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Abstract

In this paper, we address the problem of finding current waveforms for a switched reluctance
motor that minimize a user-defined combination of torque ripple and RMS current. The motor
model we use is fairly general, and includes magnetic saturation, voltage and current limits,
and highly coupled magnetics (and therefore, unconventional geometries and winding patterns).
We solve this problem by approximating it as a mixed-integer convex program, which we solve
globally using branch and bound. We demonstrate our approach on an experimentally verified
model of a fully pitched switched reluctance motor, for which we find the globally optimal
waveforms, even for high rotor speeds.

1 Introduction

We consider the problem of choosing optimal current waveforms for a switched reluctance motor
(SRM). Traditionally, the shape of the current waveforms is determined in an ad-hoc manner (e.g.,
by fixing the turn-on angles for each phase winding as a function of rotor position; see [TK12]).
Although creating these waveforms does not require a detailed motor model, and implementing
them is simple, waveforms produced in this manner rarely produce smooth output torque, and
often decrease motor efficiency and exacerbate mechanical vibration and acoustic noise issues.
Also, because of inverter voltage limits, such waveforms may not even be realizable at high rotor
speeds.

We therefore propose to use optimization to find current waveforms that acheive a desired
average torque, while minimizing a combination of resistive power loss and RMS torque ripple. We
consider supply voltage limits, as well as current limits in each phase winding. Our model includes
a detailed magnetic circuit, which can account for magnetic coupling between phases, and can be
used to model motors with unconventional geometries and winding patterns, such as those with
fully pitched windings.

We propose to solve this optimization problem by approximating it as a mixed-integer convex
program (MICP). This MICP reformulation approach has several inherent advantages over more
conventional methods, such as sequential quadratic programming. The most prominent, for our
purposes, is that it can be solved globally by generic methods such as branch and bound, often in a
reasonable amount of time. This has two benefits: first, it allows us to achieve the best performance
possible for a given motor; second, it provides a metric against which other, suboptimal methods
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can be compared. We note that although in general global optimization methods for solving MICPs
can have very high (exponential) runtime, we find that global solutions can typically be found in
a reasonable amount of time (1-5 minutes) for the problems we encounter. These waveforms can
be computed and stored in a lookup table, indexed by desired torque and rotor speed. Such a
table with hundreds or thousands of entries could be computed overnight on a standard multi-core
computer.

Another advantage of an MICP formulation is that, if suboptimal solutions are acceptable,
first-order methods exist that can produce a good solution very quickly especially when initialized
with a decent initial guess. (see, i.e., [TMBB15]) This opens the possibility that (nearly) optimal
waveforms can be produced by a smart control scheme even as motor parameters vary over the
life of the motor. This is especially attractive when combined with a lookup table containing
precomputed, globally optimal waveforms: the precomputed waveforms can be used as an initial
guess for an online optimization method when new waveforms (corresponding to updated motor
parameters) are required.

We demonstrate our approach numerically on the experimentally validated motor model of
[MWC01], which describes an SRM with fully pitched phases.

1.1 Previous work

Current optimization for SRMs. Several authors have considered optimization of SRM cur-
rent waveforms. The most similar work to our own is a series of papers by Lovatt and Stephenson
[LS94], [LS97a], [LS97b], that use local optimization methods to find minimum RMS current wave-
forms that acheive a given (average or pointwise) desired torque, subject to voltage and current
constraints. Stankovic et al. derive optimal waveforms for a simple SRM, under several restrictive
assumptions (e.g., sufficient drive voltage, no more than two simultaneously conducting phases);
under these assumptions, it is only necessary to discretize the waveforms during commutation.
Kaiserseder et al. [KSAS03] also seek optimal current waveforms that produce smooth torque out-
put and can be chosen to either minimize current RMS values, or minimize vibration resulting from
radial forces. The method of optimization is not described. A similar optimization problem is posed
by Chapman and Sudhoff [CS02] in the frequency domain; sequential quadratic programming is
used to (approximately) solve it. Many other works optimize over current waveforms parametrized
by only a few free variables, such as the firing angle or the corner locations of a trapezoidal wave-
form. This of course requires predetermined current waveform shapes, which are not optimal in
general. For some examples of this approach, see [MK03], [CMH93], and [CKKP02].

