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Abstract— Unmanned aerial vehicles (UAVs) are the future
technology for autonomous fast transportation of individual
goods. They have the advantage of being small, fast and not to
be limited to the local infrastructure. This is not only interesting
for delivery of private consumption goods up to the doorstep,
but also particularly for smart factories. One drawback of
autonomous drone technology is the high development costs,
that limit research and development to a small audience. This
work is introducing a position control with collision avoidance
as a first step to make low-cost drones more accessible to
the execution of autonomous tasks. The paper introduces
a semilinear state-space model for a commercial quadrotor
and its adaptation to the commercially available AR.Drone2

system. The position control introduced in this paper is a
model predictive control (MPC) based on a condensed multiple-
shooting continuation generalized minimal residual method
(CMSCGMRES). The collision avoidance is implemented in the
MPC based on a sigmoid function. The real-time applicability
of the proposed methods is demonstrated in two experiments
with a real AR.Drone quadrotor, adressing position tracking and
collision avoidance. The experiments show the computational
efficiency of the proposed control design with a measured
maximum computation time of less than 2ms.

I. INTRODUCTION

The significance of unmanned aerial vehicles has been in-
creasing over the last decades by more and more civil appli-
cations such as maintenance applications, transportation, as a
toy, etc. The idea to use drones for fast transportation is par-
ticularly interesting for dynamically changing autonomous
transportation tasks of small goods, as in smart factories or
home delivery scenarios. As a further plus, no expensive
infrastructure is needed. The main problem up to today is
the high costs of professional drones that can be adapted
for autonomous flights in urban areas. This is mainly caused
by the ability to determine the precise position of the UAVs
and its security measures, e.g. avoiding obstacles via vision
sensors. As multi-rotor UAVs are typically capable of keeping
a steady position, they are particularly interesting from the
security point of view. The adaption of commercial low-cost
UAVs for autonomous flying is therefore an important way
to make this technology cheaper and therefore accessible.
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As a consequence, this work aims to autonomously control
the position of an AR.Drone while avoiding obstacles. The
AR.Drone comes with an inner controller that is stabilizing
the attitude. Furthermore it can be controlled through velocity
commands via WiFi which makes it easy to access with
a ground control station. The AR.Drone is chosen, because
these features are representative for most commercial low-
cost quadrotor systems.

Today there is a wide variety of quadrotor models and
control strategies. An overview of different designs and
quadrotor models is given in the thesis [13]. A widely applied
control algorithm is a position control approach realized as a
hover PID controller which is presented in detail in [8]. This
control strategy separates forward, sideward, upward and
heading by linearization of the system dynamics. The four
channels are then controlled independantly with PID con-
trollers. The influence of aerial disturbances on the control
behavior is analyzed in [16]. [9] describes the construction of
a mathematical drone model in a detailed and comprehensive
way. Furthermore a state estimator and a vision-based PID
position control are derived. More detailed information of
vision based quadrotor control strategies are given by [11].
A vision based fuzzy position control is presented in [15].
In [10] a backstepping controller is introduced. In [14] the
authors discuss a multiple surfaces sliding mode control for
quadrotors. A model reference adaptive control concept for
quadrotors is presented in [12]. It is based on the adaptation
of controller parameters based on linearized system dynam-
ics. This allows the controller to act in a bigger trust region
than conventional hover control.

An important project for quadrotor design and control was
the OS4 Project at the Swiss Federal Institute of Technology.
In the context of this project [2] is introducing a full
nonlinear quadrotor model. Based on the stabilization proof
via Lyapunov function, a hover PID-controller is derived
to stabilize the system around its nominal state. The disad-
vantage of this controller is its poor performance regarding
disturbance. A quadrotor LQR-controller was developed in
[3] and compared to the classical PID hover control. In
the experiment the LQR approach showed a less dynamic
behavior plus a steady-state error. The author came to the
conclusion that even if the LQR was expected to show better
results, the PID controller showed better performance in the
experiments and is therefore preferred. In [4] a backstepping
control is developed for the linear translational subsystem
and a sliding mode controller is derived for the attitude
subsystem of a quadrotor. The presented controlled system
shows a strong resistance towards disturbance, but introduces



high frequencies into the system controls, that are causing
sensor drift. More detailed information is given in [5]. Based
on this, [6] is presenting an integral backstepping controller
as further development. The result is a control law for the
full state model.

