based on utilising
behavioural characteristics of a given system to obtain a basic
model. This model is generic, and the unknown parameters
are estimated using off-line System Identification techniques.
Results from model-based FDI methods employing Kalman
filters are then used for diagnosis. As a further step, a method
for FDI and FTC is developed that circumvents the necessity
of detailed models and that do not require direct access to the
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control signal. This new approach could make fault-tolerance
an ”easy-to-obtain” feature for existing industrial plants.

This study considers a system of a servomotor in closed-
loop and addresses FTC possibilities under the limitations
that prevail in industrial manufacturing. These limitations
include the lack of information about the system dynamics,
structure and parameters, and the inability to easily changing
the control signal internally in the control cascade. The
industrial relevance is emphasised by avoiding assumptions
on supplemental instrumentation that would not be present
in a standard factory floor automation.

This paper investigates the envelope of fault accommo-
dation possibilities under degradation faults and suggests
generic compensation solutions using a reference correc-
tion setup. The contribution is a novel technique to detect
component failures, that can be applied on a generic single-
input single-output (SISO) system when the only available
information is the input/output behaviour of the system. This
problem is treated theoretically in the first six sections, where
methods for extracting a simple model are discussed and
suitable FDI and FTC techniques are introduced. Finally,
the last two sections demonstrate the methods applied in a
simulation environment and conclusions are drawn.

II. PROBLEM FORMULATION

A the test-bed system is described in this section focusing
on equipment and available information. Generic faults are
presented, the FTC objectives are stated and basic assump-
tions are made which are needed in the later analysis.

A. System description

The system consists of a typical servomotor controlled by
a standard PID controller with known parameters. Attached
to the motor shaft is there a potentiometer for measuring
the angular position of the motor. This is the only sensor
available. Although in typical industrial systems there are
more complex dynamics, under certain assumptions these
dynamics can be decoupled. A characteristic example is the
industrial Cartesian robots ([4]). Moreover, in articulated
robotic manipulators, when the gearing between the joint
motors is reducing the coupling torques between the robot
links, or when the torque developed due to the weight of
the target object is insignificant, the principle of Independent
Joint Control can be adopted ([5] and [6]). Then, each motor
can be studied separately and, as such, the FDI analysis can
be reduced to that of each single servomotor separately.



B. Considered faults

Two classes of faults are considered in this study:
• degradation faults
• complete failures of components

Degradation faults do not compromise the entire function-
ality of the piece of equipment they appear in. However,
they affect its performance and, as a consequence, of the
system itself. They can be modelled as additive signals in
the dynamics or the output equations of the system (e.g.
corrupted sensor readings).

On the other hand, failed components are rendered com-
pletely unusable and, as such, failures of this type correspond
to complete loss of pieces of equipment. An example of a
failed component is a broken motor (actuator failure).

C. Assumptions

A number of assumptions illustrating the limitations found
in many industrial applications are made, so as to create the
framework of the analysis.

Specifically, it has been assumed that the only sensor avail-
able is the motor position sensor. Regarding the knowledge
about the structure of the system, only the nominal controller
and a series of I/O data (reference to angular position tuples)
are available. Finally, there is no possibility of changing the
control signal (adding signals to it) or the controller itself in
the servomotor (the internal control loop cannot be broken).

After the framework of the system and the relevant
assumptions have been presented, the problem this paper
addresses can now be stated:

Problem 1. Under the assumptions presented in section II-
C design a FTC setup for the closed-loop servomotor system.

III. BLACK-BOX FTC
Since by assumption the only access available to the

system is the reference commands and the output readings,
any analysis of the system is limited to inspection of the
closed-loop behaviour of the system. This implies that the
possibilities for FTC must be based on monitoring and
remedying any discrepancies between the real system and
its closed-loop model. The approach can be referred to as
Black-box Fault-tolerant Control.

