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Comparing Entropies in Statistical Zero Knowledge
with Applications to the Structure of SZK

Oded Goldreich Salil Vadharh

Abstract Zero-knowledge proofs come in many flavors. One cen-
tral parameter is to the strength of the zero-knowledge (or
We consider the following (promise) problem, denoted simulability) condition: The requirement that therifier
ED (for Ent ropy Di ff erence): The inputis a pair of  learns nothingrom the proof is formulated by saying that
circuits, andYES instances (respNoO instances) are such  the transcript of its interaction with the prover candimu-
pairs in which the first (resp., second) circuit generates a lated by the verifier itself. That is, there exists an efficient
distribution with noticeably higher entropy. procedure that, when given a valid assertion as input, pro-
On one hand we show that any language having a duces a distribution which is “similar” to the distribution of
(honest-verifier) statistical zero-knowledge proof is Karp- transcripts of the executions of the proof system on that as-
reducible toED. On the other hand, we presentpaiblic- sertion. The key parameter is the interpretation of “similar-
coin (honest-verifier) statistical zero-knowledge proof for ity”. Three notions have been commonly considered in the
ED. Thus, we obtain an alternative proof of Okamoto’s re- literature (cf., [16, 10]). Perfect zero knowledgeZ K) re-
sult by whichH VS ZK (i.e., honest-verifier statistical zero quires that the two distributions be identic8tatistical zero
knowledge) equalgublic-coinHVSZK. The new proof is knowledgg(S ZK) requires that these distributions be sta-
much simpler than the original one. The above also yields tistically close (i.e., the variation distance between them is
a trivial proof that? VS ZK is closed under complementa- negligible). Finally, computational zero knowledgedK’)
tion (sinceED easily reduces to its complement). Among the refers to the case that these distributions are computation-
new results obtained is an equivalence of a weak notion ofally indistinguishable (cf., [15, 26]).

statistical zero knOWledge to the standard one. This paper focuses on statistical zero know|e®§()_

This class has quite an intriguing status in complexity the-

ory. On one handSZK contains several problems which

are commonly believed to be hard (i.e., notA®P) such

as Quadratic Residuosity [16], Graph Isomorphism [13],

and a problem equivalent to the Discrete Logarithm Prob-
Zero-Knowledge proofs, introduced by Goldwasser, Mi- lem [12]. On the other hand§ZK lies quite low in the

cali and Rackoff [16], are fascinating and extremely useful Polynomial-Time Hierarchy; specifically, it lies in the in-

constructs. Their fascinating nature is due to their seem-tersectionAM N coAM (cf., [10, 1]). (Recall that4. M

ingly contradictory nature; they are both convincing and denotes the class of two-round Arthur-Merlin proofs, which

yet yield nothing beyond the validity of the assertion being by [17] and [3] is equivalent to constant-round interactive

proven. Their applicability in the domain of cryptography proofs.) FurthermoreSZC has a (natural) complete prob-

is vast; they are typically used to force malicious parties lem [24] (and we are going to see another one in this paper).

to behave according to a predetermined protocol (which re-

quires parties to provide proofs of the correctness of their

secret-based actions without revealing these secrets).

1 Introduction

Additional motivation for studying statistical zero
knowledge comes from cryptography. For one, it offers
a higher level of security than computational zero knowl-
edge; that isSZK provides information-theoretic (or ab-

*Department of Computer Science, Weizmann Institute ofrf@eieRe-

hovot, ISRAEL. E-mail: oded@v sdom wei znmann. ac.il. Work SOlu'[e) se_curity Whe_re&K Only prOVid_eS CompUtational
done while visiting LCS, MIT. Supported by DARPA grant DABF-®6- security (i.e., security against adversaries of bounded com-
c-0018. putational resources). Another motivation for the study of

tLaboratory for Computer Science, Massachusetts Instififechnol- ; ; ; ;
ogy, Cambridge, MA 02139, E-maikal i | @ heory. | cs. mit. edu. SZK is that it provides a good test ground for developing

Supported by a DOD/NDSEG Graduate Fellowship and in partARPA techniques to studyZ K proofs (cf., [21, 22, 6, 7, 14]). We
Grant DABT63-96-C-0018. note that although it is long known th@&Z /. = Z'P (pro-



vided one-way functions exist; cf., [13, 19, 4]), the devel- 1.1 Statistical zero-knowledge proof systems

opment of methodologies for the construction of (efficient)

zero-knowledge proof systems is still of great importance. Following [12], we extend the standard definition of
The study ofSZK has gained much momentum in re- interactive proof systems to promise problerfis =

cent years. In particular, two results which assert trans- (II,, IIy,). Thatis, we require the completeness condition

formations of one type of Z/XC proof system into another, to hold forvEs instances (i.ez € II,.s), require the sound-

have played an important role in recent study. A key notion ness condition to hold favo instances (i.ez € II.), and

in these results is the notion dbnest-verifielSZK, de- do not require anything for inputs which violate the promise

noted# VS ZK. Unlike the general notion &8 ZK, which (i.e.,x ¢ Iygs U Ilyo).

requires that no matter what the verifier does, it learns noth-  This paper focuses on such proof systems which are

ing from the interaction with the prover, here one only re- honest-verifier statistical zero-knowledge:

quires that the “honest” verifier (i.e., one that follows the

The two results referred to above are: —HVSZK): Let (P, V) be an interactive proof system for

Thm. I: Every promise problefhaving a honest-verifier a promise problenil = (Ilyss, Ilyo).

SZK proof system has also public-coin honest- e We denote by P, V)(z) the view of the verifierV/
verifier SZK proof system (cf., Okamoto [20]). while interacting withP? on common input; this con-

Thm. Il: Every promise problem having public-coin sists of the common input;'s internal coin tosses, and
honest-verifielS ZK proof system has a (public-coin) all messages it has received.

generalSZC proof system (cf., Goldreich, Sahai and

Vadhan [14]). e (P,V) is said to behonest-verifier statistical zero

knowledgeif there exists a probabilistic polynomial-
Combining these two results one obtains that any promise time machingcalled a simulator)s, and a negligiblé

problem having a honest-verifi&Z K proof system also functionu : N = [0, 1] (called the simulator deviation)
has a genera$ ZK proof system (i.e., one in which zero- so that for every € Il the statistical difference be-
knowledge holds with respect to any cheating verifier). We tweenS(z) and(P, V)(x) is at mostu(|x|).

stress the key role of Thm. | in providing the adequate start-
ing point for Thm. Il. Furthermore, the starting point pro-
vided by Thm. I is relied on also in the following intriguing
results:

Thm. Il The clas{VSZK is closed under complemen- W& comment that generatatistical zero-knowledgeroof
tation (cf., Okamoto [20]): That is, if a promise prob- SyStéms are such where the zero-knowledge requirement

lem has a honest-verifig ZK proof system then so holds for any (polynomial-time computable) verifier stat-
has its complement. egy, rather than merely for the prescribed/honest veiifier

Actually, even a stronger requirement can be proven to be
equivalent ta{ VS ZK — see [14].

e HVSZK denotes the class of promise problems hav-
ing honest-verifier statistical zero-knowledge interac-
tive proof systems.

Thm. IV: The class{VS ZK has a natural complete prob-
lem (cf., Sahai and Vadhan [24]).

Thus, Thm. | plays a key role in this area. Unfortunately, 1.2 Public-coin versus general proof systems
the proof of Thm. I in [20] is very complicated and was
fully understood by very few researchers. Recall thatpublic-coin(a.k.a Arthur-Merlin) proof sys-

The primary motivation of this work is to provide a tems [2, 3] are interactive proof systems [16] in which the
simpler proof of Thm. I. Our basic idea is to apply some prescribed verifier's strategy amounts to sending uniformly
of Okamoto’s techniques [20] to the Aiello—Hastad trans- chosen messages at each round, and deciding whether to
formation [1] of HVSZK into AM, rather than apply- accept by evaluating a polynomial-time predicate of the
ing them (as done in [20]) to the Goldwasser—Sipser trans-conversation transcript. That is, in each round, the veri-
formation [17] of ZP into AM. To further clarify the fier tosses a predetermined number of coins and sends the
proof, we introduce a new promise problem, and show that: outcome to the prover, and at the end it decides whether
(1) any problem in{VSZK reduces to the new promise t0 accept by applying a predicate to the (full) sequence of

problem, and (2) the new promise problem hasublic- ~ messages it has sentand received.

coinHVSZK proof system. Combining (1) and (2), Thm.1  Public-coin proof systems are easier to analyze and

follows. manipulate than general interactive proofs, and thus the
L A promise problenil is a pair of disjoint sets of strings, correspond- 2Recall that a functiory: N — N is negligible if for any polynomial

ing to YEs andno instances, respectively [9]. p(+), f(n) < 1/p(n) for sufficiently largen.



result of Goldwasser and Sipser [17] by which the for- system. Thus, we provide an alternative (and much sim-
mer are as powerful as the latter found many applicationspler) proof of Thm. I. Furthermore, observing thzd eas-
(e.g., [11, 19, 4]). As mentioned above, the same and moreily reduces to its complement, it follows thatVSZK is

so is true regarding statistical zero knowledge: That is, closed under complementation (i.e., we provide an alterna-
Okamoto’s result [20] (i.e., Thm. I), by which public-coin tive proof of Thm. IlI).