We also note that our approach can be viewed as an extension of the authors’ previous work
on optimal current waveform design for permanent magnet motors; see [MB15].

Hybrid control and MPC for SRMs. Here we list some other optimization-based techniques
applied to control SRMs. Peyrl et al. propose a finite-set model predictive control approach, which
involves online optimization directly over future inverter switching states. Due to the computa-
tionally demanding nature of this technique, only very short prediction horizons (i.e., up to three
steps) are considered. The work by Vasak et al. [VZP+07], uses a piecewise-affine model of the
torque characteristic (as we do) to derive a feedback controller that guarantees a torque ripple.
However, their proposed model is relatively low fidelity: the dynamics are modelled as a first-order
linear system, and the proposed torque characteristic (our gk(Fk, θ)) has only nine regions (For
comparison, in §6 we use over one hundred regions.)

2



MICP. Convex optimization problems can be solved efficiently and reliably using standard tech-
niques [BV04] (and additionally, specialized modelling software, such as CVX [GB14], enables rapid
development of convex optimization applications). An optimization problem with some integer vari-
ables, but which is otherwise convex, is called a mixed integer convex program (MICP). Because
of the presence of integer variables, MICPs are nonconvex optimization problems, and are difficult
to solve (globally) in general (i.e., these problems are are NP-hard; see [KT06]). Indeed, all known
global solution techniques for MICPs (such as the branch-and-bound algorithm), have exponential
worst-case runtime. Nevertheless, many of these algorithms are effective in practice, and we found
them to work well for the the optimization problem we formulate in this paper. In addition to
global solution algorithms, many approaches exist to (approximately) solve MICPs more quickly;
see [TMBB15] and references therein.

Our formulation is based on approximating the nonlinear constraint functions (the torque char-
acteristics and the magnetic flux characteristics) by piecewise affine functions. These constraints
can then be represented as a combination of integer and linear constraints using disjunctive pro-
gramming. For details on disjunctive programming consult Balas [Bal79] and Ceria and Soares
[CS99]. Disjunctive programming has found many applications in the past decade or so, such as
process engineering [GT13], facility location, unit commitment and portfolio management [GL12],
and optimal control [?].

1.2 Contribution

Our reformulation of the torque control problem as a MICP opens the door for two interesting
possiblilites. The first is that global solution methods can be used to find the optimal waveforms,
typically in a reasonable amount of time. This is of course advantageous in its own right, as it allows
provably optimal waveforms to be implemented. It is also useful to verify the limits of performance
of motors, and as a benchmark for comparing heuristic methods. The second possibility is that
fast first-order methods, which are simple enough to run on embedded platforms, can be used
as a heuristic to update the globally optimal waveforms as parameters vary over the life of the
motor. Our proposed model is also much more general than the optimization models considered in
previous works, and can therefore be used to capture more of the characteristc features of switched
reluctance motors, such as magnetic coupling. We hope this generality will be useful for researchers
investigating novel switched reluctance motor topologies, by giving them a practical method for
optimal waveform generation, and by characterizing the theoretical performance of their designs.

2 Motor model

We consider an abstract, lumped parameter model of a switched reluctance motor. The rotor,
which does not contain any windings or magnetic elements, has angular position θ and angular
velocity ω; we assume ω is constant. The stator contains n electrical circuit branches, called
windings. The winding currents are i ∈ Rn, the winding voltages are v ∈ Rn, and the magnetic
flux linkages through the windings are λ ∈ Rn. The stator also contains m magnetic elements,
with magnetomotive force (MMF) vector F ∈ Rm, and magnetic flux vector ψ ∈ Rm.

