
Sampling-based Stochastic Optimal Control with Metric Interval

Temporal Logic Specifications

Felipe J. Montana, Jun Liu and Tony J. Dodd

Abstract— This paper describes a method to find optimal
policies for stochastic dynamic systems that maximise the prob-
ability of satisfying real-time properties. The method consists
of two phases. In the first phase, a coarse abstraction of the
original system is created. In each region of the abstraction, a
sampling-based algorithm is utilised to compute local policies
that allow the system to move between regions. Then, in the
second phase, the selection of a policy in each region is obtained
by solving a reachability problem on the Cartesian product
between the abstraction and a timed automaton representing
a real-time specification given as a metric interval temporal
logic formula. In contrast to current methods that require a
fine abstraction, the proposed method achieves computational
tractability by modelling the coarse abstraction of the system
as a bounded-parameter Markov decision process (BMDP).
Moreover, once the BMDP is created, this can be reused for
new specifications assuming the same stochastic system and
workspace. The method is demonstrated with an autonomous
driving example.

I. INTRODUCTION

Motion planning based on high-level temporal specifica-

tions has become an important area of research. During the

last few years, several methods have been developed for

deterministic, e.g., [1][2][3], non-deterministic, e.g., [4][5][6]

and stochastic systems, e.g., [7][8]. These methods specify

properties using temporal logics such as linear temporal

logic (LTL) and computation tree logic (CTL). Although

useful missions can be stated using these logics, they are

limited to qualitative specifications. In other words, only the

order of events can be expressed. To solve this limitation,

methods using real-time logics such as metric temporal logic

(MTL) [9] have been proposed. In [10], the authors develop

a method to abstract a continuous system preserving MTL

properties and propose a technique to transform MTL for-

mulae to LTL formulae allowing to apply existing methods

for discrete systems to find a solution. Using a mathematical

programming-based approach, a robust control is obtained

for non-deterministic systems based on signal temporal logic

(STL) in [11]. By encoding specifications as constraints of

a mixed integer linear programming (MILP), the possible

computationally expensive process of abstraction is avoided.

For stochastic dynamics, the authors in [12] compute an

optimal policy with respect to the probability of satisfying

This work was supported, in part, by the Mexican National Council of
Science and Technology (CONACyT).

Felipe J. Montana and Tony J. Dodd are with the
Department of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield S1 3JD, UK. E-mail:
fjmontanagonzalez1,t.j.dodd@sheffield.ac.uk.
Jun Liu is with the Department of Applied Mathematics, University of Wa-
terloo, Waterloo N2L 3G1, Canada. E-mail:j.liu@uwaterloo.ca

a metric interval temporal logic (MITL) specification. The

solution is found in the product operation between a timed

automaton representing a desired specification and a discrete

abstraction that approximates a continuous-time stochastic

system. They prove that the optimality of the computed

policy depends on the level of granularity in the state and

time space abstraction. The limitation of the approach is the

scalability: as the abstraction gets finer, the number of states

becomes intractable.

As in the aforementioned work, because of discretisation,

the complexity scales exponentially with the dimension of

the state space in several methods presented in the litera-

ture. To mitigate this problem, sampling-based algorithms

have been proposed, e.g., [13][14][15][16]. Although these

methods partially solve the problem of scalability, they

do not address the problem for systems with stochastic

dynamics or real-time specifications. An exception is [17],

where a solution is presented for stochastic systems but real-

time specifications are not considered. The method uses a

sampling-based algorithm to compute local policies within

discrete regions of the state space to reach local goals. A pol-

icy is then selected by solving a product bounded-parameter

Markov decision process (BMDP) of the discretisation and

an automaton representing a co-safe LTL formula.

In this paper we extend the work in [17] by finding optimal

policies for stochastic system based on MITL specifications.

Although, as described above, this problem has been ad-

dressed in [12], the solution is limited by its scalability. In

contrast, our method achieves computational tractability by

dividing the solution into two phases. During the first phase,

the system is coarsely discretised in distinct regions. Then,

local policies are computed within each discrete region to

drive the system to adjacent regions. In the second phase,

similar to [12], a Cartesian product between the abstraction

and a timed automaton is used to compute an optimal global

policy that selects local policies in each region. This global

policy is optimal in the sense that the probability of satisfying

a real-time specification is maximised. The main contribution

of this paper is a method that utilises a coarse abstraction to

reduce complexity and allows a fast computation of policies.

Once local policies are computed in the abstraction, only the

second phase has to be repeated for new MITL specifications.

Furthermore, the dynamics of the system under consideration

only has an impact in the first phase. Hence, the complexity

of recomputing new policies only depends on the number of

regions created during the abstraction.