HVSZK equalsHVSZK, has played a major role in sub-

sequentresults (e.g., Thms. II, I1l, and IVmentioned above). piscussion: Some superficial similarity does exist be-
Thus, prov_ldlng a clear proof of Thm. I'is of major impor- veen the above and what was done in [24]. In the
tance to this area. latter work, the authors defined a promise problem,

calledSt ati stical Difference (denotedSD),® and
1.3 A new#HVSZK-complete problem: Entropy  showed that it is complete for the clag/SZK. How-
Difference ever, their reduction 0HVSZK to SD used Thm. | to re-
strict attention to public-coif{VSZK only. Thus, the re-
The new promise problem referred to earlier is called sults in [24] (relying on Thm. I) cannot be used to establish
Entropy Difference. The promise problem involves Thm. . Furthermore, th&/VSZ K proof system foSD pre-
the entropies of distributions which are encoded by circuits sented in [24] is not of the public-coin type.
which sample from them. That is, X is a circuit map- In retrospect, the termstatisticalzero knowledge (coined
ping {0, 1}™ to {0, 1}", we identify X with the probability by Goldwasser, Micali and Rackoff [16]) sounds prophetic
distribution induced or{0, 1}" by feedingX the uniform of the key role played by computational problems regarding
distribution on{0, 1}™. We write H(X) for the entropy of  statistical measures in the study of this class (which is also
distribution X (defined in Section 2.1). known by the name “almost-perfect zero knowledge”).

Definition 1.2 (Entropy Difference)The promise problem 1.4 Extensions
Entropy Difference, denotedED = (EDygs,EDyo),

consists of Let us stress that by (honest-verifier) statistical zero
def knowledge we mean a simulation, up to negligible devia-

EDygs = {(X,Y):H(X)>H(Y)+1} tion error, by astrict (rather than expected) probabilistic
EDyo def (X,Y): HY) > H(X) + 1} polynomial-time machine. This makes Theorem 1.4 seem-

ingly stronger, but potentially weakens Theorem 1.3. How-
whereX andY are distributions encoded as circuits which €Ver & we shortly explain, Theorem 1.3 is in fact stronger
sample from them. than stated.

Definition 1.5 (simulator deviation)Let (P, V') be a proof
system for a promise probleid = (I, IIy,), and let

Theorem 1.3 (HVSZK-hardness):Any promise problem M be a probabilistic polynomial-time machine. Suppose

in HVS 2K reduces (via a Karp reduction) D. that for some functiol : N — [0,1] and everyr € Il
the statistical difference between the verifier’'s view, denoted

(Theorem 1.3 combined with a simple constant-round inter- (£, V)(2) and M (z) is at mosk(|z[). Then we say that/
active proof folEDimplies thatH VS ZK C AMNcoAM. simulates P, V) with deviation e.
We believe that this provides a much simpler argumentthanAs defined above(VSZK is the class of promise prob-

the one presented in [10, 1], although it does use all the un- S : ; . :
derlying ideas of these worka.) Iem; having interactive proofs Wlth_neghglble simulator de-
viation. A weaker level of security (or zero-knowledge
property) is provided by the notion oveakHVSZK
f (which is analogous to weaRZ K considered in, e.g., [8]):

As stated above, our main results are

Theorem 1.4 (ED in public-coin HVSZK): ED has a
public-coin honest-verifier statistical zero-knowledge proo

system. SStatistical Difference,denotedD = (SDyes, SDyo), CON-
sists of
Combining Theorems 1.3 and 4ve see that any promise SDvee T [(X¥): AKX, Y) < 1/3)
problem in HVSZK has a public-coinfHVSZK proof R T ’
SDvo =  {(X,Y):A(X,Y)>2/3}

3 We note that much of the simplification is due to [23]. . . -
4 Actually, we also use the fact that the reduction in Theoregnid whereX andY” are as in Definition 1.2, and (X', Y) denote the statisti-

. ) def
not length-decreasing. Alternatively, one may use thetfattEDis easily cal difference between them (i.&\(X , Y) = 1.3 |Pr[X =a] -
padded to increase the length of instance descriptions. Pr(Y =al|).



Definition 1.6 (weakHVSZK): A proof system is said to
be weak (honest-verifier) statistical zero knowledidor
every polynomiap there exists a probabilistic polynomial-
time machinei/,, which simulates the proof system with
simulator deviatiorl /p(-).

Specifically, the running-time ofi/,, may depend orp.
Note that weakH VS ZK contains promise problems hav-
ing HVSZK proof sytems under a liberal definition al-
lowing expectedpolynomial-time simulators. That is, sup-
pose thatll has an interactive proof syste(@, V') and
anexpectegolynomial-time simulatod/ which simulates
(P, V) with negligible deviation. Then, for any polyno-
mial p, we can construct a strict polynomial-time simulator
M, which simulateg P, V') with deviation1/p(-) simply

by truncating long runs ao#/; that is, runs which take more
thanp times the expected number of steps. It follows that
(P, V) is a weakHVSZK proof system. All these vari-
ants of HVS ZK are covered by the following extension of
Theorem 1.3:

Theorem 1.7 (Theorem 1.3, extendediny promise prob-
lemin weakH VS ZK reducegvia a Karp reductionfo ED.

In fact, the proof only utilizes a simulator with deviation
smaller than the reciprocal of the (cube of the) total number
of bits sent in the proof system. On the other hand, Theo-
rem 1.4 can be strengthened as follows:

Theorem 1.8 (Theorem 1.4, extendedED has a public-
coin proof system which can be simulated with exponen-
tially vanishing deviation.

Combining Theorems 1.7 and 1.8, we get

Corollary 1.9 Every language in weaktVSZK has a
public-coin proof system which can be simulated with ex-
ponentially vanishing deviation.

Using the results in [14] we infer that wegkVSZK
equalsSZK, where the latter refers to statistical zero
knowledge against any verifier. Specifically,

Corollary 1.10 Every language in weaktVSZK has a
(public-coin)general statistical zero-knowledge proof sys-
tem. Furthermore, the latter can be simulated using a uni-
versal probabilistic polynomial-time simulator which uses
any verifier strategy as a black-box and has only an expo-
nentially vanishing deviation.

1.5 Techniques

As stated above our main results are Theorems 1.3
and 1.4 which establish, respectively, a Karp reduction of

HVSZK to ED, and a public-coin honest-verifi& ZK
proof system foED.

The proof of the first main result relies on the works of
Fortnow, Aiello and Hastad [10, 1]. The key observation un-
derlying these works is that any simulator establishing the
(honest-verifier)S Z K property of a proof system must be-
have very differently orves andno-instances. This differ-
enceis usedin[10, 1] in order to construct certanstant-
round proof systems. We use this difference to construct a
reduction toED. Specifically, we use the characterization
of the simulator’s behavior as provided in [1] and further
simplified in [23]. This characterization allows us to reduce
instances of any problem iHVS ZK to instances oED.

The proof of the second main result relies on the work
of Okamoto [20]. Specifically, we follow his basic idea of
“complementary usage of messages” and use two of his sub-
protocols. We stress that we provide self-contained defini-
tions, implementations and analysis of the latter two sub-
protocols.

1.6 Open Problems

Our proof of Thm. | (as well as the original proof of
Okamoto [20]) actually provides a transformation of proof
systems (from private-coin to public-coin while preserving
a certain zero-knowledge property, namgly S ZK). Nei-
ther our transformation nor Okamoto’s preserves the num-
ber of rounds in the original proof system, nor the compu-
tational complexity of the prover. It would be desirable to
present an alternative transformation which does preserve
both complexity measures, and it would be of interest even
to present a transformation which preserves only one of
these measures.

For a wider perspective, we mention the following facts.

1. The transformation of private-coin interactive proofs
to public-coin ones (cf., [17]) preserves the number of
rounds (up to an additive constant), but does not pre-
serve the computational complexity of the prover.

(Note that this transformation does not seem to pre-
serve any zero-knowledge property. Furthermore, it
is not known how to transform computational zero-
knowledge proofs into public-coin ones (without as-
suming the existence of one-way functions which al-
lows one to construct the latter from scratch).)

. The transformation of honest-verifier zero-knowledge
public-coin proof systems into general zero-
knowledge ones (cf., [14]) preserves the computational
complexity of the prover and only increases mildly the
round complexity.

(Actually, this transformation preserves both mea-
sures, but introduces a noticeable soundness error



which can be eliminated by repeating the proof system Definition 2.1 Let X and Y be two probability distribu-
sequentially any non-constant number of times.) tions on a finite seD. Therelative entropy (or Kullback—
Leibler distancepetweenX andY is defined as

Pr[X =q]
log Pr[Y =q]

1.7 Organization
KL(X|Y) = Equx [

In Section 2, we prove Theorem 1.3; that is, we show that
every problem i{ VS ZK reduces t@&D. In Section 3, we
prove Theorem 1.4; that is, we exh|b|tapubl|c coin statisti- ¢)). Note that if X and Y are 0-1 random variables
cal zero-knowledge proof system feb. This proof system . . .
uses two subprotocols which are specified in Section 3 an With expectiong andg respectively, theL (X'|Y) =

P P dKLg(p, q). It can be shown thaKL (X |Y) is always

implemented in Section 4. nonnegative an&L (X |Y) = 0 iff X andY are identi-
cally distributed [5, Thm. 2.6.3]. Henc&L (X |Y) can
2 HVYSZK reduces toED be viewed as some sort of “distance” betweérandY’,

though it does not satisfy symmetry or the triangle inequal-
In this section, we prove Theorems 1.3 and 1.7, which jty.