We will assume that i, v, λ, F , and ψ are 2π-periodic functions of θ. We use a prime (′)
to denote differentiation of these functions with respect to θ. To lighten notation, we often drop
explicit dependence on θ.
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Electrical dynamics. The electrical circuit dynamics are

v = Ri+ ωλ′, (1)

where R ∈ Sn
++ is the (diagonal) resistance matrix. Note that ωλ′ is the time derivative of λ.

Magnetic circuit. We assume the magnetic elements are connected by a (planar) magnetic
circuit, which we describe in terms of mesh analysis (for an introduction to mesh analysis, see
[DK84]). In particular, we assume that there are l circuit meshes (not including the outer mesh)
each with an associated reference direction. The (reduced) mesh matrix M ∈ Rl×m is such that

Mjk =











1 if magnetic element k is in mesh j, with coinciding reference directions

−1 if magnetic element k is in mesh j, with opposite reference directions

0 if magnetic element k is not in mesh j.

Any flux vector ψ consistent with the magnetic circuit topology must be a linear combination of
the rows of M , so that

ψ =MTφ, (2)

for some φ(θ) ∈ Rl, which we call the mesh magnetic flux vector. (Because M has full row rank in
general, there is a unique φ for any such ψ.)

In addition, the total MMF around each mesh is the sum of the MMFs of the magnetic elements
that make up the mesh (accounting for reference direction), so the vector of mesh MMFs is given
by the vector MF .

Electro-magnetic geometry. We define the electro-magnetic geometry matrix C ∈ Rl×n such
that Cjk gives the amount of current passing through mesh j per unit of current in winding k. The
total current passing through each of the l meshes is therefore given by the vector Ci, which is
related to the total MMF around the meshes by Ampère’s law:

MF = Ci. (3)

Similarly, the flux linkage is related to the mesh magnetic flux vector by

λ = CTφ. (4)

Magnetic characteristic. The magnetic flux and the MMF of the k-th magnetic element are
related by

ψk(θ) = fk
(

Fk(θ), θ
)

, (5)

where the magnetic characteristic fk is a monotonically increasing function in its first argument.
As a special case, if the functions fk are affine in Fk for each θ, with constant linear term (so

that ψ(θ) = AF(θ) + b(θ), with A diagonal and positive definite), as in the case of a permanent
magnet motor, then we have λ(θ) = Li(θ) + k(θ), where L = CT (MA−1MT )−1C is the inductance

matrix and k(θ) = CT (MA−1MT )−1A−1Mb(θ) is the back-emf constant.
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Torque. The magnetic co-energy is

E∗(F , θ) =

m
∑

k=1

∫ Fk

0

fk(x, θ) dx.

The electromagnetic torque can be expressed as

τ(θ) = −
∂

∂θ
E∗
(

F(θ), θ
)

= −
m
∑

k=1

∂

∂θ

∫ Fk

0

fk(x, θ) dx.

By introducing a phase torque function gk such that

gk(y, θ) = −
∂

∂θ

∫ y

0

fk(x, θ) dx,

we have

τ(θ) =

m
∑

k=1

gk
(

Fk(θ), θ
)

. (6)

Voltage limits. We assume the winding voltages are bounded:

|vk(θ)| ≤ vmax, k = 1, . . . , n. (7)

Torque ripple. The average torque over one cycle is

τ =
1

2π

∫ 2π

0

τ(θ) dθ.

The (quadratic) torque ripple is

r =
1

2π

∫ 2π

0

(

τ(θ)− τ
)2
dθ.

Power loss. The power loss is the average resistive loss from the phase currents over one cycle:

Ploss =
1

2π

∫ 2π

0

i(θ)TRi(θ) dθ.

3 Optimal torque control

The optimal torque control problem is to choose the phase voltages, phase currents, and eddy
currents to achieve a desired average torque while minimizing the average power loss and torque
ripple:

minimize Ploss + αr
subject to τ = τdes,

equations (1), (2), (3), (4), (5), (6), and (7).
(8)

The parameters are the trade-off parameter α ≥ 0, the rotor angular velocity ω, the desired average
torque τdes, the resistance matrix R, the mesh matrix M , the electro-magnetic geometry matrix
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C, and the magnetic characteristic functions fk, for k = 1, . . . ,m. The problem variables are the
2π-periodic functions i, v, λ, F , ψ, and φ.