II. PRELIMINARIES AND PROBLEM DEFINITION

Notation: For a set Q, let |Q|, 2Q, Qo and ∂Q denote its

cardinality, power set, interior and boundary, respectively.

We use Z+ to denote the set of non-negative integers and

R+ for non-negative real numbers. For n,m ∈ Z+, Rn and

R
n×m are the set of column vectors and matrices with n and

n×m real entries.

A. System Model

This paper focuses on stochastic dynamic systems, called

controlled diffusions, that evolve according to the stochastic

differential equation:

dx(t) = f (x(t),u(t))dt +G(x(t))dw(t), (1)

where x ∈ X ⊂R
dx is the system state and u ∈U ⊂R

du is the

control input. Rdx and R
du are the dx-dimensional and du-

dimensional Euclidean space, respectively. f : X ×U → R
dx

and G : X → R
dx×dx are bounded continuous functions; and

w(·) is a dw-dimensional Wiener process on a probability

space (Ω,F ,P). The matrix G(·) is assumed to have full

rank and the control u(·) is admissible with respect to

w(·)[18].

B. Bounded-parameter Markov Decision Process

A bounded-parameter Markov decision process (BMDP)

[19] is used to abstract the motion of the continuous stochas-

tic system, see Section III. An BMDP is a tuple B =
(S,A, P̂, P̌), where:

• S is a finite set of states,

• A is a finite set of actions,

• P̂(·|·, ·) : S× S×A → [0,1] is the upper bound of the

probability of transitioning to the state s j from the state

si under action a ∈ A,

• P̌(·|·, ·) : S × S ×A → [0,1] is the lower bound of the

probability of transitioning to the state s j from the state

si under action a ∈ A.

For all states s ∈ S and any action a ∈ A, the probability

functions P̂ and P̌ satisfy the following conditions:

0 ≤ P̌(·|s,a)≤ P̂(·|s,a)≤ 1, (2)

0 ≤
|S|

∑
j=1

P̌(s j|si,a)≤ 1 ≤
|S|

∑
j=1

P̂(s j|si,a). (3)

C. Metric Interval Temporal Logic

We use metric interval temporal logic (MITL) [20] to

express system properties. These properties are represented

by a set Π of atomic propositions that indicate whether a

property is true or false. A labelling function LX : X → 2Π

maps each state x ∈ X to the set Π.

Syntax: The syntax of MITL over the set Π is defined as

follows:

ϕ := π | ¬ϕ | ϕ1 ∨ϕ2 | ϕ1 ∧ϕ2 | ϕ1UIϕ2,

where π ∈ Π, ¬, ∨, ∧ and U represent the operators

negation, disjunction, conjunction and until, respectively; and

I is a convex subset of R+ of the form: (a,b), (a,b], [a,b)
or [a,b], where a,b ∈ Z+ and a < b. The temporal opera-

tors eventually and always are defined as ♦Iπ = TrueUIπ
and �Iπ = ¬♦I¬π , respectively. Only formulae in positive

normal form (PNF), where negations only occur in front of

atomic propositions [21], are considered.

Continuous semantics: A signal function ξ : [0,∞]→ X is

used to interpret MITL formulae. Given the function ξ , the

satisfaction relation |= and an MITL formula ϕ , we define

ξ (t) |= ϕ inductively as follows:

ξ (t) |= π iff π ∈ LX (ξ (t)),

ξ (t) |= ϕ1 ∧ϕ2 iff ξ (t) |= ϕ1 and ξ (t) |= ϕ2,

ξ (t) |= ϕ1 ∨ϕ2 iff ξ (t) |= ϕ1 or ξ (t) |= ϕ2,

ξ (t) |= ϕ1UIϕ2 iff ∃t ′ ∈ I : ξ (t ′) |= ϕ2 and

ξ (t) |= ϕ1, ∀t ∈ [a, t ′).

D. Timed Automaton

We limit system specifications to those MITL formulae

that can be converted into deterministic timed automaton

(DTA). Let C = {c1,c2, . . . ,cdc
} be a finite set of real-valued

clocks. Similar to [12], we define a clock vector C ∈ R
dc

with entries equal to the value of each clock. The i-th entry

of the clock vector is denoted by C[i]. For the set C, Λ(C)
is a set of constraints defined as:

λ := c ≤ k | c ≥ k | ¬λ | λ1 ∧λ2,

where λ is a clock constraint in Λ(C), c ∈C and k ∈ Z+.

A deterministic timed automaton [22] is a tuple T =
(Σ,Q,q0,QF ,C,Λ(C),→), where:

• Σ = 2Π is a finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• QF ⊂ Q is a set of accepting states,

• C is a finite set of clocks,

• Λ(C) is a set of clock constraints,

• →⊆ Q×Q×Σ×2C ×Λ(C) is a transition relation.