state that every problem IHVS ZK (and weakH VS ZK)

reduces t@D. Our reduction is based on the Aiello-Hastad 2.2 The Aiello—Hastad Characterization
characterization of statistical zero-knowledge [1]. Follow-

ing Petrank and Tardos [23], we present the Aiello-Hastad  In this section, we motivate and state the lemmas which
characterization using a formulation of entropy, rather than comprise the Aiello-Hastad characterization of statistical

in the formulation of set sizes used in [1]. zero-knowledge. Proofs can be found in Appendix A.
In Section 2.1, we define the information-theoretic no-

tions used in the Aiello-Hastad characterization. In Sec- |ntution.  LetII be any language (or promise problem) in
tion 2.2, we motivate and state the lemmas which com-4,y,5zx and consider a statistical zero-knowledge proof
prise the Aiello-Hastad characterization (with proofs in Ap- system forll and the corresponding simulator. We think of
pendixA). In Section 2.3, we exhibit the reduction fromany {he qutput of the simulator as describing the moveswif-a
problem in#)SZK to ED, prove its correctness using the 5] proverand avirtual verifier. Following Fortnow [10],
Aiello-Hastad characterization, and thereby deduce Theohe ajello—Hastad characterization describes properties of
rems 1.3and 1.7. the output of the simulator which distinguish betweeis
instances andio instances. One thing we are guaranteed
by the statistical zero-knowledge property is that the simu-
lator outputs accepting conversations with high probability
when the input is aEs instance. Thus, if on some input

the simulator outputs rejecting or invalid conversations with

We letKLs (p, ) © plog(p/g) + (1 - p) log((1 —p)/(1 -

2.1 Entropy and Relative Entropy

Recall the definition of thentropy denotedd(.X), of a
random variableX :

H(X) def Z Pr[X = a] -log(1/ Pr[X = a]) high p_rqbability,x is easily identified to be qo-instancg.
- The difficulty comes from the fact that the simulator might
= Eaox[log(1l/Pr[X = a])], output accepting conversations with high probability even

when z is a No-instance, even though this cannot occur

where all logarithms above and in the sequel are to basewhen any real prover interacts with the true verifier due

2. Thebinary entropy functionH,(p) def plog(1/p) + to the soundness of the proof system. Intuitively, this dis-

(1 —p)log(1/(1 — p)), equals the entropy of a 0-1 random crepancy comes from the fact that the virtual prover has the

variable with expectatiop. ability to cheat and “see” future verifier messages, a power
We will make use of two measures of similarity between Which the real prover does not have. Thus, Aiello and Has-

probability distributions. The first measure is the well- tad consider what happens when one takes away the power

known statistical difference: Thetatistical differencdbe-  Of the virtual prover to cheat. That is, following [10], they
tween the random variable$ andY’, denotedA (X , Y), consider a real prover stratedy, called thesimulation-
is defined by based proverwhich determines its messages based on the
same distribution as the virtual prover’s residual probability
A(X,Y) def 1 Z |Pr[X =a] —Pr[X = d]| space conditioned only on past messages. Now, the interac-
2 4 tion betweenPs and the real verifier describes exactly what
= mSax{Pr [X €S]-Pr[Y € S]} happens when we take away the power of the simulated

prover to cheat. Thus, the relative entropy between the out-
The second measure is the Kullback—Leibler distance: put of S and the interaction betwedty and the real verifier



is a measure of the amount of cheating that virtual prover Lemma 2.2 (implicit in [1], explicit in [23]):
performs, and this distinguishes betwesss instances and

NO instances. The final crucial observation in the Aiello—
Hastad characterization is that this relative entropy can be "

rewritten as a simple expression involving entropies of pre- = t- Z [H(S(2)2i) — H(S(2)2i-1)]
fixes of the simulator’s output. =t

KL (S(x) | (Ps,V)(x))

The behaviour of Ps on YES instances: Note that even
Notation. Let II be any language (or promise problem) in case of avEs instance, the behaviour é¢fs need noex-
in HYSZK (or weak#VSZK) and let(P,V) be a sta-  actlyfit the behavior of either the prescribed proyeor the
tistical zero-knowledge proof system flr with simulator simulated prover (i.e., the distribution of prover messages
S. Without loss of generality, we assume that on inputs of in the output of the simulator) . Yet, in the casexafs in-
lengthn, the verifier tosses exactly= ¢(n) coins, and the  stance, provePs behaves “almost” a8 and the simulated
interaction betwee® andV consists oR2r = 2r(n) mes- prover. More generally,
sages, each of length= ¢(n) so that the prover's messages o )
are those with odd index. Also, we may assume that the last-emma 2.3 (implicit in
message of the verifier consists of its random coins. We are[1, 23]): Lete def A(S(z), (P,V)(z)) and suppose that
interested in the random variablé®, V') (z) andS(z), de- e <1/2. Then,
scribing the real interaction and the simulation, respectively.
We also consider prefixes of these random variables, where
(P,V)(x),; andS(x); denote the prefix of length- ¢ of the
corresponding random variable. At times, we may drop  The behaviour of Ps onNo instances: In contrary to the
from these notations. We say thafa- ¢ bit stringyisa  above, forno instances, ifS(x) outputs accepting tran-
transcript(w.r.t V) if the verifier messages incorrespond  Scripts with high probability ther§(z) and (Ps,V)(x)
to what it would have sent given the random coins (as speci-must be very different. More generally,
fied in the last bits iny) and previous messages of the prover
(included iny). We say that a transcriptis acceptingf the
verifier accepts on it.

KL (S(z) | {Ps,V)(x)) < 3r® - £ - e+ 2r - Ha(e)

Lemma 2.4 (implicit in [1, 23]): Let p denote the prob-
ability that S(z) outputs an accepting transcript, ang

be the maximum, taken over all possible provEts that

(P*,V)(x) is accepting. Suppose that> ¢g. Then,

The simulation-based prover. Given an execution pre-

fix v € {0,1}(i=D¢ the simulation-based prover, denoted KL (S(z) | (Ps,V)(x)) 2 KL2(p, q)

Pg, responses as follows:

e If S(x) outputs conversations that begin withwith 2.3 The Reduction

probability0, thenPs replies with a dummy message,

say0!(z) Using the above characterization, we easily Karp-reduce

any promise problerl in HVSZK (or weak#H VS ZK) to
e Otherwise,Ps replies according with the same con- ED. Let (P, V) andS be a proof system and a simulator
ditional probability as the prover in the output of the as formulated in the previous subsection (namely, the proof

simulator. Thatis, it replies € {0, 1}“'9”') with prob- system consists dir messages of length and the veri-
ability fier's last message consists of its random coins). Then, an
instancer is reduced to a pair of distributionfs(,,Y,.) as
pg = PI“[S(J}), = ’yﬂ|5($),‘_1 = ’y] follows.
e X, is the cross product of the distributioqz).,
Following our previous notation, we denote conversation S(@)ay o S(T)2r.
transcripts coming from the interaction betwe@nandV e Y, is the cross product of the distributiotqz),,
by (Ps, V) (x), and its prefixes byPs, V) (z),. S(x)s, ..., S(x)2,—1 and a uniform distribution on
{(|z]) — 2 bits.

Rewriting KL (S(z)|(Ps,V)(x)). The Aiello-Hastad  Lemma 2.5 (Validity of the reduction): Suppose tha
characterization uses the relative entropy betws@n and simulates a proof systerfi?, V') with soundness errér
(Ps, V)(x) to distinguish betweenrs andNo instances. Recal T , (m) € [0,1] of an interact .

H : it ecal al esounadness erros(n) € 5 Ol an Interactive proo
This relative entropKL (S(x) | <PS’ V)(w)) can be rewrit system(P, V') is an upper bound on the probability that the verifier ac-

t_en as a simple expression referring only to entropies of pre-cepts after interacting with any potential prover stratétyon input axo
fixes of S(x). instance of length.




at most0.1 for II with simulator deviation smaller than
1/(2r¢)%. Further suppose tha§ always outputs an ac-
cepting transcript. Then,

. fz € s thenH(X
. Ifz € Iy thenH(Y,

) > H(Y,) + 1.
) > H(X,) + 1.

The extra condition (of always outputing an accepting tran-
script) can be easily enforced by a minor modification o

then follows as a special case. Below, we do the calcula-
tions in more detail to show that the original proof system
need only have a simulator achieving deviation smaller than
the reciprocal of the (cube of the) total number of bits sent
in the proof system (plus the number of coins used by the
verifier).

Suppose the proof system fArconsists oRr' — 1 mes-

¢ sages of lengthn, and lett’ = max(m, g), whereq is the

the simulator (and possibly the proof systems). See detallsnumber of coins used by the verifier. Assume the proof

in the proof of Theorems 1.3 and 1.7 below.

Proof: We may assume that > 128, by simply padding
messages with extra bits. Suppose firstthatIl,;s. Com-
bining Lemmas 2.2 and 2.3, we have

( SIS LT 1>— (iH(S(xm)

i=1

KL (5(x )I(Ps,V>( ) —2
< 3r?-e+2r-Hy(e) -2 < -1

wheree & A(S(z), (P,V)(z)) < 1/(2rf)%, and the last
inequality also usell»(e) < v/€/4 (sincee < 27!1) and
Ve/4 < 1/8r. ThusH(X,) > H(Y,) + L and(X,,Y;) €
EDy s follows.