Problem (8) is an infinite-dimensional optimization problem. The problem is nonconvex due to
the magnetic characteristic (5) and the torque relation (6), and therefore is expected to be difficult
to solve globally.

One approach is to find a locally optimal solution, using common local optimization meth-
ods such as sequential quadratic programming Software that implements these methods is readily
available; see [NW06].

In this paper, we pursue a different approach, and will instead show how to approach (8) by
discretizing the variables, and (approximately) reformulating the problem as a mixed-integer convex
program (MICP), a problem class for which efficient algorithms are available to find a good (or
even globally optimal) solution.

We note that if the magnetic characteristic is affine, with only the offset depending on rotor
position, the torque control problem reduces to a version of the formulation given in [MB15]. Our
current problem can therefore be interpreted as an extension of that formulation to cover magnetic
nonlinearities and reluctance torque.

4 Conversion to MICP

In this section we show how to convert (8) to an (infinite-dimensional) mixed-integer convex pro-
gram. To do this, we use piecewise-affine approximations of the nonlinear equality constraints.

4.1 Approximation of magnetic characteristic

Here we approximate the equation magnetic characteristic (5) by a set of linear and integer con-
straints. We replace the constraint ψk = fk(Fk, θ) with the constraint

ψk = f̃k(Fk, θ), (9)

where f̃k is a piecewise affine approximation of fk. In particular, we have

f̃k(x, θ) =















a1k(θ)x+ b1k(θ) F̃0
k ≤ x ≤ F̃1

k
...

...

aNk (θ)x+ bNk (θ) F̃N−1
k ≤ x ≤ F̃N

k ,

where a1k(θ), . . . , a
N
k (θ) and b1k(θ), . . . , b

N
k (θ) parametrize the affine functions, and F̃0

k , . . . , F̃
N
k are

the boundaries of the affine regions, so that we have

fk(x, θ) ≈ ajk(θ)x+ bjk(θ)

if F̃ j−1
k ≤ x ≤ F̃ j

k .

By introducing additional variables zjk(θ) and sjk(θ), for j = 1, . . . , N , and k = 1, . . . ,m, the
approximate magnetic characteristic constraint (9) can be written as

ψk(θ) =

N
∑

j=1

ajk(θ)z
j
k(θ) + bjk(θ)s

j
k(θ) Fk(θ) =

N
∑

j=1

zjk(θ)

N
∑

j=1

sjk = 1

F̃ j−1
k sjk(θ) ≤ zjk(θ) ≤ F̃ j

ks
j
k(θ) sjk(θ) ∈ {0, 1}.

(10)
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4.2 Approximation of torque function

In the same way, we can approximate the torque constraint (6) using a set of linear and integer
constraints. To do this, we first approximate each torque function gk, for k = 1, . . . ,m, as a
piecewise affine function g̃k:

g̃k(x, θ) =















c1k(θ)x+ d1k(θ) F̃0
k ≤ x ≤ F̃1

k
...

...

cNk (θ)x+ dNk (θ) F̃N−1
k ≤ x ≤ F̃N

k ,

where c1k(θ), . . . , c
N
k (θ) and d1k(θ), . . . , d

N
k (θ) parametrize the affine functions. Then the approximate

torque constraint

τ(θ) =

m
∑

k=1

g̃k(Fk, θ)

can be included by appending

τ(θ) =

m
∑

k=1

N
∑

j=1

cjk(θ)z
j
k(θ) + djk(θ)s

j
k(θ) (11)

to the constraints (10) above.

4.3 Improving the MICP formulation

By converting the nonlinear constraints to linear and integer constraints, we have succeeded in our
goal of making (8) into an MICP. However, the runtime of a global MICP solver often depends
crucially on the problem formulation. Here we give an additional reformulation of the objective
of (8) (specifically, of the the power loss) that may improve the performance of a MICP solver
compared with the basic formulation.