Given that the servomotor is a linear SISO system with not
identically zero transfer function, any change in the closed-
loop behaviour can be expressed as the effect of variation of
the reference signal and will be perceived as a variation of the
nominal output signal. This motivates the idea of detecting
faults by monitoring the I/O pairs of the system and describe
the detected faults as variations of the nominal reference as
illustrated in Figure 1.

If the signal δ, which is the appropriate reference variation
that would cause the nominal system to respond with the
faulty output yf (the same with the response of the faulty
system), is accurately estimated, then it can be subtracted
from the nominal reference, so that the fault can be com-
pensated for.

Since no hardware redundancies are available, only degra-
dation faults can be compensated for through appropriate
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Fig. 1: Faulty system equivalent descriptions: (a) Plant fault de-
scription. (b) Input fault description. (c) Output fault description.

modification of the nominal reference, whereas in case of
component failures, the system must be shut down. However,
it is possible to detect complete failures, as it will be shown
in Section VI. This is due to the fact that the description
of an actuator or sensor failure as a reference variation
takes the form of very specific measurable signals that
cannot be compensated. Hence, failure detection reduces into
using statistical change detection techniques to examine if
the estimated reference perturbation matches the dynamical
profile of these signals.

The approach relies on having a description of the nominal
closed-loop system, which by assumption is not available
in advance. As such, a linear model of the closed-loop
system has to be identified before any of the techniques
can be applied. This identification is done once, offline and
based on fault-free reference-to-output pairs. Overall, the
developments needed for a complete FTC setup consistent to
the assumptions made can be summarized in the following:

• Obtain a linear model for the nominal closed-loop
system through offline System Identification

• Account for model uncertainties
• Design an estimator for the reference variation δ
• Estimate δ and correct the reference
• Compare δ in the compensated system to known dy-

namical profiles for failure detection

IV. CLOSED-LOOP SYSTEM DYNAMICS

A. Motor dynamics

Throughout this analysis the dynamics of the system
are considered to lie at relatively low frequencies. This is
often the case in many industrial applications with robots
performing typical pick-and-place tasks. As such, a linear
2nd order system is a good approximation of the closed-
loop dynamics of the motor (see more on frequency-weighted
model reduction in [7] and [8]). If G(s) is the stable, proper
closed-loop transfer function of the servomotor, where the



denominator is a monic polynomial as below

G(s) =
b1s+ b0

s2 + a1s+ a0
(1)

then four parameters must be estimated to obtain a full
description of the closed-loop motor system.

Through a grey-box identification method based on the
minimization of the parameter prediction error ([9]), the
approximated model parameters can be calculated offline.
This identification concerns only the nominal closed-loop
system. As such, faults are not included in the identification
algorithm.

B. Uncertain model

The approximation of the motor dynamics with a lower
order model, as well as the parameter identification method
itself, introduce a degree of uncertainty into the proposed
model. This uncertainty can be modelled as additive devia-
tions in the transfer function, the input or the output of the
system. This approach has been motivated by the following
proposition.

Proposition 1: For a Linear Time-Invariant (LTI) system
with not identically zero transfer function, any parameter
perturbation can be expressed as a time-varying perturbation
of the nominal output signal.

Proof: Let

ΣN :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
, x(t0) = x0

be a realisation of an nth−order LTI system, where x ∈ Rn,
u ∈ Rm, y ∈ Rp, A ∈ Mn×n, B ∈ Mn×m and C ∈ Mp×n.
Then the general solution x(t) is given by

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ (2)

while the system nominal output is

y(t) = ynom(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)Bu(τ)dτ

(3)
Moreover, let

ΣN∆
:

{
ẋ(t) = (A+ δA)x(t) + (B + δB)u(t)

y∆(t) = (C + δC)x(t)

be a variation of the nominal system ΣN . Define the matrix
function ψn : R→Mn×n as

ψn(t) = e(A+δA)t − eAt (4)