With the increasing development of fast computers, model
predictive control approaches have become real-time applica-
ble for fast systems. A LQR control, as e.g. presented in [3],
is equal to the analytical solution for an unconstrained linear
model predictive control problem and therefore familiar.
The big advantage of the model predictive approach is the
possible usage of constraints, which is particularly interesting
in this work for implementing security measures. A MPC
example with state constraints for quadrotors is simulated
in [18]. Details about collision avoidance for quadrotors and
various MPC methods for multiple drone coordination are
given in [17]. The most essential obstacle to apply MPC
on quadrotor systems, is the high computational burden
plus the quadrotor nonlinearity. Examples for especially fast
nonlinear MPC algorithms are Gauß-Newton methods [21] as
implemented in ACADO [19], or gradient methods as imple-
mented in GRAMPC [20]. Another particularly fast method
is the continuation generalized minimal residual method
CGMRES method as given in [23],[24],[25],[26],[27]. An
adaption of CGMRES for cooperative control tasks in real-
time is discussed in [7]. For this work, a condensed multiple
shooting CGMRES derivative has been applied, which of-
fers a compromise of higher numerical stability with fast
computation. This condensed multiple-shooting continuation
generalized minimal residual method CMSCGMRES was
developed under supervision of Prof. Dr. Toshiyuki Ohtsuka
and is presented in [28],[29],[30].

The first contribution of the presented paper is the in-
troduction of a semilinear analytical quadrotor model based
on velocity controls as described in section II. Second, the
proposed model is adapted to the commercial UAV AR.Drone
by identification in section II-A. Third, section III is propos-
ing the condensed multiple shooting continuation generalized
minimal residual method (CMSCGMRES) [28] as a real-time
applicable nonlinear model predictive control approach for
UAV applications. The advantages of CMSCGMRES are the
handling of nonlinearities and its very low computation time
combined with the possibility to introduce constraints. In sec-
tion III-A the proposed algorithm is experimentally validated
on a real AR.Drone under use of the presented model. The
final contribution is the combination of CMSCGMRES with
a sigmoid collision avoidance (CA) method, as described in
section IV. The resulting performance with a real AR.Drone
is shown in section IV-A. In section V the conclusion and
further developments are discussed.

II. SEMILINEAR HOVER CONTROL MODEL

In typical quadrotor applications, the UAV is internally
controlled by a hover controller as introduced in [8]. This
means it is driven around its nominal state, the hovering
position. Accordingly the controller reference is represent-
ing desired velocity in forward direction u f , sidewards us,

upwards uz and the angular velocity around the z axis uΨ.
Standard PID hover controllers are based on a linearization in
the hover position which is equal to a small angle approx-
imation of roll Φ and pitch Θ. The forward and sideward
movement of the quadrotor is therefore considered to be in
the xy-plane and can be mapped to the global coordinate
system via a Ψ rotation. This can be expressed in the state
space with the state vector

x(t) =
[
xW (t) ,yW (t) ,zW (t) ,ΨW (t) , ẋV (t) , ẏV (t)

]>
, (1)

which yields to a quasi-linear state-space model
ẋW (t)
ẏW (t)
żW (t)
Ψ̇W (t)
ẍV (t)
ÿV (t)

=


ẋV (t)cos(Ψ)− ẏV sin(Ψ)
ẋV (t)sin(Ψ)+ ẏV cos(Ψ)

az · z(t)+bz ·uz (t)
aΨ ·Ψ(t)+bΨ ·uΨ (t)
a f · ẋV (t)+b f ·u f (t)
as · ẏV (t)−bs ·us (t)



}
Map: V →WLinear model.