Assuming that C has full column rank, we can use (3) to express the winding current as
i = C†MF , where C† is the pseudo-inverse of C (or any other left inverse). Then the power loss
can be rewriten as

Ploss =
1

2π

∫ 2π

0

F(θ)TQF(θ) dθ,

where Q =MT (C†)TRC†M .
For any feasible set of variables, and for any diagonal matrix D, this is equivalent to

1

2π

∫ 2π

0

(

F(θ)T (Q−D)F(θ) +

m
∑

k=1

N
∑

j=1

Dkk

zjk(θ)
2

sjk(θ)

)

dθ.

In particular, if we choose D with nonnegative diagonal elements, such that Q − D is positive
semidefinite, then the reformulated power loss function is convex in all its variables. Furthermore,
the larger the elements of D are, the tighter the convex relaxation will be. Finding a suitable D
can be cast as a small convex optimization problem; for details on this type of reformulation, see
[FG07].

7



5 Symmetry and discretization

5.1 Symmetry

Many motors have substantial symmetry, which in our formulation is encoded in the functions fk,
as well as M , R, C. Although it is not necessarily true that optimal variables for (8) share this
symmetry, it is reasonable to expect that many good sets of variables are symmetric. Furthermore,
we may explicitly desire that the waveforms be symmetric (e.g., to simplify implementation, or to
wear components evenly). By introducing symmetry constraints, we can also reduce the interval
of the variables of (8) thus reducing the complexity of a discretized version of the problem. For
some asymmetric motors, one or more of these assumptions may not hold; examples of this include
motors intentionally designed without symmetry, or when a winding in an otherwise symmetric
motor has failed.

Pole symmetry. We assume the rotor has Np pole pairs i.e., fk is 2π/Np-periodic for all k.
Consequently, we restrict our search to variables i, v, λ, ψ, φ, and F that are also 2π/Np-periodic.

Phase symmetry. We assume the motor has K phases, and therefore search for variables that
satisfy the periodicity property

ik(θ) = i1

(

θ +
2π(k − 1)

KNp

)

,

with similary constraints holding for v, λ, F , ψ, and φ.

Equivalent problem. The symmetry assumptions allow us to form an equivalent problem with
the same constraints and objective as (8) in which the variables have domain [0, 2π/(KNp)]. We
also add periodicity constraints of the form

ik(0) = i1

(

2π(k − 1)

KNp

)

, for k = 1, . . . K.

with similar constraints for the other variables. The integrands in the definitions of average torque,
torque ripple, and power loss are each π/(3Np)-periodic; to get equivalent definitions of these values
over the appropriate domain, we can integrate over [0, 2π/(KNp)] instead of [0, 2π], and scale the
result by KNp.

5.2 Discretization

After reducing the domain of the variables of (8), we discretize this interval into T +1 grid points,
θ0, . . . , θT , with θ0 = 0 and θT = 2π/(KNp). All pointwise constraints must hold at θ0, . . . , θT−1,
and the periodicity constraints must hold at θ0 and θT . Integration over the interval is replaced by
summation from θ0 to θT−1, with appropriate scaling. We approximate the derivative in (1) using
a forward difference approximation.
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Figure 1: A switched reluctance motor with fully pitched windings. Phase windings are shown in
light gray, and are labeled A, B, and C for current flowing out of the page (with complementary
flow denoted with a prime). Magnetic elements are shown in dark gray, and are labeled 1, 2, and 3,
with magnetic flow toward the rotor (with complementary flow denoted with a prime). Note that
every third stator teeth belongs to a single magnetic element.

6 Example

6.1 Motor model

We consider the switched reluctance motor with fully pitched windings shown in figure 1. Our
model is based the first example of [MWC01]. The motor model has fully pitched windings, instead
of the more usual concentrated windings. (This is reflected by the matrix M , which would be
diagonal for a motor with concentrated windings).