A configuration of T is defined by a pair (q,C), where

q ∈ Q is a state and C is the clock vector defined above.

We write (q,C)
π,t
−→ (q′,C′) to represent a transition from

configuration (q,C) to configuration (q′,C′) on input π ∈ Π

after t units of time, where C′[i] = C[i]+ t for i ∈ {1, . . . ,dc}.

After the transition, the set of clocks δ ⊆C are reset to zero,

i.e., C′[i] = 0 if ci ∈ δ .

In order to describe the behaviour of the system over time,

let η = {ηi}
∞
i=0, where ηi ∈R+, be an infinite time sequence

that satisfies: ηi < ηi+1 for all i ≥ 0 and for all t ∈R+, there

is some i such that ηi > t. Given the alphabet Σ and the

time sequence η , a timed word is defined by the pair (σ ,η),
where σ = σ1σ2 . . . is a word over Σ. Since the alphabet

Σ is formed by the set of atomic propositions Π, a timed

word gives the time at which system properties occurs, i.e.,

σi = LX (ξ (ηi)).
Let ∆ηi = ηi −ηi−1. A run in T on a timed word (σ ,η)

is an infinite sequence (q0,C0)
σ1,∆η1−−−−→ (q1,C1)

σ2,∆η2−−−−→ . . . ,

where C0 is the clock vector with all entries equal to zero and

for all i≥ 1, Ci[j] =Ci−1[j]+∆ηi if c j 6∈ δ , Ci[j] = 0 if c j ∈ δ
and in each transition Ci satisfies the clock constraint λi ∈
Λ(C). A timed word (σ ,η) is accepted by a timed automaton

T if a state q ∈ QF is visited in the run produced by (σ ,η).

E. Problem Formulation

We say that the system satisfies the specification ϕ in the

discrete semantics if the timed word (σ ,η), describing the

behaviour of a sample path of the system, is accepted by

the timed automaton Tϕ , where Tϕ is the timed automa-

ton that accepts runs satisfying ϕ . On the other hand, if

{∆ηi → 0, i ≥ 1} and (σ ,η) is accepted by Tϕ , we say that

the system satisfies the specification ϕ in the continuous

semantics. Given these definitions, the problem addressed

can be formally defined.

Problem definition: Given a stochastic dynamic system of

the form (1) and an MITL formula ϕ , compute a control

policy µ : X →U such that the probability of satisfying ϕ in

the continuous semantics is maximised.

III. SOLUTION

This section presents a solution for finding a policy that

maximises the probability of a stochastic system of the form

(1) satisfying a specification given as an MITL formula.

To reduce computational complexity, the proposed method

is divided into two phases. First, the system is coarsely

discretised in distinct regions. In each region, local poli-

cies that drive the system from one region to another are

computed, Figure 1. This calculation relies on a sampling-

based algorithm called iMDP [23], which approximates the

model in (1) using the Markov chain method [18]. Since

the probability of transitioning from one region to another

depends on the initial state of the stochastic system within

the region, a range of probabilities is required to represent

transitions between regions. To model this range, a BMDP

[19] is utilised.

In the second phase, the MITL formula is converted

into a DTA. Then, the original problem is reformulated as

a reachability problem in the product automaton between

the BMDP and the DTA. The solution of the reachability

problem yields an optimal global policy that is used to select

a local policy in each region. In contrast to [12], the size of

the product automaton, where the solution is found, only

depends on the number of regions and not the dynamics of

the system. Moreover, note that for new specifications, only

the second phase of the method has to be solved. Therefore,

the main benefit of the method is the ability to fast recalculate

global policies for new specifications. The rest of the section

explains the computation of local polices (Section III.A), the

construction of the BMDP and product automaton (Section

III.B and III.C) and the solution to the reachability problem

(Section III.D).

A. Discretisation and Local Policies

In this work, the workspace Γ is decomposed by a

Delaunay triangulation. Nevertheless, this process can be

si
s1

i

s2
i

s3
i

Fig. 1: Discretisation of the workspace. The picture on the

left shows the workspace of the system with two areas of

interest and the regions generated by the discretisation. In

each discrete region si, local policies are computed, one for

each adjacent region, to drive the system from the region si

to the contiguous regions s1
i , s2

i and s3
i .

performed by any other partitioning method. Since the

workspace is a projection of X onto R
dΓ , where dΓ is the

dimension of the workspace Γ, this decomposition induces

a discretisation in X . The lower dimensionality of the de-

composed workspace Γ avoids the exponential computational

cost of decomposing the state space. Let S = {s1, . . . ,sdS
} be

the set of regions obtained after the decomposition. In each

region {si, i ∈ {1, . . . ,ds}}, a local policy is computed, for

each adjacent region, using the iMDP algorithm. The local

policies are used to drive the system from region si to any

of its adjacent regions, Figure 1. The computation of local

policies within the region si is now presented.