Following the result from equation (2) the solution of the
perturbed system is given by:

x∆(t) = e(A+δA)(t−t0)x0+

+

∫ t

t0

e(A+δA)(t−τ)(B + δB)u(τ)dτ = x(t) + δ1(t)

where

δ1(t) = ψn(t− t0)x0 +

∫ t

t0

eA(t−τ)δBu(τ)dτ+

+

∫ t

t0

ψn(t− τ)(B + δB)u(τ)dτ

The output of the perturbed system is, therefore, written
as

y∆(t) = (C + δC)x(t) = Cx(t) + δCx(t) =

= ynom(t) + δ(t)

where

δ(t) = δCeA(t−t0)x0+

∫ t

t0

δCeA(t−τ)Bu(τ)dτ+(c+δC)δ1(t)

Thus, the output of the perturbed system is a time-varying
perturbation of the nominal output. �

Proposition 1 shows that the uncertainties can be modelled
as additive signals in the output of the system. The next
proposition extends this consideration for any bounded
variation δ(t) of the output, being expressed as an input
perturbation.

Proposition 2: For a Linear Time-Invariant (LTI) system
with not identically zero transfer function, any output per-
turbation can be expressed as the effect of a time-varying
perturbation of the nominal input signal.

Proof: Consider the nominal system ΣN and its variation
ΣN∆

from Proposition 1 with a more generic perturbation
of the output y∆(t) = y(t) + δ(t), where δ(t) is piecewise
continuously differentiable. The output of the perturbed
system can be written as

y∆(t) = Cx(t) + δ(t) = C
[
x(t) + C+δ(t)

]
=

= C

[
eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ + C+δ(t)

]
where C+ denotes the pseudoinverse of matrix C.

Proving that δ(t) can be expressed as a variation of the
input signal u(t) is equivalent to proving that ∃δu(t) ∈ Rm :

C+δ(t) =

∫ t

t0

eA(t−τ)Bδu(τ)dτ (5)

Differentiating both parts of Equation (5) and taking
δu(t0) = 0 yields[

eA(t−τ)Bδu(τ)dτ
]t
t0

= C+δ̇(t)⇔

Bδu(t) = C+δ̇(t)⇔
δu(t) = B+C+δ̇(t) (6)

where B+ is the pseudoinverse of matrix B.

For this definition of δu(t) shown in Equation (6) substi-
tuting the expression from Equation (5) in the output of the



perturbed system gives

y∆(t) = C

eA(t−t0)x0 +

∫ t

t0

eA(t−τ)B [u(τ) + δu(τ)]︸ ︷︷ ︸
u∆(τ)

dτ


which is the time-domain response of the nominal system

excited by the nominal input plus a time-varying perturbation
of it. �

A direct result of the two propositions is that both un-
certainties and faults can be described as variations of the
nominal input as in the following expression{

ẋ(t) = Ax(t) +B [u(t) + fol(t)]

y(t) = Cx(t)

or in closed-loop form:

ẋ(t) = Aclx(t) + r(t) + f(t)

where Acl is the closed-loop dynamics matrix.
The previous considerations raise the question of how a

discrimination can be made between these two different cases
if an input variation is detected. Typically, uncertainties tend
to be more persistent and they have smaller magnitude than
faults in the system. Hence, one method of separating faults
from uncertainties is to extract a bound for the latter. Since
the uncertainty in the model is not only parametric, but also
pertains to the model reduction done while approximating
the real system, describing the uncertainties by varying the
model parameters would give very conservative bounds.
Instead, a different approach is followed.

A typical industrial motor [10] (dynamics and PID con-
troller) in closed-loop is a 5th-order system. Its approxima-
tion as a 2nd-order system suggests a 3rd-order residual
pertaining mostly to the high-frequency dynamics of the
original system. Let

Gr0(s) = Gor(s)−G(s) (7)

be the additive residual system, with Gor(s) and G(s)
being the original and the approximated system, respec-
tively. By means of grey-box identification, its parameters
(ari, bri, i = 1, 2, 3) can be estimated by using a series of
recorded input/input perturbations pairs1.