Symmetry and discretization. We assume that each stator tooth is magnetically identical,
which allows us to group every third stator tooth into a single magnetic element. With this
assumption, the motor exhibits pole symmetry, with Np = 2, and phase symmetry, with K = 3
phases. We discretize the interval [0, π/3] with T = 40, so that θ0 = 0 and θT = π/3.

Electromagnetic. We have m = 3 magnetic elements, and l = 3 meshes. The mesh matrix of
the magnetic circuit is

M =





0 1 1
1 0 1
1 1 0



 .

The motor has n = 3 windings. The voltage limit is 600 V. The resistance and electro-magnetic
geometry matrices are

R =





0.1 0 0
0 0.1 0
0 0 0.1



 Ω, C = (1/2)Nturns





1 0 0
0 1 0
0 0 1



 ,

where Nturns = 204 is the number of turns in each winding.
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Figure 2: The flux characteristic f1 (left), and its piecewise affine approximation f̃1 (right).
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Figure 3: The torque characteristic g1 (left), and its piecewise-affine approximation g̃1 (right).

Flux characteristic and phase torque functions. The magnetic flux characteristic f1 and
the phase torque function g1 are shown in figures 2 and 3. We only show these functions for the
first magnetic element. (Due to phase symmetry, the other two functions are shifted versions of
the first.)

For each value of θt, for t = 0, . . . , T , we fit piecewise-affine functions to fk and gk. The
piecewise-affine region boundaries were chosen as

F̃ = (0, 1000, 2000, 3500, 6000) Ampere-turns.

With the region boundaries fixed, the values of the coefficient functions ak, bk, ck, and dk were
determined at the relevant (discrete) rotor positions using least-squares, with the constraint that
both piecewise-affine functions be continuous in F for all values of θ.

6.2 Results

Low-speed operation. The optimal current, voltage, and phase torque waveforms for ω = 1000
rpm, τdes = 10 N · m and α = 3 J/(N · m)2 are shown in figure 4. (We restricted our search to
waveforms that are phase symmetric, as discussed in §5.1.)
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Figure 4: The optimal current, voltage, and torque waveforms for ω = 1000 rpm.

Note that while the voltage limit is active over the commutation period for two of the windings,
the third winding current is manipulated to maintain near-constant torque. Due to the fully pitched
winding pattern, and in contrast to a motor with concentrated windings, it is not possible to derive
a “torque-sharing function” for this example. This is because torque cannot be decomposed into
components attributable to each winding (indeed, it is the changing mutual inductance between
windings which generates torque; for a discussion of this, see [Mec93]).

High-speed operation. Here we show the optimal symmetric current, voltage, and phase torque
waveforms for ω = 4000 rpm, with all other values kept the same as for the low-speed example.

We see that when the rotor speed is higher, the optimal waveforms are much more complicated
than the corresponding low-speed waveforms. Indeed, for high rotor speeds, deriving a simple,
“closed-form” solution for the optimal current waveforms seems unlikely. The optimal current
waveforms are strictly positive during the entire cycle; i.e., there is no “firing angle” at which a
given phase phase should be energized.

6.3 Computational aspects

To compute the waveforms above, problem (8) was solved using CVX [GB14, GB08], with Gurobi
as the backend solver. We used a Linux machine with an Intel Xeon processor. The (global) solve
time for low-speed operation was 6 seconds, while the solve time for high-speed operation was 4
minutes.

In order to verify that these solve times were representitive of the solve time over several motor
operating points, we solved (8), using the same motor parameters (except for a courser grid of
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Figure 5: The optimal current, voltage, and torque waveforms for ω = 4000 rpm.

T = 20) for 250 randomly selected values of ω and τdes. in the intervals [0, 4000] rpm and [0, 15] N,
respectively. The median global solve times was ten seconds, though we note that for some areas
of operation (in particular, for very-low-torque operation) the global solve times can be very high,
sometimes exceeding thirty minutes; in these cases, it is standard to terminate the solver early
(after, say, several minutes) simply use the best point found so far.