The iMDP algorithm [23] approximates the continuous

dynamics of the system using a sequence of Markov decision

processes (MDPs) Mn = (Zn,U,Pn,Gn,Hn) for n ≥ 0, where

Zn is a discrete subset of X , U is the original control

space, Pn(·|·, ·) : Zn × Zn ×U → [0,1] gives the probability

of transitioning to the state x j ∈ Zn from the state xi ∈ Zn

under action u ∈ U , Gn : Zn ×U → R is an immediate cost

function and Hn : Zn → R is a terminal cost function.

In each iteration of the algorithm, a new Mn is created

by adding randomly sampled states to the set Zn−1 from the

interior and boundary of the region si. To each state x ∈
Zn, a non-negative interpolation interval ∆tn(x), a cost value

Jn(x) and a control u ∈U are assigned. The interval ∆tn(x),
also called holding time, is used to approximate the discrete

MDP Mn to the continuous system. Let {χn
i , i ∈ Z+} be a

controlled Markov chain on Mn with probability transition

Pn and let ∆χn
i = χi+1 −χi denote the distance between two

consecutive states. In order to maintain the properties of the

original system, ∆tn(x) and Pn need to satisfy the following

local consistency properties [18]:

• For all x ∈ Zn:

lim
n→∞

∆tn(x) = 0. (4)

• For all xi ∈ Zn and ui ∈U :

E(∆χn
i) = f (xi,ui)∆tn(xi)+o(∆tn(xi)), (5)

E([∆χn
i −E(∆χn

i)][∆χn
i −E(∆χn

i)]) =

G(xi)G(xi)
T ∆tn(xi)+o(∆tn(xi)),

(6)

lim
n→∞

sup
i∈Z+

‖∆χn
i ‖= 0, (7)

where E is the conditional expectation given χn
i = xi and o(·)

indicates an upper bound on the error due to the discrete time

approximation. The holding time ∆tn(x) assigned to a state

x ∈ Zn is computed as follows:

∆tn(x) = γ

(

log|Zn|

|Zn|

)θςρ/dx

, (8)

where γ > 0, θ ∈ (0,1], ς ∈ (0,1) and ρ ∈ (0,1] are constants

[23].

Recall that each region si ∈ S requires one policy for each

adjacent region. In order to compute a policy to drive the

system from the interior of si to a particular contiguous

region, say s1
i , a negative terminal cost is assigned to states

sampled from the boundary shared with s1
i . To avoid the non-

desired adjacent regions, s2
i and s3

i , a positive terminal cost

is assigned to states sampled from the boundary shared with

these regions. A policy is defined by a function µn that maps

each state x ∈ Zn to a control u ∈U . Let U be the set of all

possible polices. The optimal policy is found by minimising

the cost-to-go function [23]:

Jn,µn(x) =EPn

[

Tn−1

∑
i=0

α tn
i Gn(χ

n
i ,µn(χ

n
i))+α tn

Tn Hn(χ
n
Tn
)

]

, (9)

where tn
i = ∑

i−1
0 ∆tn(χ

n
i), α ∈ [0,1) is the discount rate, EPn

is the conditional expectation given χn
0 = x under Pn and

Tn is the expected first exit of the controlled Markov chain

{χn
i , i ∈Z+} under the policy µn ∈ U from the region si. The

optimal policy µ∗
n satisfies Jn,µ∗

n
(x) = infµn∈U Jn,µn(x).

The policy µ∗
n is used to assign a control value µ∗

n (x)
to each non-boundary state x ∈ Zn. This process is repeated

to obtain a local optimal policy for each adjacent region.

Because of the Delaunay triangulation, the discrete regions

are triangles. Therefore, each region si has three local

policies, denoted as µ1
si

, µ2
si

and µ3
si

, to drive the system

from the interior of si to the adjacent regions s1
i , s2

i and

s3
i . Different partitioning would lead to a different number

of local policies.

B. BMDP Model

The probability of ending in an adjacent region s j under a

policy {µ l
si
, l ∈ {1,2,3}} varies among the sampled states x

within the region si. Hence, the probability of transitioning

from the region si to the region s j is given by a range. To

model this range, an BMDP B = (S,A, P̂, P̌,LS) is utilised.