(2)

W is referring to the global world coordinate frame, while
index V indicates the vehicle coordinate frame. The origin
of V is equivalent with the origin of the quadrotor. The pose
of the coordinate frames can be seen in Fig. 1, where pitch
and roll are considered to be neglectable. xV ,yV are therefore
lying in the xW yW -plane, where xV is pointing to the front
of the UAV and yV to the left. The z-axis is aligned with the
world coordinate frame z . As shown in (2) the state-space

Fig. 1: Coordinate frame definition

model consists of a linearization around the hover position in
the vehicle-frame, as well as a nonlinear mapping of the x,y
vehicle frame components to the world coordinates. Using
the states xW ,yW ,zW ,ψW has the advantage of being able to
calculate the error to a world coordinate reference position.

A. Parameter identification
The used case considered for this paper is the commercial

quadrotor system Parrot AR.Drone 2.0. To identify the linear
model parameters az,aΨ,a f ,as,bz,bΨ,b f ,bs of (2), the step
response of the system is approximated with the given model.
The measurement of the quadrotor position is realized with
the motion capture system OPTITRACK1. The quadrotor
velocities are determined by a finite difference of the position
and subsequent filtering. Finally the velocities are mapped to
the vehicle coordinate frame via the inverse mapping of (2).

1Copyright 2016 NaturalPoint, Inc. All rights reserved.



Fig. 2: AR.Drone identification: Top to bottom: forward,
sideward, upward and yaw channel.

Figure 2 is showing the identification signals, with the
given control inputs, the processed (filtered) measurement
response (index m) and the model prediction (index p) for
the chosen model parameters a f = as =−0.5092,b f = bs =
1.458,az = 0,bz = 1,aΨ = 0,bΨ = 1.6. Considering ẋV and
ẏV in (2), the chosen model parameters yield to a tangential
approximation of the real systems behavior in the points of
control changes, as we linearize around the nominal state
(where the controls are 0). In the experiments, the Parrot
AR.Drone 2.0 has shown an indeterministic behavior in the
z axis. This is expected to be caused by the quality of the
ultrasonic sensor data that is used to estimate the altitude
for the internal controller. The final choice of using a simple
integrator with bz = 1 is representing the idea of a system
that reaches the reference in the z-axis very fast. Also ΨW

shows integration behavior under the typical limitation of
−π < zW ≤ π . Finally the AR.Drone model yields to

ẋW (t)
ẏW (t)
żW (t)
Ψ̇W (t)
ẍV (t)
ÿV (t)

=


ẋV (t)cos(Ψ)− ẏV sin(Ψ)
ẋV (t)sin(Ψ)+ ẏV cos(Ψ)

1 ·uz (t)
0 ·Ψ(t)+1.6 ·uΨ (t)

−0.5092 · ẋV (t)+1.458 ·u f (t)
−0.5092 · ẏV (t)+1.458 ·us (t)

 . (3)

III. MODEL PREDICTIVE POSITION CONTROL
More advanced commercial UAV applications face the

problem of navigation in urban environments. The difficulty
of urban navigation is to autonomously take into account
the movement constraints, that are represented by obstacles
or prohibited areas. An advanced control method to handle
such constraints is MPC. MPC is calculating optimal controls
online to minimize a given cost function within a receding
horizon. Combined with constraints and boundary values,
this represents an optimal control problem OCP. With state
vector x = [xW ,yW ,zW ,ΨW , ẋV , ẏV ] and control vector u =[
u f ,us,uz,uΨ

]
, the OCP for a position control with the

nonlinear quadrotor dynamics (3) can be formulated as

min
u

J =
∫ t f

t0
(x∗−x)>Q(x∗−x)+u>Ru dτ (4)

s.t.

ẋ(t) =


ẋV (t)cos(Ψ)− ẏV sin(Ψ)
ẋV (t)sin(Ψ)+ ẏV cos(Ψ)

1 ·uz (t)
0 ·Ψ(t)+1.6 ·uΨ (t)

−0.5092 · ẋV (t)+1.458 ·u f (t)
−0.5092 · ẏV (t)+1.458 ·us (t)

 (5)

c ≤ (u− ū)2− (umax− ū)2 : ∀u : umax = 1∨ ū = 0 (6)
x(0) =

[
0,0,0,0,0,0

]
(7)

Q = D{
[
1,1,1,10,0,0

]
}, R = D{

[
1.3,1.3,3.0,1.1

]
}.(8)

The cost function (4) is defined to become minimal for
reaching the target state x = x∗ and minimal input u = 0
subject to the given input constraints (6) that limit −1 ≤
u f ,us,uz,uΨ ≤ 1 and the initial state (7). To track the
position, Q is defined as diagonal matrix D with the entries
as given in (8). There are just relevant penalty entries for the
first 4 elements which penalize an error in xW ,yW ,zW ,ΨW .
Accordingly R in (8) is representing the diagonal control
penalty matrix to minimize the control action and therefore
the energy consumption. The values of R,Q are chosen
experimentally to achieve a smooth and fast flight behavior.