7 Conclusion

In this paper we presented a method for generating optimal current waveforms for switched re-
luctance motors. Our model handles a reasonably complicated magnetic structure, and respects
voltage and current constraints. Our method finds, to within reasonable accuracy, the globally
optimal waveforms. Although we provide to runtime guarentees, for our example, optimal wave-
forms could be generated in a few minutes, raising the possibility that optimal waveforms can be
generated and stored as a lookup table indexed by desired torque and rotor speed.
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[GL12] O. Günlük and J. Linderoth. Perspective reformulation and applications. In Mixed

Integer Nonlinear Programming, pages 61–89. Springer, 2012.

[GT13] I. E. Grossmann and F. Trespalacios. Systematic modeling of discrete-continuous opti-
mization models through generalized disjunctive programming. American Institute of

Chemical Engineers Journal, 59(9):3276–3295, 2013.

[KSAS03] M. Kaiserseder, J. Schmid, W. Amrhein, and V. Scheef. Current shapes leading to
positive effects on acoustic noise of switched reluctance drives. International Journal

for Computation and Mathematics in Electrical and Electronic Engineering, 22(4):998–
1008, 2003.

[KT06] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education, 2006.

13

http://cvxr.com/cvx


[LS94] H. C. Lovatt and J. M. Stephenson. Computer-optimised current waveforms for
switched-reluctance motors. IEE Proceedings Electric Power Applications, 141(2):45–
51, 1994.

[LS97a] H. C. Lovatt and J. M. Stephenson. Computer-optimised smooth-torque current wave-
forms for switched-reluctance motors. IEE Proceedings Electric Power Applications,
144(5):310–316, 1997.

[LS97b] H. C. Lovatt and J. M. Stephenson. Optimum excitation of switched reluctance motors.
In Eighth International Conference on Electrical Machines and Drives, pages 356–360.
IET, 1997.

[MB15] N. Moehle and S. Boyd. Optimal current waveforms for brushless permanent magnet
motors. International Journal of Control, 88(7):1389–1399, 2015.

[Mec93] B. C. Mecrow. Fully pitched-winding switched-reluctance and stepping-motor arrange-
ments. IEEE Proceedings Electric Power Applications, 140(1):61–70, 1993.

[MK03] C. Mademlis and I. Kioskeridis. Performance optimization in switched reluctance motor
drives with online commutation angle control. IEEE Transactions on Energy Conver-

sion, 18(3):448–457, 2003.

[MWC01] B. C. Mecrow, C. Weiner, and A. C. Clothier. The modeling of switched reluctance
machines with magnetically coupled windings. IEEE Transactions on Industry Appli-

cations, 37(6):1675–1683, 2001.

[NW06] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media,
2006.

[TK12] H. A. Toliyat and G. B. Kliman. Handbook of electric motors, volume 120. CRC press,
2012.

[TMBB15] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad. A simple effective heuristic for
embedded mixed-integer quadratic programming. arXiv preprint arXiv:1509.08416,
2015.

[VZP+07] M. Vasak, D. Zarko, N. Peric, F. Kolonic, and C. Hao. Bounding the torque ripple
in switched reluctance motors using polyhedral invariant set theory. In 46th IEEE

Conference on Decision and Control, pages 6106–6111. IEEE, 2007.

14



0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

i

0 0.5 1 1.5 2 2.5 3 3.5
−1000

−500

0

500

1000

v

0 0.5 1 1.5 2 2.5 3 3.5
−5

0

5

10

15

ta
u

th


	1 Introduction
	1.1 Previous work
	1.2 Contribution

	2 Motor model
	3 Optimal torque control
	4 Conversion to MICP
	4.1 Approximation of magnetic characteristic
	4.2 Approximation of torque function
	4.3 Improving the MICP formulation

	5 Symmetry and discretization
	5.1 Symmetry
	5.2 Discretization

	6 Example
	6.1 Motor model
	6.2 Results
	6.3 Computational aspects

	7 Conclusion