The set of states S is the set of regions created by the

Delaunay triangulation and A is a set of actions. For clarity,

we refer to states s ∈ S as regions. The available actions in

each region s ∈ S are denoted by A(s). Since each region has

three local policies, actions a1
si
, a2

si
, a3

si
∈ A(si) correspond

to the local policies µ1
si
, µ2

si
, and µ3

si
, respectively. P̂ and P̌,

defined as in Section II.B, are calculated as follows:

P̂(s j|si,a
l
si
) = max

x∈Zn

P(s j|x,µ
l
si
), (10)

P̌(s j|si,a
l
si
) = min

x∈Zn

P(s j|x,µ
l
si
), (11)

where P(s j|x,µ
l
si
) is the probability of state x inside region

si to finish in the region s j when the local policy µ l
si

is

applied. Since the Markov chain {χi, i ∈ Z+}, induced by

the policy µ l
si

, is absorbing [24], these probabilities can

be computed using the fundamental matrix [25]. The label

function LS : S → Π maps each state x within a region s to

the set of atomic propositions Π. In order to select an action,

or local policy, in each region such that the probability of

satisfying a specification ϕ is maximised, a Cartesian product

between the BMDP, described above, and a timed automaton

that represents ϕ is created. This process is explained in the

next subsection.

C. Product BMDP

This subsection explains the construction of the product

BMDP P between the BMDP B and the timed automaton

Tϕ that represents the MITL formula ϕ . In order to obtain

a discrete time space for the BMDP abstraction B, we

discretise the range of the clocks in C as follows. For

each clock ci ∈ C, let cr
i be the maximum value in the

range of clock ci and let ∆τi =
cr

i
Wi

, where Wi ∈ R+ is a

constant such that cr
i ≡ 0 (mod Wi). Then, the range of each

clock ci ∈ C is divided into time intervals of the form:

[κi∆τi,(κi + 1)∆τi − ε], where 0 ≤ κi ≤
cr

i
Wi

and ε is a small

positive number. Similar to the clock vector C, we define,

with abuse of notation, the vector T with entries equal to the

interval containing the value of each clock, i.e., T[i] = [τa
i ,τ

b
i]

such that τa
i ≤ C[i] ≤ τb

i for i ∈ {1, . . . ,dc}. The set of all

possible vectors T is denoted by T. Finally, we introduce the

modified timed automaton T τ = (Σ,Qτ ,qτ
0,Q

τ
F ,C,Λ(C),→),

where:

• Σ = 2Π is a finite alphabet,

• Qτ is a finite set of states,

• qτ
0 ∈ Qτ is an initial state,

• Qτ
F ⊂ Qτ is a set of accepting states,

• C is a finite set of clocks,

• Λ(C) is a set of clock constraints,

• →⊆ Qτ ×Qτ ×Σ×2C ×Λ(C) is a transition relation.

Configurations in T τ are defined by pairs (q,T). A run

in T τ on a timed word (σ ,η) is an infinite sequence

(q0,T0)
σ1,∆η1−−−−→ (q1,T1)

σ2,∆η2−−−−→ . . . , where T0[i] = [0,∆τi−ε]
for i ∈ {1, . . . ,dc} and for all i ≥ 1, Ci[j] = Ci−1[j]+∆ηi if

c j 6∈ δ , Ci[j] = 0 if c j ∈ δ and C[i] ∈ T[i]. Similar to a run

in the timed automaton T , a timed word (σ ,η) is accepted

by T τ if a state q ∈ Qτ
F is visited in the run produced by

(σ ,η).
The construction of the product BMDP P is now pre-

sented. Given the timed automaton T τ
ϕ representing the

formula ϕ and the BMDP B, the product BMDP P =B×
T τ

ϕ is defined by the tuple P = (SP ,AP ,LP , P̂P , P̌P ,FP),
where:

• SP = S×Qτ ×T is a finite set of states,

• AP = A,

• LP = LS,

• P̂P((s′,q′,T′)|(s,q,T),al
s)) = P̂(s′|s,al

s) iff

(q,T)
LP (s′),∆τ
−−−−−−→ (q′,T′) and 0 otherwise,

• P̌P((s′,q′,T′)|(s,q,T),al
s)) = P̌(s′|s,al

s) iff

(q,T)
LP (s′),∆τ
−−−−−−→ (q′,T′) and 0 otherwise,

• FP = S×Qτ
F ×T is a set of accepting states.

Each transition (q,T)
LP (s′),∆τ
−−−−−−→ (q′,T′), where ∆τ repre-

sents an increment of ∆τi in the endpoints of the interval of

each clock ci ∈C, satisfies the clock constraints as follows.

A clock constraint of the form ci ≤ k is satisfied by T′ if

τb
i ≤ k, where T′[i] = [τa

i ,τ
b
i]. On the other hand, a clock

constraint ci ≥ k is satisfied by T′ if τa
i ≥ k.

Once the product BMDP P is created, a solution to the

problem described in Section II.E can be computed as shown

in the next subsection.

D. Optimal Global Policy Computation

In [12], the authors prove that the probability of satisfying

the specification ϕ in the discrete semantics is equal to the

probability of the controlled Markov chain {χi, i ∈ Z+} on

P , induced by a policy µP , reaching the set of final states

FP . In this subsection, the computation of the policy µP :

SP → AP is presented.