To create a feedback of the system, after the solving of the
OCP and applying the control, the horizon [t0, t f ] is shifted
and now solved in respect to the new initial value provided
by measurements of the real system. Accordingly the OCP
(4)-(7) has to be solved at each control update interval,
which is challenging for fast systems like quadrotors. As
discussed in the introduction, within this work a fast nonlin-
ear MPC solver CMSCGMRES is used. This is a condensed
multiple-shooting version of the CGMRES by Ohtsuka [23]
that represents a newton-type method under use of Hessian
approximation via forward difference method. Algorithmic
details are given in [28],[29] and [30]. CMSCGMRES is
capable of nonlinear optimization and offers low computation
times, as well as constraint handling. This makes it partic-
ularly suited for UAV applications. The reason for using a
nonlinear MPC solver to control a semilinear system is the
possibility to directly extend the results to more nonlinear
systems, e.g. nonlinear models, a drone with a manipulator,
etc. Furthermore the nonlinear mapping between vehicle
and coordinate frame can be directly calculated within the
optimization. The performance of CMSCGMRES with the



proposed AR.Drone model is evaluated experimentally in the
following section.

A. POSITION CONTROL EXPERIMENT

To validate the proposed CMSCGMRES position control,
introduced in section III, the quadrotor is moved in a square
in the xy-plane in 5 phases. Phase 1 to 5 are initiated
by a change of the tracked state as given in table I. The
reference states represent corners of the square, starting from
its initial position. Phase 5 is moving the drone subsequently
to the center. The behavior of the AR.Drone in phase 1
to 5 is illustrated simplified in Fig. 3. As expected the
AR.Drone is executing a square movement from phase 1 to
5. The corresponding trajectory plots are given in Fig. 5. The
movement between the corner point is shown transparent in
Fig. 3 for means of visualization.

Phase Time State Task
Initial: x∗(0s) =[-1, 1,1,0,0,0]> Keep initial position
1: x∗(8.4s) =[-1,-1,1,0,0,0]> Reach point in square
2: x∗(13.4s) =[ 1,-1,1,0,0,0]> Reach point in square
3: x∗(18.4s) =[ 1, 1,1,0,0,0]> Reach point in square
4: x∗(23.4s) =[ 1,-1,1,0,0,0]> Reach point in square
5,6,7: x∗(28.4s) =[ 0, 0,1,0,0,0]> Reach center/Disturbance

TABLE I: Tracked points of the position control experiment

To validate the stability in case of more complex distur-
bances, an impulse is applied on the AR.Drone around the
z-axis in phase 6 and 7. The corresponding drone behavior
is shown simplified in Fig. 4. As desired, the drone is
stabilizing Ψ and the position in the resulting compensation
circle. Within Fig. 4 the drone transparency is decreased with
the proceeding time to demonstrate the speed of the system.

Fig. 3: AR.Drone position control:

The system trajectory is given in Fig. 5. The plots are
showing forward, sideward, upward and yaw channel and the
computation time for a control update interval of ∆t = 0.1s.

Fig. 4: AR.Drone stabilization under disturbance:

Fig. 5: AR.Drone position control trajectory:
Top to bottom: forward, sideward, upward and yaw channel,
computation time with max(tc)≈ 1ms.