In order for the parametric uncertainties to be accounted
for, the residual model parameters are varied up to a certain
percentage (e.g. ±10%), and the different systems obtained
are plotted with respect to amplitude in the frequency domain
as in Figure 2. A curve (dashed line) that bounds every plot
from above is then drawn and the corresponding transfer
function fthr(s) is estimated as shown in [11]. This ensures
that all the uncertainties will be smaller in amplitude from
the fthr(s). Hence, the uncertainty in the model that arises if
the system is excited by an input signal r(t) can be confined
to the zone ±fthr(t), where fthr(t) = L−1{fthr(s)R(s)}

1The input perturbations can be estimated in the same way as the faults.
This method which is based on the use of a Kalman filter will be presented
in the next section.

Fig. 2: Bode plot of model variations and uncertainties bound.

and L−1 denotes the inverse Laplace transform operator. As
a more direct interpretation of this, fthr(t) can be viewed
as the time response of the residual system Gr0 in the worst
case (i.e. for the maximum considered uncertainty) when the
latter is excited by the same input that excites the real system.

V. DEGRADATION FAULTS

The number of residual generators for a second order
linear system

G(s) =
b1s+ b0

s2 + a1s+ a0

with p = 1 outputs and d = 0 disturbances, even without
uncertainties, is nr = p − d = 1, as described in the
left nullspace technique presented in [12]. This implies that
a discrimination cannot made between actuator faults and
sensor faults in the same motor. That is one of the limitations
imposed by the lack of redundant sensors and/or actuators.

A. Fault Diagnosis

1) Kalman Filter: The diagnostic and estimation method
for degradation faults is based on a Kalman filter and
a decision policy connected to the uncertainty threshold
function fthr mentioned in the previous section. The additive
variation in the input of the system is modelled as a state
with constant autonomous behaviour, which is estimated by
the filter. The augmented system is written in state-space
controller canonical form as

ẋ =

 0 1 0
−a0 −a1 1

0 0 0


︸ ︷︷ ︸

A

x+

0
1
0


︸︷︷︸
B

u+Bvw (8)

y =
[
b0 b1 0

]︸ ︷︷ ︸
C

x+ v (9)

where χ is the state vector of the approximated system in
controller canonical form, xT (t) =

[
χT (t) δ(t)

]
and w ∼

N (0, Q) and v ∼ N (0, R) are the process and measurement



noise, respectively, with Q ≥ 0, R > 0. The covariance
matrix Q for the Kalman filter is designed with the variance
corresponding to δ(t) being set to a higher value compared to
the other two states, so that the filter estimates completely
unknown dynamics, so long the latter are slower than the
dynamics of the filter itself.

Following the terminology introduced in [13], a fault
signature function H(t) : R→ {0, 1} can be defined as

H(t) =

{
0 if |fthr(t)| − |δ(t)| ≥ 0 (nominal)
1 if |fthr(t)| − |δ(t)| < 0 (faulty)

(10)

The inequalities above constitute the Fault Diagnosis Deci-
sion Policy for the servomotor.

2) Statistical Change Detection: From the definition of
H and fthr, it is clear that faults with amplitude less than
or equal to |fthr(t)|− |δ(t)| cannot be detected. This can be
remedied with the use of statistical change detection methods
such as the Generalised Likelihood Ratio (GLR) algorithm.

Let H0, H1 be two hypotheses defined as

H0 : δ ∼ N (µ0, σ
2) (11)

H1 : δ ∼ N (µ1, σ
2) (12)

where δ is the input perturbation estimated by the Kalman
filter affected by Gaussian white noise. The GLR test is
used to generate a decision as to whether the mean value
of δ changes from µ0 to µ1, the latter being unknown. Note
that the variance of δ is assumed to be the same in both
hypotheses.