Suppose now that € Ily,.
and 2.4, we have

Combining Lemmas 2.2

H(Y;) -H(Xz) = KL(S(z)|(Ps,V)(z)) -2
> KL»(1,0.1) -2
logl0 —2 > 1

(In the first inequality, we useHL (S(z) | (Ps, V)(z)) >
KLy(1,q), whereq is the the maximum, taken over all
possible prover$*, that (P*,V)(x) is accepting.) Thus,
H(Y,) > H(X,) + 1and(X,,Y,) € EDy, follows. W

Proof of Theorems 1.3 and 1.7: Let II be any promise
problem in weakHVSZK and consider any weak-
HYVS ZK proof system foll. Informally, by repeating the
proof systenpoly(n) times (either sequentially or in paral-
lel) and modifying the proof system and simulator slightly,

system has completeness and sounded errors both bounded
by 1/3 and simulator deviatior'¢') =2 - (logr'¢")~>. We
now modify the proof system by having the verifier send the
prover its coins at the end and modify the simulator accord-
ingly. This does not affect the completeness error, sound-
ness error, or simulator deviation. Now there arémes-
sages, each of length at mdst Repeating the proof sys-
tem for k times (either sequentially or in parallel) and rul-
ing by majority, we obtain two-sided error efp(—(k)).
Usingk = O(logr'¢'") we obtain a proof system with to-
tal communicatior2r? = O(r'¢' logr'¢"), two-sided error
(2rf)~2/2 and simulation errof2r¢) =2 /2.

Next, modify the proof system so that"¢ becomes an
accepting transcript, and modify the simulator so that it al-
ways outputs an accepting transcript (by possibly substitut-
ing the output with0?%). The resulting proof system has
soundness error at mast‘ + (2r¢)=2/2, and the simula-
tion error is at most2r¢)~2. Assuming, without loss of
generality, thaR—¢ + (2r¢)=2/2 < 0.1, we are in position
to apply Lemma 2.5, and the theorems follovwll

3 A public-coin HVS ZK proof system forED

In this section, we prove Theorems 1.4 and 1.8. That
is, we present a public-coin honest-verifier statistical zero-
knowledge proof system forEnt ropy Difference
(ED). In presenting the proof system, we will use two sub-
protocols due to Okamoto [20], which we will describe in
Section 4.

In Section 3.1, we give an overview of the proof system.
In particular, as a motivation we start by treating a special
case ofED in which all distributions are “flat” (i.e., uniform
over some subset of their range). We conclude the overview

we can easily satisfy the requirements of Lemma 2.5. by discussion of the ideas underlying the extension of this
Namely, we obtain a proof system with soundness error atspecial case to the general one. In Section 3.2, we discuss
most0.1 in which the last message of the verifier consists a standard technique for “flattening” distributions, which is
of its random coins (as was required throughout the Aiello— an essential part of the final proof system. In Section 3.3, we
Hastad characterization), together with a simulator which state the properties of Okamoto’s subprotocols that are used
always outputs accepting transcripts and has simulator deviin the proof system foED; the actual description of these
ation at most/(2r¢)?. Once these conditions are satisfied, subprotocols and their proofs of correctness are deferred to
Lemma 2.5 tells us that the map— (X,,Y.)isaKarpre- Section 4. Finally, in Section 3.4, we give the proof system
duction fromII to ED, yielding Theorem 1.7. Theorem 1.3 for ED and prove its correctness.



3.1 Overview 3.1.2 Asimple case ofD

We begin with an exposition of the standard protocol We now Ske'FCh how the at?ove lower bound protocol can
be used to give a public-coi VS ZK proof system for a

simplified version ofED. We call a distributionX flat if

all strings in the support oK have the same probability.

That is, X is the uniform distribution on some subset of its

domain. The simplifying assumptions we make are that we

are working with a pair of distribution&” andY” (encoded

by circuits which sample from them) such that

for proving lower bounds on set sizes, which is the start-

ing point for our proof system. We stress that all protocols

described in this section (as well as in the rest of the paper)
are public-coin protocols.

3.1.1 The standard lower bound protocol

SupposeS is some subset of0,1}" and a proverM 1. X andY are both flat.
(“Merlin™) wants to convince a verifiedd (“Arthur”) that 2. [H(X) — H(Y)| > k, wherek is the “security param-
|S] > 2™. AssumingA has oracle access to a procedure eter.”

which tests membership ifi, there is a simple public-coin

protocol which can be used to accomplish this task. The Now, we want to give a statistical zero-knowledge protocol
protocol was first described in [2, 17] and orginates with a Py which/ can convinced to accept iffi(X) > H(Y) +k
lemma of Sipser [25]. For every pair of integdrand?, and M cannot convincel to accept ifH(Y) < H(X) +

let ., be a family of 2-universal hash functions mapping k- SinceX andY” are flat, they are uniform over subsets
{0,1}* to {0, 1}*. Sx andSy of their domain. By the definition of entropy,

|Sx| = 2H(X) and|Sy | = 2H(Y). So proving thatl(X) >
Lower bound protocol (M, A), on input n and m (and H(Y) is equivalent to proving thaix| > |Sy|. So, one
membership oracle forS C’ {0,1}") approach would be to use the above lower bound protocol
1. A selectsh uniformly from,’;’-ln,m and sends to M. to prove a lower bound offx|, and use an upper bound
2. M selectsz uniformly from S N h="(0) (if this inter- protocol with similar propertles (cf., [10]) to prove an upper
section is nonempty) and sendgo A.7 If the inter- bound on Sy |. Note that this by itself would do for placing
section is empty) sendsfail to A. the simplified version oED in AM (and similar ideas can
3. A accepts if bothh(z) = 0 ande € S and rejects be applied to the general versia; see§3.1.3).
otherwise The problem with the above is that it requires the prover
- . . to reveal H(X) and H(Y) (or approximations of these
The best analysis of the above protocol was provided in [1]. quantities). In fact, the zero-knowledge properties asserted

Lemma3.1 Completenessif [S| > 2¥ - 2™, thenA ac- above are relative to the given/asserted lower bound, and

cepts with probability at least — 27" do not seem to hold when the bound is not given. Indeed,

Soundnessf |S| < 27%.2™, then no matter what strategy  there seems to be no efficient way for the verifier to approx-
M uses,A accepts with probability at mogt*. imate the size of5, even when given a membership ora-

cle toS. To overcome this difficulty, we adopt a technique
of Okamoto [20] (which he calls “complementary usage of
messages”).

Recall that we are given a circuit (which we also denote
Y) which samples fronY’, and letm denote the length of
Lemma 3.2 (implicitin [20]) Let? be a 2-universalfamily  the input to this circuit. So, for any pointin the support
of hash functions mapping a domdinto a rangeR. LetS of Y, we letQy (y) C {0,1}™ denote the set of inputs
be a subset ab such thafR| < e - |S|. Then the following  to the circuit which yield outpuy. Then,Pr[Y =y] =
two distributions have statistical differene®(!): 2= . |Qy (y)|. SinceY is flat, we have
(A) Choosé uniformly in?, andz uniformly inh=1(0) N

S. Output(h, z).8
(B) Choosez uniformly in S, and & uniformly in {h' € Qy(y)] = 2™ Pr[Y =y] = {2m 27 B if gy e Sy
H : h'(z) = 0}. Output(h, z). 0 otherwise.

Think of D = {0,1}", R = {0,1}"™, ande = 2™/|S|. Thus, proving an upper bound di(Y") is equivalent to
Then, Distribution (A) corresponds td's view of the exe-  proving a lower bound ofy (y) for anyy in the support
cution of the protocol and Distribution (B) provides a sim- of Y.
ulation with deviation (at mos(R™ /|S|)?™) for it. The key observation is that for any € Sy, |Sx x
_ oH(X)+m—H(Y) ;

"Here0 is a canonically fixed element ¢f), 1}™. fy (y)| =2 m . - SO p_rovmg.thaH(X) > H(Y)

& 1n caseh~1(0) N S = 0 the output is defined to be a special failure  (WhiCh was our original goal) is equivalent to proving that
symbol. [Sx x Qy(y)] > 2™. Now we've reduced the problem

In fact, this protocol also has a sort of statistical zero-
knowledge property. The property holds with respect to the
inputsn andm, provided thafS| > 2™ and that one is
given a uniformly selected element 8f




to proving a lower bound for a set size which we know the functionh is selected uniformly ir#,, ., » and then
(namely2™, which can be computed by just looking at the (x,r) is selected uniformly frondSx x Qy (y)) N h~1(0).
circuit which computed”)! This gives rise to the following  Thus, by Lemma 3.2, it follows that #fi(X) — H(Y) >

“zero-knowledge” protocol. k (i.e., |Sx x Qy(y)| > 2mTk), then the distributions

on (y,h, (z,r)) in the simulator and the proof system
Proof system (M, A) for simple case ofED, on input have statistical difference—2(*), Finally, conditioned on
(X,Y) (y, h, (z,r)), the stringy is selected uniformly frorf x ()
Letm denote the input length af, andn denote the output  in both distributions, and so it does not increase the statisti-
length of X cal difference.