To find the policy that maximises the probability of

reaching FP , the Interval Value Iteration (IVI) algorithm [19]

is utilised. This algorithm can optimise a value function using

the lower bound P̌P or the upper bound P̂P . In [19], these

are referred to as pessimistic and optimistic value functions,

respectively. In this paper, the pessimistic value function is

utilised. The algorithm maximises the value function:

V (sP,i)= max
al

s∈AP (sP,i)
min

P̄∈[P̌P ,P̂P]
∑

sP, j∈SP

P̄(sP, j|sP,i,a
l
s)V (sP, j),

(12)

for all sP,i ∈ {SP \FP} and V (sP,i) = 1 for all sP,i ∈ FP .

Intuitively, the value V (sP,i) is the probability of reaching

the set of final states FP starting from sP,i ∈ SP . Projected

to the discrete approximation of the system, V (sP,i) repre-

sents the worst-case probability of satisfying the specification

ϕ from the states x within the region si given that sP,i =
(si, ·, ·). Hence, the policy that maximises V (sP,i), denoted

by µ∗
P

, is selected as an optimal global policy for the product

BMDP P .

E. Policy Implementation

The computed optimal global and local policies are im-

plemented in the following manner. Given the initial system

state x(t) with t = 0 and the clock vector C with all entries

equal to zero, the product BMDP state sP = (s,q,T) ∈ SP

that satisfies: (i) x(t) ∈ s0, i.e., x(t) is in the interior of

the region s, (ii) q = qτ
0 and (iii) T[i] = [0,∆τi − ε] for

all i ∈ {1, . . . ,dc}, is identified. The local policy µ l
s that

corresponds to the optimal action µ∗
P
(sP) is selected to

control the system. To apply a local policy, the nearest

sampled state xnearest , in the interior of region s, to the

current system state is sought. Then, the control µ l
s(xnearest)

is applied for ∆tn(xnearest) units of time. At the next state

x(t ′), where t ′ = t +∆tn(xnearest), the clocks c 6∈ δ are in-

cremented by ∆tn(xnearest) units of time, i.e., C′[i] = C[i]+
∆tn(xnearest) if ci 6∈ δ and C′[i] = 0 if ci ∈ δ . The new

product BMDP state (s′,q′,T′)∈ SP satisfying: (i) x(t ′)∈ s′0,

(ii) q
LP (s′),∆tn(xnearest)
−−−−−−−−−−−→ q′ and (iii) T′[i] = [τa

i ,τ
b
i] such that

τa
i ≤ C′[i] ≤ τb

i for all i ∈ {1, . . . ,dc}, is selected and the

process is repeated.

IV. ANALYSIS

A. Convergence

In this subsection, the convergence of the probability

of satisfying a specification under the computed policy is

analysed. In [12], the authors prove that as the discretisation

in time and space becomes finer, the probability of satisfying

a specification ϕ under the policy computed in the discrete

approximation converges to the probability of the continuous

system satisfying ϕ . This convergence is proved for a policy

obtained in a product automaton between a DTA and a

Markov chain approximating the continuous system. Two

main points differentiate the Cartesian product used in [12]

and the one utilised in this paper: (i) scalar values represent

the value of each clock on the configurations of the DTA

in contrast with the intervals in this paper and (ii) the value

function of states in the product, i.e., V (sP), is a unique

scalar value in [12], whereas in this paper, it is a value

within the interval [V̌ (sP),V̂ (sP)] given by the pessimistic

and optimistic case, see Section III.D. Nevertheless, due to

the following conditions, the proof of convergence in [12]

can be applied to the method proposed in this paper.

First, it is shown in [17] that as the size of the regions

shrink to zero, the error introduced in the computation of

local policies converges to zero if the local consistency

properties, described in Section III.A, are satisfied. Moreover,

as the size of the regions decreases, the probability of

satisfying ϕ from all the sampled states x within the region

s converges to a single value [17]. Formally, the following

condition holds:

lim
diameter(s)→0

[

V̂ (sP)−V̌ (sP) = 0
]

. (13)

Now let ∆τi → 0 for all i ∈ {1, . . . ,dc} in the timed

automaton T τ
ϕ . As the size of the intervals tends to zero,

each configuration in T τ
ϕ is equivalent to an unique time

instant in the trajectory of the system as in [12]. Hence, as the

size of the regions and the size of the intervals approximate

zero, the proof of Theorem 2 in [12] holds for the discrete

approximation presented in this paper.