If pµ0
(δ) and pµ1

(δ) are the likelihood functions of δ (i.e.
the probability density evaluated exactly at δ and depended
only on the mean value of the stochastic variable) for the
two hypotheses, respectively, then by monitoring a function
of the cumulative log-likelihood ratio

Skj (µ1) =

k∑
i=j

ln
pµ1(δ(i))

pµ0
(δ(i))

a choice can be made between these two hypotheses. More
specifically, the decision function

g(k) = max
k−M+1≤j≤k

max
µ1

Skj (µ1)

can be used to replace the fault detection decision policy
in (10) with the following:{

Accept H0 if g(k) ≤ h
Accept H1 if g(k) > h

(13)

Since no change in the variance of δ is assumed and
since in both hypotheses δ follows a normal distribution, the
decision function g(k) can explicitly be written as ([12]):

g(k) =
1

2σ2
max

k−M+1≤j≤k

1

k − j + 1

 k∑
i=j

(δ(i)− µ0)

2

(14)
In the formulation of (14) both M , which is the maximum

number of sampling periods that the fault can be detected in

and the threshold value h, are design parameters that can be
chosen after offline tuning, i.e. by selecting the maximum
value of g(k) over a set of nominal operation data. Moreover,
µ0 is typically very close to 0 since no input perturbations
are expected in the nominal case. A block diagram of the
fault estimation setup is shown in Figure 3.
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Fig. 3: Fault estimation setup.

B. Fault accommodation

The remedial actions, in the case that a degradation fault
is detected, pertain to the online correction of the reference
signal, so that the fault is directly compensated for. The fault
correction setup is seen in Figure 4.

nominal
closed-loop

system

Kalman
filter with
descision
policy H

+

− f̂

yr
+

v
+

+

f

+

rc

w

+

faulty system

Fig. 4: Reference correction setup.

By comparing the faulty system description in Figure 1(b)
with the reference-correction setup in figure 4, it can be
seen that in absence of complete component failures the
compensated system has the same I/O behaviour with the
nominal system, since in the ideal case f̂ → δ and these two
terms cancel each other.

The design of the Klaman filter gain matrix L is not
affected by the system reference correction. This is a direct
result of the Separation Theorem in linear systems ([14]).
Indeed, the dynamics of the corrected system and the Kalman
filter are written as

ẋ = Ax+Br −Bψ (15)
y = Cx (16)
˙̂x = (A− LC)x̂+B(r − ψ) + Ly (17)
ψ = Cδx̂ (18)



[
ẋ
˙̂x

]
=

[
A −BCδ
LC A− LC −BCδ

] [
x
x̂

]
+

[
B
B

]
r (19)

where x̂ is the estimated state vector, ψ = δ̂ is the com-
pensation term and Cδ =

[
0 0 1

]
. Then, if e = x − x̂

is the estimation error, the augmented system pertaining to[
xT eT

]T
is written as[

ẋ
ė

]
=

[
A−BCδ −BCδ
03×3 A− LC

] [
x
ê

]
+

[
B

03×1

]
r (20)

Its eigenvalues are the concatenation of the filter’s eigen-
values and those of the closed-loop system (A − BCδ).
Hence, the Kalman filter dynamics can be shaped indepen-
dently.

Moreover, the characteristic polynomial of Acor = A −
BCδ is PAcor

(λ) = λPA(λ) showing that the eigenvalues
of the original system are not affected by the compensation.
This is desirable since the nominal behaviour of the system
should be maintained after accommodation of any faults.

In case of a constant fault, the PID controller will asymp-
totically reject it as disturbance. This will limit the detection
to the transient time. However, the speed of rejection depends
on the controller tuning, which may allow performance
degradation. Moreover, the proposed black-box FTC scheme,
considers a fault only if there is discrepancy between real and
expected output. Hence, if the effect of a fault is rejected very
fast, then it is not considered as a fault any more.