1. M selectsy distributed according t&” and sendg to

A 3.1.3 Treating general instances afD
2. A selects a hash functignuniformly from H,, 41, m
and sends to M. There are several problems in generalizing the proof sys-
3. M selects(z,r) uniformly from (Sx x Qy(y)) N tgm qu §3.1.2 to arb_ltrary mstanges (ille Clhealt(rjly., the
h=1(0) and sendsz, ) to A. simplifying assumptions we made will not hold in gen-

eral. The assumption thal(X) — H(Y)| > k is easy
to achieve. If we letX’ (resp.,Y”’) consist ofk indepen-
dent copies o (resp.)Y), thenH(X') = k- H(X) (resp.,

4. A checksthal’(r) = y and thath(z,r) = 0. If either
does not holdA rejects immediately and the protocol

ends. _ H(Y') = k- H(Y)). So, the difference in entropies is mul-
5. M selects; uniformly from 2 x (x) and sendg to A. tiplied by k.
6. A checks that¥'(¢) = = and accepts if this holds and The assumption that andY” are both flat presents more
rejects otherwise. serious difficulties. As we will see, taking many inde-

pendent copies of each distribution yields distributions that
are “nearly flat” (in a sense to be made precise later), but
he protocol still needs further modification to work with
nearly flat” rather than truly flat distributions. The first
problemis that ift” is only nearly flat, thedZ may selecy
to be “too heavy” (i.e.y has probability much greater than
1. Completeness: H(X) > H(Y) + k and X andY 2-H()), allowing him too many choices forand leading
are both flat, them accepts with probability at least  tg violation of the soundness property. Similarly, although

The last two steps in the above protocol arefotto prove
thatz is in factin the support ak’. Now it follows immedi-
ately from our earlier discussion and the completeness anq[,
soundness of the lower bound protocol that this protocol is
also complete and sound.

127" there are only abo@(X) choices forz that have probabil-
2. Soundness: H(Y) < H(X) + k andX andY are ity near2—H(X) if X is only nearly flat, there may be many

both flat, then no matter what strateyy uses,A ac- more choices for: (alas these are “too light” — i.e., have

cepts with probability at mogt—*. probability much smaller thaz—"(X)). This too givesi/

too much freedom (this time in choice 9 and may lead
The statistical zero-knowledge property of this proof system tg violation of the soundness property.

also follows readily from that of the lower bound protocol.

) ) : In order to solve these problems, we use two subproto-
Consider the following simulator:

cols of Okamoto [20]: The first is a “sample generation”
protocol, which is a protocol fok/ and A to select a sam-
Simulator for simplified ED proof system, on input ple from a nearly flat distributiol’ such that no matter what

(X,Y) strategyM uses, the sample will not be too heavy. This will
1. Choosg andr uniformly at random and let = X (q), replace Step 1 in the proof system§&.1.2, and guarantee
y=Y(r). that M does not have too much freedom in its choice- of
2. Choosé: uniformly from {i € Hysmm : h(z,7) = (in Step 3). The second protocol is a “sample test” protocol,
0} ’ which is a way forM to prove that a sampletaken from a

nearly flat distributionX is not too light. This will replace
Steps 5 and 6 in the proof system&#.1.2, and guarantee
The deviation of this simulator can be analyzed as follows: that M does not have too much freedom in its choicerof
The stringy is clearly distributed identically in both the (in Step 3).

proof system and the simulator. In the simulator, con-  We stress that both of these subprotocols will be public-
ditioned ony, the pair(z,r) is selected uniformly from  coin and will possess appropriate simulability properties to
Sx x Qy(y), and therh is selected uniformly among those ensure that the resulting protocol f&b is a public-coin
that map(z,r) to 0. In the protocol, conditioned og, HYVS ZK proof system. In the rest of this section, we will

3. Output(y, h, (z,7), q)-



specify the properties of these subprotocols, and formulate 1. (“‘completeness”)if both parties are honest thea’s

and analyze the proof system fab assuming that these
subprotocols exist. In Section 4, we present these subproto
cols and prove that they have the asserted properties.

3.2 Flattening distributions

As a preliminary step towards treating the general in-
stances ofD, we formulate the process of “flattening” dis-
tributions (i.e., making them “nearly flat” by taking many
independent copies).

Definition 3.3 (heavy, light and typical elementslet X
be a distributionx an element possibly in its support, and
A a positive real number. We say thais A-heavy(resp.,
A-light) if Pr[X = z] > 24.270(X) (resp.Pr[X = ] <
2-4 . 2-H(X)) Otherwise, we say thatis A-typical.

A natural relaxed definition of flatness follows. The def-
inition links the amount of slackness allowed in “typical”
elements with the probability mass assigned to non-typical
elements.

Definition 3.4 (flat distributions): A distribution X is
called A-flat if for everyt > 0 the probability that an ele-
ment chosen fronX is ¢ - A-typical is at leastl — 2=t +1,

By straightforward application of Hoeffding Inequality (cf.,
Appendix C), we have

Lemma 3.5 (flattening lemma)Let X be a distribution %

a positive integer, anck* X denote the distribution com-
posed oft independent copies df. Suppose that for alt
in the support ofX it holds thatPr [X = z] > 27™. Then
®*X is Vk - m-flat.

The key point is that the entropy of*X grows linearly
with &, whereas its deviation from flatness grows signifi-
cantly more slowy (i.e., linear i’k) as a function ot.

3.3 Subprotocol specifications

Below (as above), all distributions are given in form of
a circuit which generate them. The input to these protocols
will consist of a distribution, denoted’. We will denote
by m (resp.,n) the length of the input to (resp., output of)
the circuit generating the distributiaki. In all protocols
party A is required to run in polynomial-time (in length of
the common input), which means in particular that the total
number of bits exchanged in the interaction is so bounded.

Definition 3.6 (Sample Generation Protocol)A public-

coin protocol(M, A) is called asample generation pro-
tocol if on common input a distributioX’ and parameters
A, t, such thatX is A-flatandt < A,° the following holds:

9The conditiont < A is to simplify the error expressions and will
always be satisfied in our applications.

output will bet - A-typical with probability at least

1—m- 2790,

(“soundness”)If A is honest then, no matter haW

plays, A’s output is2v/tA - A-heavy with probability

at mostm - 2=2(t*) | (4 may abort with no output®)

3. (strong “zero-knowledge”)There exists a polynomial-
time simulatorS so that for every X, A, t) as above,
the following two distributions have statistical differ-
ence at mosty - 2~ 2(t*);

(A) Execute(M, A) on common inputX, A,¢) and
output the view ofi, appended byl's output.
(B) Chooser ~ X and output(S((X, A, t),x), ).

2.

The above zero-knowledge property is referred to as
strong since the simulator cannot produce a view-output
pair by first generating the view and then computing the
corresponding output. Instead, the simulator is forced (by
the explicit inclusion ofc in Distribution (B)) to generate a
consistent random view for a given random output Agf
We comment that the trivial protocol in which uniformly
selects an input to the circuitX and reveals both and
the outputr = X (r) cannot be used since the simulator is
only givenz and it may be difficult to find am yielding =
in general. Still, a Sample Generation protocol is implicit
in Okamoto’s work [20] (where it is called a “Pre-test”).

Theorem 3.7 (implicit in [20]) There exists a public-coin
sample generation protocol. Furthermore, the number of
communication rounds in the protocol is lineargn

A proof of Theorem 3.7 is presented in Section 4.

Definition 3.8 (Sample Test Protocol)A public-coin pro-
tocol (M, A) is called asample test protocolf on common
input a distributionX, a stringz € {0, 1}" and parameters
A t, such thatX is A-flat andt < A,the following holds:
1. (“completeness”)if both parties are honest and is
t - A-typical thenA accepts with probability at least
1—m- 2790,

2. (“soundness”)if z is 6v/tA - A-light and A is honest
then, no matter how/ plays, A accepts with proba-
bility at mostrn - 2=2(¢),

(weak “zero-knowledge”)There exists a polynomial-

time simulatorS so that for every( X, A, t) as above

and for everyt - A-typical z, the following two distri-

butions have statistical difference at mast 2~2(*);

(A) Execute(M,A) on common inpul(X,z, A,t)
and output the view aodl, prepended by:.

(B) On input (X,z,A,¢t) and an auxiliary in-
put r uniformly distributed inQx (x), output
(x, S((X,z,A,t),T)).

10 1t will indeed do so if detecting cheating.




The above zero-knowledge property is referred tavaak
since the simulator gets a randoengiving rise toz (i.e.,
x = X (r)) as an auxiliary input (whereas is only given
x). We comment that a simple public-coin testing protocol
exists in case one can approximate the siz@{«z) and
uniformly sample from it. However, this may not be the
case in general. Still, a Sample Testing protocol is implicit
in Okamoto’s work [20] (where it is called a “Post-test”).

Theorem 3.9 (implicit in [20]) There exists a public-coin
sample testing protocol. Furthermore, the number of com-
munication rounds in the protocol is linear in

A proof of Theorem 3.9 is presented in Section 4.
3.4 The protocol for ED

We assume, without loss of generality, that the number
of input (resp., output) bits ok equals the number fdr
(e.g., by augmenting one circuit by dummy input or out-
put bits). Letrn andn denote the corresponding quantities.
Furthermore, lets denote the total length of the descrip-
tion of both X andY. The first step in the following pro-
tocol is an “amplification step” which yields distributions

Fact 3.10 is immediate by Lemma 3.5 and the setting of the
parameters. Given Fact 3.10, we turn to the essence of the
analysis of the protocol. The completeness property of the
protocol will follow from the zero-knowledge one, and so
we start by establishing the soundness property.

Lemma 3.11 (soundness)Suppose thatl(Y) > H(X) +
1. ThenA accepts with probability at moskp(—€2(s)).

Proof: By the hypothesis we hav@(W) > H(V) + k.

By Fact 3.10, both distributions ark-flat, with A = /% -

m = 28m*,/s. Observe that the Sample Generation and
Testing subprotocols are invoked with parametets /s
andA = vk - m. Thus, the soundness condition of the
Sample Generation protocol implies that with probability at
mostkm - exp(—Q(t?)) = exp(—(s)) the outcomey, is
2v/tA - A-heavy.