B. Complexity

The complexity of the proposed algorithm can be divided

into two parts: the computation of local policies in each

region, phase 1, and the computation of the global policy

in the product BMDP, phase 2. The iMDP algorithm used to

find local policies has a time complexity O(|Zn|
1+θ log|Zn|),

where Zn is the set of sampled states within a region and

θ ∈ (0,1] is a constant [23]. On the other hand, the number

of iterations of the IVI algorithm, required to converge to

an optimal interval value, is polynomial in the number of

states in the product BMDP P [19], which has at most

|S| × |Qτ | × |T| states, where S, Qτ and T are the set of

regions, the number of states in the timed automaton T τ and

the set of all possible vectors T, respectively. The complexity

of constructing a deterministic timed automaton from MTL

formulae can be found in [26]. Note that the dynamics of

the system are only considered in the first phase. Hence,

for complex dynamics, the computation time on the the first

phase would increase, but the time required to find a global

policy is polynomial in the number of discrete regions.

V. EXAMPLE

The proposed approach is illustrated in the following

example. We considered a two-dimensional system modelled

as:

f (x(t),u(t)) = u, G(x(t)) = 0.05I2, (14)

where u ∈ [−0.5,0.5] and I2 is the identity matrix of 2×2.

In this example the workspace is constrained by 0 ≤ x ≤ 3

and 0 ≤ y ≤ 3 and has two areas of interest marked by the

atomic propositions π1 and π2, Figure 2. The objective is to

maximise the probability of satisfying the MITL specification

ϕ =♦[0,20](π1∧♦[10,20](π2)), which indicates that the system

has to reach areas π1 and π2 in maximum 20 units of time

with the restriction of visiting π2 after the tenth unit of time,

similar to the example presented in [12].

Fig. 2: Illustration of 10 sample paths of the system in (14).

The system has to visit region π1 and π2 within 20 units

of time, nevertheless, region π2 has to be visited after the

tenth unit of time. Formally the specification can be written

as ϕ = ♦[0,20](π1 ∧♦[10,20](π2)).

For this example, the workspace is partitioned in 132

discrete regions by Triangle [27] and the size of the intervals,

i.e., ∆τ , is 0.5. This discretisation produces a product BMDP

P with 10516 states. To compute local policies, 300 discrete

states are randomly sampled in each region. This process

requires 3716 seconds. On the other hand, the construction of

P and the computation of the optimal global policy require,

on average, 4468 seconds. The probability of satisfying the

specification under the computed policy is .8097. On average,

the system reaches π2 in 18.97 seconds, Figure 3. The

example above is implemented in MATLAB on a desktop

with a 3.30 GHz processor i5 and 8 GB of RAM.

Fig. 3: 3D view of 10 trajectories of the system in (14) fol-

lowing the MITL specification ϕ = ♦[0,20](π1 ∧♦[10,20](π2)).
The x, y and t axis show the position of the system and the

time, respectively. The average time required to reach π2 is

18.97 seconds.

A. Discussion

In this section we compare the proposed framework to

the work in [12]. The first aspect to be compared is the

required time to find a solution. The example above requires,

on average, 8184 seconds to be solved. In contrast, for

a similar specification, the method in [12] requires 19080

seconds. Although we considered a system with simpler

dynamics, only the first phase of the method would be

affected by a system with more complex dynamics. In

Section IV.B it was shown that the complexity of computing

local policies depends on the number of sampled states.

Therefore, depending on the number of samples, the total

required time to compute local and global policies could be

larger compared to the time required in [12]. Nevertheless,

for a reasonable number of samples, our method is faster

as demonstrated in the example above. Moreover, for new

MITL formulae, the method proposed in this paper would

be always faster than [12]. This is achieved because only

the second phase has to be solved. Formally, an optimal

policy is obtained using a value iteration algorithm in the

Cartesian product in both methods. Recall that the number of

iterations of the algorithm, required to converge to an optimal

value, is polynomial in the number of states. Since, in the

proposed method, the dynamics of the system are reasoned

in the first phase, the number of states in the Cartesian

product depends only on the number of discrete regions of

the coarse segmentation. In contrast, in [12], the number of

states depends on a finer discretisation of the state space.

The second aspect is the smoothness of the trajectory. It

can be seen in Figure 2 that the trajectory shows a ‘zigzag’

pattern in contrast to the example in [12] where the trajectory

is smoother. This pattern is caused by the local policies

computed in each region. Since the local optimal policies are

obtained by solving an optimisation problem, all the sampled

states have assigned the control that produces the shortest

internal path to the adjacent regions. Therefore, a quick

change in the direction can be observed when the system

reaches a new region. A possible solution is to reduce the size

of the regions to obtain a finer segmentation. Nevertheless,

this would have an impact in the time required to solve

the problem. In other words, the method offers a trade-off

between the smoothness of the trajectory and the time needed

to find a solution.