C. Sensor faults

This method treats actuator and sensor degradation faults
the same. This is valid from the perspective of estimating
and accommodating non-nominal variations in the system.
However, since the position encoder is the only sensor that
provides the necessary information for the output feedback
control, the sensor measurement will still not agree with
the actual position of the motor after the correction of the
reference due to a sensor fault. This could cause problems
to the event-driven dynamics management in an industrial
process that includes the motor.

VI. COMPONENT FAILURE DETECTION

Two separate cases of component failures for the servo-
motor system will be examined in this section. In the first
case, the actuation signal u is zero for all time after a specific
time instant tf , while in the second case the same happens
for the output readings y.{

Actuator failure: u(t) = 0, t ≥ tf
Sensor failure: y(t) = 0, t ≥ tf

Considering the equivalent descriptions of the faulty sys-
tem shown in Figure 1, a complete failure of the actuator or
the sensor of the motor can be viewed as a persistent (that can
be not compensated for with the reference-correction setup)
perturbation signal in the reference of the nominal closed-
loop system. Since the failures are very specific types of
faults, the dynamic profile of this reference perturbation can

be determined in advance in each of the two cases. Then the
idea for detecting the failure is to use statistical methods to
examine whether this perturbation that is estimated by the
Kalman filter matches the dynamic profile of any of the two
specific faults.

A. Actuator failure

Let G,K, r, u, uf , y and yf be the open-loop transfer
function of the nominal system, the transfer function of the
controller, the reference, nominal input, faulty input, nominal
output and faulty output, respectively, for the system in
frequency domain. And let uf = (1 − ∆)u, 0 ≤ ∆ ≤ 1,
where ∆ = 0 corresponds to the fault-free case and ∆ = 1
to a complete failure of the actuator. Then

yf = Guf = G(1−∆)u = G(1−∆)K(r − yf )

(1 +GK)yf = GKr −∆GK(r − yf︸ ︷︷ ︸
ef

) = GKr −∆GKef

yf =
GK

1 +GK︸ ︷︷ ︸
Gcl

(r −∆ · ef )⇔ yf = Gcl(r −∆ · ef )

In case of a complete actuator failure, ∆ = 1 and yf =
Gcl(r − ef ). In accordance to Figure 1(b) the estimated
reference perturbation δ should match the signal

% = −ef = yf − r

B. Sensor failure

The same notation as in the case of actuator failures is
considered but now with the fault being at the output of the
system like in the following expression

yf = (1−∆)y, 0 ≤ ∆ ≤ 1

where ∆ = 0 corresponds to the fault-free case and ∆ = 1
to a complete failure of the sensor. Then

yf = (1−∆)y = Gcl(1−∆)r = Gcl(r −∆ · r)⇒
yf = Gcl(r + δ)

In case of a complete sensor failure, ∆ = 1 and the estimated
reference perturbation δ should match the signal

% = −r

C. Detection of dynamical profile matching with CUSUM

In the same line with the GLR test used for detection of
degradation faults, the Cumulative Sum (CUSUM) algorithm
is used for testing whether the estimated reference perturba-
tion δ matches the dynamical profile of a specific known or
measurable signal that can be associated to failure of actuator
or sensor in the system. Using the results presented in [12]
and [15] a decision function gc(k) can be considered for
selecting between the following two hypotheses:{

Hnom : δ matches µ0 if gc(k) ≤ hc
Hfail : δ matches µ0 + %(k) if gc(k) > hc

where µ0 is the mean value of the reference perturbation,
typically very close to zero in the nominal case, and %(k)



is available at every time instant. The decision function is
given by [12]:

gc(k) = max
1≤j≤k

Skj

Skj =
k∑
i=j

%(i)
σ2

(
δ(i)− 2µ0+%(i)

2

) (21)

where Skj is the cumulative sum of the log-likelihood ratio
of the two hypotheses.