Suppose that is not2y/tA - A-heavy. Then we claim
that M will be forced to select a that is6v/tA - A-light
with probability at least — exp(—€(s)). By Lemma 3.1,
it suffices to show that the number of pafis r) such that
W (r) = w andv is not6vtA - A-light is at mos2=(s) .
2km - Sincew is not 2v/tA - A-heavy, there are at most
gkm—H(W)+2ViA-A yalues ofr such thatW (r) = w. In

which are adequately flat. The protocol uses subprotocolsddition, the number of nofivtA - A-light choices foru
for Sample Generation and Sample Testing as guaranteeds at mosH(V)+6ViA-A (as each such has probability at

by Theorems 3.7 and 3.9, respectively.

Proof system(A/, A) for ED, on input (X,Y)
1. BothA andM setV = ®*X andW = @*Y, where
L2916 06

. The parties utilize a Sample Generation protocol, with
inputs (W, vk - m, \/s), obtaining an output denoted
w.

. PartyA uniformly selectsh € Hyptim,km, and sends
itto M.

. M selects(v, r) from the distributionV x Qu (w)!!
conditioned orh(v, ) = 0, and send¢v, r) to A.

. A checks that¥ (r) = w and thath(v,r) = 0. If ei-
ther does not hold4 rejects immediately and the pro-
tocol ends.

. The parties utilize a Sample Test protocol, with inputs
(V,v,Vk -m,/s), andA accepts iff the test was con-
cluded satisfactorily.

We first show that the amplification step (i.e., Step 1) is in-
deed appropriate. That is,

Fact 3.10 DistributionsV andW are vk - m-flat.

I Here, and in the rest of the paper, we write use the same orotati a
set (e.9.92yw (w)) and the uniform distribution on that set.

least2~6ViA-A . 2-H(V) ynderV). Thus, the total number
of pairs(v, r) such thai?’ (r) = w andv is not6vtA - A-
light is at most

okm—H(W)+2VIA-A  gH(V)+6VIA-A
98VIA-A+H(V)—H(W)  gkm

However, by our hypothesis and our setting of parame-
ters

8VIA A+ H(V)—HOW) < 8VIA-A—k
— (8'212—216)‘m68
< —s.

Thus, by Lemma 3.1, the probability thaf can return
a suitable norévtA - A-light v in Step 4 is at most
exp(—(s)). On the other hand, i#/ returns &+/A - A-
light v then the probability that it will be accepted by the
Sample Test is at mo&tn - exp(—Q(t%)) = exp(—Q(s)).
The claim follows. W

Simulator for the above protocol, on input (X, Y)

1. SetV = @FX andW = @*Y, wherek < 216

-m6-s.

2. Select uniformly-’, ~ € {0,1}*™, and letv = V ()
andw = W(r).



3. Simulate an execution of the Sample Generation pro-
tocol on input((W, vk -m, /s), w), obtaining a view,
denotedy, ending with outputy.

. Party A uniformly selectsh € Hpptim,km SO that
h(v,r) =0.!2

. Simulate an execution of the Sample Generation pro-
tocol on input(V, v, Vk - m, /s) and auxiliary input
r', obtaining a view, denoteg@.

6. Output((a,w), h, (v,r), 5).

The correctness of this simulator will rely on the follow-
ing variant of the Leftover Hash Lemma [18], proved in Ap-
pendix D.

Lemma 3.12 (implicitin [20]) Let be a 2-universal fam-
ily of hash functions mapping a domain to a rangeR
and let0 be any fixed element &. LetZ be a distribution
on D such that with probabilityl — ¢ over z selected ac-
cordingtoZ, Pr[Z = z] < ¢/|R|. Then the following two
distributions have statistical difference at magi + ¢'/%):

(A) Chooseh uniformly in?. Select: according toZ
conditioned orh(z) = 0. Output(h, z).

(B) Choosez according toZ. Selecth uniformly in
{h' € H : h(z) = 0}. Output(h, z).

Lemma 3.13 (zero-knowledge and completeness$up-
pose thatH(X) > H(Y) + 1. Then the statistical dif-

probability > 1 — 275+ over (v, r) selected according to
V x Qw(’w):

PrV x Qw(w) = (v,r)]
1
= Pr[V =yv]
| (w)]
1
—H(V)+tA |
< 2 Skm—T(W)—tA
2—k+2tA
< - @
|R|
27216m65+2-28m4s
a |R|
2—8
- |R|

Thus, we can také = 25+! ande = 2% in Lemma 3.12,
and see that the two distributions @i, (v, r)) have statis-
tical difference2=(*) (conditioned on historya, w)). Fi-
nally, includings only increases the statistical difference by
2-%(s) by the weak zero-knowledge property of the Sample
Test protocol (noting that in the simulatoris ¢t A-light with
probability at mosR—**+! andr is distributed uniformly in
Qy(v). M

Lemmas 3.11 and 3.13 and the fact that the given proof
system is public coin immediately imply Theorem 1.8. The-
orem 1.4 then follows as a special case. Actually, we can
strengthen Theorem 1.8 somewhat by applying a transfor-

ference between the view of the verifier on common inputyagion of [11] which converts public-coin honest-verifier

(X,Y) and the output of the simulator on inp(X,Y") is

at moskxp(—£2(s)). Furthermore, with probability at least
1—exp(—£(s)), the simulator generates an accepting tran-
script, and so in the real interaction the verifier accepts with
probability at leastl — exp(—£(s)).

Proof: Analogously to the proof of Lemma 3.11, we note
that bothV and W are A-flat, for A = 28m*,/s, and we
haveH (V) > H(W) + k.

By the strong zero-knowledge property of the Sample
Generation protocol, the pafr, w) in the output of the
simulator has statistical difference at mést - 2-9() =
2-9(s) from a real execution of that protocol. SintE
is A-flat, the stringw is tA-light with probability at most
2-%5) in the simulator. Thus, we consider the distributions
on (h, (v,r)) conditioned on any paife, w) such thatw is
not tA-light. To analyze this, we apply Lemma 3.12 with
Z =V x Qw(w), D = {0, 1}k7t+" andR = {0, 1}*™.
Distribution (A) (resp., (B)) in Lemma 3.12 corresponds
to the distribution of(h, (v, r)) in the proof system (resp.,
simulator). Sincel” is A-flat, the following holds with

12This step can be efficiently implemented for all popular ¢arions
of 2-universal families (e.g., the linear transformatidasily). Also note
that by the 2-universal property of such families, funcsionapping any
fixed string to0 always exist.

statistical zero-knowledge proofs into ones with perfect
completeness (i.e., the verifier accepts with probability 1
on YEs instances). Their transformation also preserves an
exponentially small soundness error and an exponentially
small simulator deviation. Thus, we obtain:

Corollary 3.14 ED has a public-coin proof system which
has perfect completeness and exponentially small sound-
ness error, and can be simulated with exponentially van-
ishing deviation.

4 The Sample Generation and Test Protocols

In this section, we present Okamoto’s protocols for gen-
erating and testing samples from a nearly flat distribution.
Recall that these protocols must be public coin and further-
more must satisfy certain “zero-knowledge” properties.

4.1 Overview

Sample Generation. Here the input to the protocol
(M, A) is aA-flat distributionX (encoded by a circuit) and
the output should be a samptefrom this distribution. We
require that, no matter what stratedy follows, 2 will not



be too heavy. If, however, both parties play honestly, then engage in a short game which endsMiyproposing another
2 should be nearly typical with high probability, and should samplex’. Roughly speaking, this game has the following
be simulatable for aexternally specifiedt. In particular, properties:

the protocol should not reveal an input to the circXiithat

yieldsz, as the simulator is only givenand it may be diffi- 1. If z is too light, then no matter what strategy fol-
cult to find an input yielding: in general. If we remove this lows, he will be forced to seleat which is noticeably
condition, the problem becomes trivialt could just sam- lighter thanz.

ple z according toX and reveal both: and the input used 2. If zis nearly typical and/ plays honestly, thes’ will

to produce it. Sinc& is nearly flatx will be nearly typical
with high probability.

Okamoto’s solution to this problem has the following 3. If both parties play honestly, thefis view of the game
general structurel proposes a sample (which is sup- is simulatable (given a random inputidwhich yields
posed to be distributed according X0 and sends it tod. ).

(Of course, ifM is dishonest, he can chooseto be too
heavy.) ThenM and A engage in a short “game” which
ends byM proposing another sampl€. Roughly speak-
ing, this game has the following properties:

also be nearly typical.

Clearly, repeating this game many times to obtain a se-
guencezy, ..., z,, (Wherexy = z andz;;; = zj) will
have the effect of making a light input sample lighter and
lighter. Takingm sufficiently largez,,, 1 will be so light

1. If z is too heavy, then no matter what stratelfyfol- that it has zero probability, so there is rg, lighter than
lows, he will be forced to seleat which is noticeably ~ Zm—1 and A will reject! Notice that we do not care what
lighter thanz. happens in the pushing gamexif is not too light and)/

plays dishonestly; if the original input is too light (which is
2. If z is not too heavy, then no matter what stratéddy  the the only time we worry about a dishonésd, all the
follows, he will be forced to choose' thatis also not  subsequent;’s will also be too light with high probability.
too heavy. On the other hand, if the original inputis nearly typical
and M plays honestly, all the samples will be nearly typi-
cal. Finally, the simulability property of the game enables
the entire Sample Generation protocol to be simulated “for-
4. If M plays honestly, thed'’s view of the game is sim- ~ wards” given coins fow. Amazingly, the game used for
ulatable for an externally specifiad. the Sample Test protocol is identical to the game used for
the Sample Generation protocol. We describe this “push-
Clearly, repeating this game many times to obtain a se-ing” game in the next section, and subsequently give formal

quence of samples, . . ., z,, (Wherex, is proposed by\/ descriptions of the two protocols.
andz; 1 = ) will have the effect of pushing a heavy pro-

posal forz, closer and closer to the nearly typical set. Tak- 4.2 The pushing game

ing m sufficiently large (but still polynomialin the appropri-

ate parametersy;,, will be guaranteed to be nottoo heavy,  Throughoutthe remainder of Section¥ js aA-flat dis-

no matter how)/ plays. On the other hand, I/ plays  tribution encoded by a circuit and (resp.,n) denotes the
honestly, all the samples will be nearly typical. Finally, the |ength of the input (resp., output) of the circuit generating

simulability property of the game enables the entire Sam- x . Recall that for positive integefsand?, #{; ; denotes
ple Generation protocol to be simulated “backwards” for an 3 2.universal family of hash functions mappif@, 1}* to

externally specified:,, . {0,1}¢.