VI. CONCLUSIONS

In this paper we have introduced a new method to find

optimal policies based on metric interval temporal logic

(MITL) for stochastic dynamic systems. Policies are opti-

mal with respect to the probability of satisfying an MITL

specification. In contrast to previous works, the motion of

the continuous system is coarsely abstracted in a bounded-

parameter Markov decision process. This allows a faster

computation of policies. A main benefit of the method is that

once local policies are computed, an optimal global policy

can be found faster than current methods. The analysis shows

that, as the discretisation gets finer, the probability of satis-

fying a specification under the computed policy converges

to the probability of the continuous system satisfying the

specification. A possible direction for future work includes

the improvement of the smoothness of the trajectory without

the necessity of a finer segmentation.

REFERENCES

[1] E. Aydin Gol, M. Lazar, and C. Belta, “Language-guided controller
synthesis for discrete-time linear systems,” in Proc. of HSCC. ACM,
2012, pp. 95–104.

[2] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[3] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” Automatic Control,

IEEE Transactions on, vol. 53, no. 1, pp. 287–297, 2008.
[4] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control of

non-deterministic systems for a computationally efficient fragment of
temporal logic,” in Proc. of CDC. IEEE, 2013, pp. 3197–3204.

[5] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “MDP optimal control
under temporal logic constraints,” in Proc. of CDC-ECC. IEEE, 2011,
pp. 532–538.

[6] B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic planning
for Markov decision processes with co-safe LTL specifications,” in
Proc. of IROS. IEEE, 2014, pp. 1511–1516.

[7] M. Svoreňová, J. Křetı́nský, M. Chmelı́k, K. Chatterjee, I. Černá,
and C. Belta, “Temporal logic control for stochastic linear systems
using abstraction refinement of probabilistic games,” in Proc. of HSCC.
ACM, 2015, pp. 259–268.

[8] M. B. Horowitz, E. M. Wolff, and R. M. Murray, “A compositional
approach to stochastic optimal control with co-safe temporal logic
specifications,” in Proc. of IROS. IEEE, 2014, pp. 1466–1473.

[9] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[10] J. Liu and P. Prabhakar, “Switching control of dynamical systems from
metric temporal logic specifications,” in Proc. of ICRA. IEEE, 2014,
pp. 5333–5338.

[11] S. S. Farahani, V. Raman, and R. M. Murray, “Robust model predictive
control for signal temporal logic synthesis,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 323–328, 2015.

[12] J. Fu and U. Topcu, “Computational methods for stochastic control
with metric interval temporal logic specifications,” in Proc of CDC.
IEEE, 2015.

[13] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc. of CDC/CCC. IEEE,
2009, pp. 2222–2229.

[14] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in Proc. of ICRA. IEEE, 2010, pp.
2689–2696.

[15] C. I. Vasile and C. Belta, “Sampling-based temporal logic path
planning,” in Proc. of IROS. IEEE, 2013, pp. 4817–4822.

[16] M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “A sampling-based
strategy planner for nondeterministic hybrid systems,” in Proc. of

ICRA. IEEE, 2014, pp. 3005–3012.
[17] R. Luna, M. Lahijanian, M. Moll, and L. E. Kavraki, “Asymptotically

optimal stochastic motion planning with temporal goals,” in Algorith-

mic Foundations of Robotics XI. Springer, 2015, pp. 335–352.
[18] H. Kushner and P. G. Dupuis, Numerical methods for stochastic

control problems in continuous time. Springer Science & Business
Media, 2013, vol. 24.

[19] R. Givan, S. Leach, and T. Dean, “Bounded-parameter Markov de-
cision processes,” Artificial Intelligence, vol. 122, no. 1, pp. 71–109,
2000.

[20] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing
punctuality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–
146, 1996.

[21] C. Baier and J. P. Katoen, Principles of Model Checking. MIT Press
Cambridge, 2008.

[22] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

Computer Science, vol. 126, no. 2, pp. 183–235, 1994.
[23] V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-

based algorithm for stochastic optimal control,” in Proc. of ICRA.
IEEE, 2012, pp. 2865–2872.

[24] V. A. Huynh, “Sampling-based algorithms for stochastic optimal
control,” Ph.D. dissertation, Massachusetts Institute of Technology,
2014.

[25] J. G. Kemeny, J. L. Snell et al., Finite Markov chains. van Nostrand
Princeton, NJ, 1960, vol. 356.

[26] D. Ničković and N. Piterman, From MTL to deterministic timed

automata. Springer, 2010.
[27] J. R. Shewchuk, “Triangle: Engineering a 2D quality mesh generator

and delaunay triangulator,” in Applied Computational Geometry: To-

wards Geometric Engineering. Springer-Verlag, 1996, vol. 1148, pp.
203–222.