The CMSCGMRES solver is parametrized with a horizon
time T = 1s, nhor = 10 samples per horizon, the forward
difference approximation interval h = 1ms, a maximum of
itmax = 10 iterations and a continuation parameter of α = 10.
Furthermore the control limitation constraints (6) are treated
with the CGMRES package internal interior point constraint
handling method. This method is using slack variables to
model inequality constraints and slack variable penalties in
the cost function (details in [26]). For this experiment all
slack penalties are set to rslack = 0.001. As can be seen
in phase 6 and 7, this constraint handling technique has
to be adapted for high disturbances as |uΨ| > 1 by e.g.
using higher rslack. As Ψ≈ 0 up to phase 5, the vehicle and
world frame can be considered to be aligned. This allows to
directly relate vehicle frame velocity to world frame position.
The system response to position changes shows a typical
damping of D≈

√
(2) which is equivalent to a minimization

of the integrated position error. This matches the definition
of dominating position tracking in the cost function (4).
Therefore the CMSCGMRES approach is validated for the
developed system model (3).

The advantage of the proposed MPC solver combined with
the used model is the low computation time of max(tc)≈ 1ms
as shown in the bottom of Fig. 5. Furthermore the computa-
tion time is not changing particularly in case of disturbances
as with comparable gradient method approaches. The video
of the experiment can be downloaded via [1].

IV. MODEL PREDICTIVE COLLISION AVOIDANCE

Avoiding collisions is essential for security reasons. A
typical collision avoidance (CA) therefore keeps the UAV
in a desired distance ddes from the quadrotor postion ~xq to
an obstacle position ~xO. The problem can be formulated as
inequality (9) which can be translated with c≤ 0 into a con-
straint (10). To avoid the expensive square root computation
in (10), it is advantageous to use the quadratic form (11)
instead. (11) represents equivalent roots to (10) as ddes is
always positive.

ddes ≤
√
(~xO−~xq)

> (~xO−~xq) (9)

c ≤ ddes−
√

(~xO−~xq)
> (~xO−~xq) (10)

c ≤ d2
des− (~xO−~xq)

> (~xO−~xq) (11)

As CMSCGMRES is based on the solution of OCP (4)-
(8) optimality conditions, the optimality of the inequality
constraints has to be solved at each time instance, which
leads to a higher computation time. A different approach
is to approximate the switching behavior of an inequality
constraint with a sigmoid function

sig(x) =
b

1+ e−ax . (12)

Parameter b in (13) is determining the maximum value of
the sigmoid and a is affecting the sharpness of the switching
behavior. Inserting the right hand side of constraint (11) into
(12) leads to an approximation of (11) by an additional OCP
cost term JCA to (4).

JCA =
b

1+ e
−a
(

d2
des−(~xO−~xq)

>(~xO−~xq)
) (13)

The parameter b, JCA can be adapted to the other system
costs (4). Accordingly b has to be chosen big enough to
have dominating costs JCA to ensure that CA is prioritized in
relation to trajectory tracking. Fig. 6 is showing the influence

Fig. 6: Sigmoid distance cost function JCA with b = 1
of the parameter a which is affecting the sharpness of the
switching behavior. For increasing a values (Fig. 6 from left
to right), the switching behavior is approximated better, but
the system becomes more ill-conditioned and therefore more
difficult to solve. d is representing the distance |~xO−~xq| and
ddes the desired distance that should be kept. If the UAV is in
the prohibited area d < ddes (top area in Fig. 6), the system
function is dominated by (13) which means, that the solver
tries to preferably minimize JCA (13) and therefore increases
the distance d to the obstacle. The validation of the proposed
sigmoid CA is shown in the following section IV-A.

A. COLLISION AVOIDANCE EXPERIMENT

For the experimental validation JCA (13) is parametrized
with a= 6 and b= 3 which have been chosen experimentally.
Furthermore to show an avoidance more dominant in the xy-
plane, the z-axis tracking penalty is increased to qz = 3. In
the experiment the quadrotor is tracking a position on the
opposite side of an obstacle. Accordingly the CA is forcing
the AR.Drone from the direct connection trajectory onto a
curve that surrounds the given obstacle. Fig. 7 is showing an
example of such an CA-movement.

Fig. 7: AR.Drone collision avoidance: The trajectory of the
quadrotor is deviated by an obstacle, depicted as stand in
the center point of the circle. The circle radius of r = 1m is
illustrating the keep out area. As desired, the drone trajectory
is subject to ‖~xO−~xq‖2 ≥ ddes = 1.