The basic game underlying the Sample Generation and
Sample Test. Here the input to the protcdlM, A) is a Sample Test protocols is the following 1-round protocol
A-flat distribution X (encoded by a circuit) together with  (called “sequentially recursive hashing” in [20]):
a stringz from the domain ofX. At the end of the proto-

col, A accepts or rejects. We require thatrifs too light, Pushing game()M, 4), on input (X, z, A,t), wherez ¢
A should reject with high probabability. If, howevaer,is {0,1}"andt < A

nearly typical and both parties play honestly, taeshould 1. A chooses: uniformly from H,, 4y, m—3:a and sends
accept with high probability, and, moreovet;s view of hto M. ’

the interaction should be simulatable (given additionally a 2. M choosegr, ') from the distributionx (z) x X,

ran_lt_jr?m Input f?[)t( WT'Ch y']?lt?]§x)‘ tocol i imilar t conditioned orh(r, z') = 0, and sendér, z’) to A. (If
e general structure of this protocol is very similar to there i no such pair, '), thenM sendsfail to A.)

that of the Sample Generation protocol. Given/ and A

3. If zis nearly typical and/ plays honestly, then’ will
also be nearly typical.



3. A checks thatX (r) = z andh(r,z’) = 0. If both as desired. (In the last inequality, we used the fact that
conditions hold A outputsz’. OtherwiseA rejects. t<A)

Observe that if2x (z)| = 0, then A rejects with proba- . , P :
bility 1. In order to describe remaining the properties of the 2. Lets = {a’ : wi(a') = Wt(fg))(t_z)l}' ::\9:31] "t suffices
pushing game, we define teeightof a stringa: relative to to show thaf€x () x S| < 2 2 - Here the

a circuitX by wty (z) = log(Pr [X = z]-28(X)). So,zis intuition is that|Q x (z)| is so small (since is so light) that
~v-heavy iff wtx () > v andz is y-light iff wtx (z) < —7. the only way forM to succeed is to choosé even lighter
Also note that forz in the support ofX, |wtx ()] < m. thanz (since there cannot be too many strings of noticeable

When the distributionX is clear from the context, we will probability mass). _ This time we bound| by dividing S
often writewt(z) instead ofwty (z). The followinglemma  into two parts. Define

asserts that no matter haw plays, if the input to the game _ , ,

is atypical, then the output is noticeably lighter. (The be- % = {o: wi(z) — 1 < wi(a') < —2vEA - A}
havior on typical inputs is analyzed later — in Lemma4.2))  So = {z': —2VtA-A <wt(z)},

Lemma4.11f A follows the prescribed strategy in the so thatS = S, U S,. Since every:’ € S, has probability
pushing game, then no matter what stratégyuses, the | 5c¢ greaterthmH(X)—zm.A we must have
following hold:

1. (“heavy gets lighter”) With probabilitg> 1 — 22", 1S,| < 2H(O+2viAA
eitherwt(z') < max(wt(z) —1,2vtA) or A rejects. < QH(X)—wt(z)—4tA

where the last inequality follows fromt(z) < —6vtA-A

2. (‘lightgets lighter’) If wt(x) < —6VIA-A, thenwith 5,4\ S \we now bounds,|. SinceX is A-flat, we have

probability > 1 — 22" eitherwt(z') < wt(z) — 1

or A rejects. g HtA+L Pr(X' e S|

>
Proof: 1. LetS be the set oft’ such thatwt(z') > > |Sy| -2 e,
max(wt(z) — 1,2v/tA - A). We need to show that with

H(X)—wt(z)—4tA+2
probability at most2—2(*) over the choice ofh from Thus,[51] < 2 » and so

Hom+n,m—3tA, there exists a pair, «') € Qx (x) x S such 1] = |S1] + 52| < QH(X) ~wt(z)—4tA+3
thath(z,r") = 0. By the soundness of the standard lower- ’
bound protocol (Lemma 3.2), it suffices to prove that and

0y (2) x 8| < 9—Q(t?)  gm-—3tA 0x(z) x S| < om—H(X)+wt(z) , gH(X)—wt(z)—4tA+3
The intuition is that the number of that are heavier than = 9gm—4tA+3

max(wt(z) —1,2vtA-A) is so small that not even the size
of Qx () can compensate.

By definition ofwt(z), |Qx (z)| = 2m~HX)+wt(@) Wwe as desired. B
now bound S|. First, sinceX is A-flat, we have

27t2+3 . gm—3tA

IN

?

The pushing game has the following simulability and “com-

—4tA+1 ! /
2 = Pr [Wt(w ) 2 2VEA-A pleteness” properties when both parties are honest:

> Pr[XeS . :
> Prixes] . Lemma 4.2 If both parties follow the protocol in the push-
= ) Prix =24 ing game and: is tA-typical, then the following two distri-
@' €S butions have statistical difference at mast(t*):
On the other hand, evety € S is (wt(z) — 1)-heavy, so (A) Execute the pushing game on ingixt, z, A, t) to
Pr[X = z'] > 2~ H(X)+wtlz)=1 Thys, obtain (h,r, z'). Output(h, r, z').
9—4tA+L EE 9—H(X)+wt(z)-1 (B) Letz' be distributed according t&X and letr be
) o selected uniformly fronf2x (). Chooseh uniformly
Putting everything together, we have iN Hpmtn,m—3ta Subject toh(r,z') = 0. Output
9—4tA+1 (h,r, ).
m—H(X)+wt(z »
|Qx(z) x S| < 2 ( U'(m)

Proof: We apply Lemma3.12witlf = Qx(x)x X, D =
. {0,1}"*t" andR = {0,1}™—3tA, Distribution (A) (resp.,
< QT2 gmeStA (B)) in Lemma 3.12 corresponds to Distribution (A) (resp.,

2m—4tA+2



(B)) above. SinceX is A-flat, the following holds with
probability> 1 — 2+ over(r, 2') selected according to
Qx (CU) x X:

1
Pr[Qx(z) =(r,2")] = PriX =21 ———
[S2x (z) = (r,2")] [ ] x (@)]
1
—H(X)+tA
< 27 " om—H(X)—tA
27tA
IR

Thus, we can také = 2~t"+! ande = 2712 < 2" in

Completeness and Zero-Knowledge. First we observe
that the completeness condition follows from the strong
zero-knowledge condition: In Distribution (B) of Defini-
tion 3.6,z is distributed according t&, and hence igA-
typical with probability> 1 — 2—*+1 by the A-flatness of
X. Sincex corresponds to the output of the Sample Gener-
ation protocol in Distribution (A) and Distributions (A) and
(B) have statistical difference at maat®(t*), the output
of the Sample Generation Protocol mustBetypical with
probability at least — 2"+ — 2-Q(") = 1 — 2-(t"),

Now we prove the zero-knowledge condition. Consider

Lemma 3.12, and see that the two distributions have statis-th€ following probabilistic polynomial-time simulator:

tical difference2— "), W

4.3 The protocols

Simulator for Sample Generation Protocol, on input
(X, A1), 2)

The sample generation and test protocols simply consist 1. Letz,, = .

of many repetitions of the basic pushing game:

Sample Generation Protocol M, A), oninput (X, A, ),
wheret < A

1. M selectszy € {0, 1}™ according toX and sends;
to A.

2. Repeat foi from1tom: M and A execute the Push-
ing Game on inputX, z;_1,A,t) and letz; be the
output.

3. A outputsz,, unless it rejected in one of the Pushing
Games, in which case it rejects.

Sample Test Protocol (M, A), on input (X,z,A,t),
wherez € {0,1}"andt < A

1. Letzy = x.

2. Repeat foii from 1 tom + 1: M and A execute the
Pushing Game on inpytX, z;_1, A, t) and letz; be
the output.

3. A rejects if it rejected in any of the Pushing Games,
else it accepts.

4.4 Correctness of Sample Generation Protocol

Using the properties of the Pushing Game, we now prove
that the Sample Generation Protocol satisfies Definition 3.6

and thus Theorem 3.7 holds.

Soundness. By Lemma 4.1 (Part 1) and induction, we
see that for every) < i < m, with probability at least
1—i-272) eitherwt(z;) < max(wt(xo) — i, 2VEA) or
Arejects. In particular, sincet(zo) < mn, with probability
atleastl — m - 22" we have

wt(zm) < max(wt(zg) — m, 2VIA - A) = 2VtIA - A

unlessA rejects, as desired.

2. Fori fromm down tol repeat:

(a) Chooser;_; uniformly from {0,1}™ and let
zi—1 = X(ri—1).