Hence, for detecting actuator failures δ is compared to
µ0+yf−r, while for sensor failures it is compared to µ0−r.
Similarly to the GLR test, the threshold value can be chosen
offline, by inspecting the evolution of g(k) over a set of
nominal operation data.

In both cases the method should be applied to the system
when the fault-compensation mechanism is active. This is
necessary so as to exclude the case of large magnitude faults
that can otherwise be corrected through the reference, i.e.
ascertain that the fault is indeed ”persistent”, before deciding
that the actuator (or sensor) has completely failed. Figures
5 and 6 show the complete FTC setup and the fault-tolerant
operation scheme, respectively.

Kalman
filter with
CUSUM

Kalman
filter with
decision
policy H

closed-loop
system

r
+

rc
f̂

−

δ

y

y

Compensated
system

Fig. 5: Complete FTC setup.

1: Estimate f̂ from Kalman filter
2: Evaluate f̂ with GLR test (or uncertainty bounds fthr)
3: if g > h (or |fthr(t)| − |δ(t)| < 0) then
4: Activate compensation mechanism
5: Estimate δ from Kalman filter
6: Evaluate δ with CUSUM for actuator/sensor failure
7: if gc > hc then
8: Raise alarm for component failure
9: Stop operation

10: end if
11: end if
12: goto step 1

Fig. 6: Fault-tolerant operation scheme

VII. SIMULATION RESULTS

The movement of a single-axis robot is simulated for a
trajectory from 0 m to 0.5 m in 3 s.

A. Additive actuator faults

A series of step changes in the control signal are con-
sidered for the case of degradation faults. For a direct
comparison with the estimated reference perturbation δ(t),
the signal that could generate the fault, i.e. fref (t) =
L−1{K−1

PID(s)f(s)} is considered. The motor position and
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Fig. 7: Nominal operation.

reference signal are shown in Figure 7 (top) in nominal
operation. The cyan area in the bottom plot describes the
uncertainty region, which encloses the estimated reference
perturbation.

In the presence of the considered fault, the estimation
grows out of the uncertainty region and compensation for
the estimated fault in the reference is then enabled. This
can be seen in Figure 8. The deviations from the nominal
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Fig. 8: Degradation additive fault in the actuator.

trajectory are relatively small and are corrected in less than
0.1 sec. This can be also seen from the GLR test shown in
Figure 9. The GLR parameters where chosen as M = 25
samples and h = 17.

B. Actuator and sensor failure

To illustrate component failures, two cases are shown
bellow. In the first, the actuator fails at t = 1 sec, while in
the second the sensor fails at the same time instant. Figures
10 and 11 show the performance of the detection method for
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Fig. 9: GLR test for nominal (top) and faulty (bottom) operation.

two cases, respectively, with threshold value hc = 800. The
failures are detected in less than 0.1 s.
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Fig. 10: Nominal operation and actuator failure.
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VIII. CONCLUSION

A holistic approach for a generic FTC scheme with limited
system knowledge in an industrial servomotor was presented
in this paper. A method based on I/O mapping and model
uncertainty bounds was used to obtain a model for the
servomotor. Moreover, a technique based on the GLR test,
the Kalman filter and online reference correction was used
to detect, estimate and compensate for degradation faults,

respectively. The results showed that the effectiveness of the
method relies on the description of the model uncertainty
bounds, the selection of the sensitivity threshold in the GLR
test and the dynamics of the fault. Lastly, a method for
detecting component failures was developed based on statis-
tical CUSUM tests for detecting matchings of the estimated
reference perturbation signal to known dynamical profiles.
The method was applied to two specific types of failures
(zero actuation signal and zero measurements) which can be
extended to the more general case of ”stuck” actuator/sensor
failure. The detection time was fast in comparison to the
system dynamics and it primarily depends on the selection
of the threshold value in the CUSUM algorithm.
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