Fig. 8: AR.Drone position control collision avoidance

The corresponding trajectories for multiple trajectory
changes are depicted in Fig. 8. Each of the three depicted
section is representing a change in the target position. As
the main displacement is in y direction, the time difference
between the x and y action is caused by first just moving in
y-direction until the CA sphere would be violated. Then the
x-axis is deployed to initiate the CA curve. When reaching
the Obstacle avoidance sphere the quadrotor is pushed away
from the sphere which leads to an oscillating movement, until
a feasible path is found. These oscillations are caused by a
wrong prediction due to the model missmatch, and can be
treated by using a more precise model, further smoothening
the sigmoid and reducing the control action. As for the posi-
tion control of section III, the advantage of the combination
of sigmoid collision avoidance with CMSCGMRES is the
low computation time of max(tc) = 1.6ms. For this scenario
the computation time is significantly higher than without

collision avoidance due to the implementation. The position
of the obstacle is not directly given to the cost function.
Instead they are implemented as additional states to be also
able to provide obstacle dynamics in a future step that allows
more efficient avoidance of moving obstacles. According to
the larger state vector, also the computation time is increased.
To sum up, Fig. 7 and 8 are validating the efficiency of the
proposed combination of CMSCGMRES with a sigmoid CA,
as the obstacle is avoided and a very low computation time is
achieved. The video footage of the experiment is accessible
online [1].

V. CONCLUSION AND FURTHER WORK

The presented work is proposing a CMSCGMRES control
approach for commercial low-cost multi-rotor systems, to
control the global UAV position while avoiding obstacles.
For this purpose, a semilinear UAV state space model is
presented. Its parameters are identified by a simple step re-
sponse analysis, as shown for the AR.Drone. The given model
suits most commercial multi-rotor systems with an internal
controller that receives velocity commands. To use the MPC
only for the outer position control loop is advantageous, as
the UAV internal controller can typically not be switched
off and furthermore provides basic attitude stability. For the
position control, this work is proposing the CMSCGMRES
algorithm, as it represents a MPC for nonlinear systems with
very low computation times combined with the ability to
handle constraints. This also allows an extension to more
nonlinear models, respective systems in future.

Section III-A shows a real AR.Drone position control
scenario [1], which validates the stability of the proposed
algorithm and its efficiency with a maximum computation
time of max(tc) ≈ 1ms. The resulting position trajectory
shows a typical damping of D≈

√
2 which validates the

domination of the position tracking in the MPC cost function.
The position control is also stabilizing the AR.Drone under
more complex disturbances (involving Ψ), with the remark
that the input limitation constraint handling of uΨ has to be
adjusted accordingly.

To be able to avoid obstacles, section IV presents a
collision avoidance, that models the inequality constraint of
keeping a minimum distance to an obstacle with a sigmoid
function. The corresponding measurements with the real
AR.Drone validate this approach [1]. Furthermore they state
the computational efficiency in combination with CMSCGM-
RES with a maximum computation time of max(tc)≈ 1.6ms.
For the real AR.Drone CA experiment, the computational
load on a standard computer is with max(tc)

∆t ≈ 1.6ms
100ms ≈ 1.6%

very low. As this paper focuses on the control and not the
sensing part of the quadrotor, all states in the experiments
are measurements via a motion capture system. The low
computational load of the proposed controller aims to allow
the execution of other computationally expensive algorithms
besides.

This refers e.g. to simultaneous localization and mapping
(SLAM) or obstacle detection via vision, to substitute the
motion capture system with onboard sensors in a further step.



Future work will also include the introduction of different
constraint handling techniques for the CMSCGMRES solver.
Subject to these, the stability of the proposed algorithm shall
be proven analytically based on [24], [21], [22]. For the
application of multiple quadrotors within limited space e.g.
smart factories, multi UAV control is crucial. This will be ad-
dressed by first developing central MPC solutions which will
then be decentralized in the final step. The presented work
will be continued to automatize commercial UAV systems,
to further reduce development costs for autonomous UAV
systems and to open this field of research and development
to a wider audience in future.
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