(b) Choosér; uniformly from ,,+p,m—3:a Subject
to h,‘(?",'_l,.%‘,') =0.

3. Output

(:L'Uahl: (T07$1)7h27 (T1,$2), - '7hm7 (Tm—hxm))'

We prove by induction on that the distribution on
t; = (xo,h1,(ro,x1),---,hi, (ri—1,2;)) in the output of
the simulator (when is chosen according t&) has statis-
tical difference at most- 2=%(*) from the verifier’s view of
the Sample Generation protocol up to the end of tfieex-
ecution of the Pushing Game. Clearly this is trueifer 0,
as in both cases; is distributed according t&. Now sup-
pose it is true for; we will prove it fori + 1. From the
following two observations it follows that the statistical dif-
ference only increases Ry *" 1 +2-2() = 2-2(*) when
going fromé to + 1:

1. In the simulatory; is tA-typical with probability at
leastl — 2—¢°+1,

2. For any history

ti = (wo, ha, (1o, 1), - -, by, (rim1,4))

in which z; is tA-typical, the following two distribu-
tions have statistical differen@s 2(t*):

(A) A'sview of the(i + 1)'st Pushing Game condi-
tioned on history;.

(B) The distribution of (h;t1, (ri, ziy1)) condi-
tioned on history; in the output of the simulator.



Observation 1 is immediate from the fact thatis dis-
tributed according taX in the simulator andX is A-flat.
Observation 2 follows from Lemma 4.2, observing thatcon- ~ Now we observe that the completeness condition follows
ditioned on historyt;, the triple (h;t1, (r;, x;41)) in the from the weak zero-knowledge condition and the particu-
output of the simulator is selected exactly according to the lar simulator we have given above. Specifically, the above
Distribution (B) in Lemma 4.2. That is, conditioned on simulator always outputs transcripts which would make
history ¢;, r; is selected uniformly fronf2x (x;), zi+1 is accept. Since it has statistical difference at mosg—(t*)
distributed according td(, andh is selected uniformly in from the Sample Test protocol, must accept in the Sample
Hintn,m—3ta subject toh(r;, xi41) = 0. Test protocol with probability at leagt— i - 2=2(%).

that, although the simulator works in reverse order, the se-
lection ofr; andh; is as before.
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ity at leastl — i - 2= for every0 < i < m + 1,

wt(z;) < wt(zo) — i (or A rejects). In particular, since References

wt(z0) < H(X), with probability at least — m - 2-2(%),
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Proof of Lemma 2.3: By Lemma 2.2, wheres & A A(X,Y).

This fact can be inferred from Fano’s Inequality (cf., [5,

L(S|(Ps,V)) = (+ Z(—l)iH -H(Si) Thm. 2.11.1]). A more direct proof follows.
)i+t Proof: Assumed > 0 or else the claim is obvious. Let
< 0+ Z -H{(P,V)) p(z) % PriX = 2] andg(z) & Pr[X =2]. Define
m(z) ¥ min{p(z),q(x)}. Theny, ., m(z) = 1 - 0.
+ Z IH(S. (P, V),)] Define random variable®’, X' andY”’ so that
PriZ =z] = m'(z) ¥ L -m(z)
Consider a perfect simulator (i.e., of zero deviation), de- 1-9
notedS, for (P, V). Note that the simulator-based-prover Pr[X' =z = p(z) def 1 (p(x) — m(z))
with respect tcS is P itself. Thus, by Lemma 2.2, d
ey =e] = ¢(@)% 5 (ae) - m()

e+z 1)+ H(P,V),) z+2 1)+ H(S _ _ o
Think of X (resp.,Y) as being generated by pickitg with

KL (S| (PVY) = 0 probabilityl — 6 and X"’ (resp.,Y’) otherwise. Then,
! !

Finally, we use the fact (cf., Appendix B) that for any two HX) < (1-09) H(Z’) +0- H(X) + Hy(9)

random variablesY andY’, ranging over domaif it holds HY) > (1-4)-H(Z)

that Observing thaPr [X' = z] = O on at least one € D, it
[H(X)—H(Y)| < (log|D|)-A(X,Y)+ Hy (A(X,Y)) f.O"OWS thatH(X') < log(|D| — 1), and the fact follows.

Combining all the above, we get

KL (S| <Ps V) Comment: The above bound is tight. Let € D and
’ considerX which is identicallye, andY” which with proba-
bility 1 — ¢ equalse and otherwise is uniform ovep \ {e}.
<
- Z [H(S BV Clearly, A(X,Y) = éd andH(Y") — H(X) = dlog(|D| —
o 1) + Hz(6) — 0.
< D il A(Si, (PV),) +Ha (A(Si, (P,V),))] Fact B.2 For any random variable&” andY and any func-
=1 tion f it holds thatKL (X | Y) > KL (f(X) | f(Y)).
< (2T2+T)'€'A(S,<P,V>)

This fact can be easily inferred from the Log Sum Inequal-
+2r-Hy (A(S, (P, V))) ity (cf., [5, Thm. 2.7.1]). A more direct proof follows.

and the lemma follows. ) o

Proof: Expanding the definition oKL (X |Y'), we get
Proof of Lemma 2.4: For any random variablesy KL(X|Y) =3, Pr[f(X) = 0] Ay, where
andY and any functionf it holds thatKL (X |Y) > A = Z Pr[X = z|f(X) =] -

L(f(X)|f(Y)) (cf., Appendix B). Lettingf(y) = 1 ! vif (2=

if v is accepting an = 0 otherwise, we have
Is accepting and(y) o PELACX) = o] Pr[X = /() = o

KL (S(z) | (Ps,V)(z)) > KL2(p,q") Prf(Y)=v]-Pr[Y =z[f(Y)=1v]
whereq’ < ¢ equals the probability thatPs, V)(z) ac- ~ We can rewrited, asB, + Cy, where
cepts. Using the fact th& L, (p, ¢') > KLx(p, ¢), for any
, : B, = Pr(X = a|f(X) = o] - log — ) =Y
¢' < q < p (cf., Appendix B), we are done. w:f%;ﬂ [ |[f(X) =v] log & 7O0) =0l

B Statistical Inequalities and

C, = PriX = X)=n1]-
Fact B.1 For any two random variablesy andY’, ranging Z tl 2 f(X) =]

over a domainD it holds that =i (@)=

[H(X) —H(Y)| < log(|D|-1)-6 + Hy(d) log 5w = 2| f(Y) = v]




Now, ", Pr[f(X) =] - B, equalsKL (f(X)|f(Y)), D Proof of the Hashing Lemma
whereas the equaBr[f(X) =v] - KL(X,|Y,) > 0,
where X, (resp.,Y,) denotes the residual distribution of We denote the two distributions on paifé,z) in
X conditioned onf(X) = v (resp.,Y conditioned on  Lemma 3.12 byd = (A4, Az) andB = (By,Bz). By
f¥)y=v). N the definition of statistical difference, it suffices to show that
for every setS ¢ H x D, Pr[A€ S] — Pr[Be S] <
3(6 +£'/3). In order to do this, we first will argue that for
Comment: The above bound is in fact equivalent “most” pairs(h, z), Pr[A = (h, z)] is not too much greater
to the Log Sum Inequality (i.e.)_;a;log(ai/b;) > thanPr [B = (h, z)]. Observe that both distributionsand
(3" ai)log(3; ai/ 32, bi), for all non-negativen;’s and B only output pairgh, z) such thah(z) = 0. Now, for any
b;’s). To deduce to Log Sum Inequality from the above (h,z) € H x D such thafi(z) = 0, we have
bound, one may first prove a special case in whicjn; =
>; bi = 1 (by definingX andY” so that thes;'s andb;’s

represent their probability mass, and lebe a constant LT [A=(h,2)] = Prldy=h] -Pr[dz =z[Ay = I]
function). The general case is derived by easy manipula- _ 1 Pr[Z = 7]
thﬂ |H| Zweh_1(0) Pr [Z = 'l,U] ’
and
FactB.3 For any0 < ¢’ < ¢ < p < 1, it holds that PriB=(h.2)l = PriBs=2|-PriBy = hlBy, =~
= Pr|Z=2-

= e =
Proof: We use the fact (cf., [5, Thm. 2.7.2]) that for every IR
0<p,q1,¢o <landd <A< 1. = Pr[Z:z]-m7

KL (p, A1 +(1=X)g2) < XKLy (p, 1) +(1—=X)-KLs(p, g2) where the last equality follows from 2-universality.

Thus, showing thafr[A = (h,z)] is not too much
Pickingq, = ¢', ¢» = pand such that\g; +(1—\)g = g, greater tharPr [B = (h, z)] for most pairs(h, z) amounts

we haveKL,(p,q) < A-KLy(p,¢') + (1 — A) -0, and the ~ to showing that for mosti, >, c,-1() Pr(Z =w] is
fact follows. W not too much smaller than/|R|. In order to prove a
lower bound on this sum (for most), we restrict the

. sum to a slightly smaller set ab’'s. Let L = {w €

C Proof of the Flattening Lemma D: Pr[Z = w] < ¢/|R|}, so by hypothesi®r [Z € L] =

1 —46. Forw € D andh € #, define indicator functions

For everyz in the support ofX, we let w(z) = Yo (h) = { 1 if h(w)=0
—logPr[X = z]. Thenw maps the support ot , denoted v 0 otherwise
D, to [0,m]. Let Xy,..., X}, be identical and independent Definef(h) = > wer Pr[Z = w] - xw(h). Thus,

copies ofX. The lemma asserts that for every
Yo Pr[Z=w]= ) Pr[Z=u] xu(h) > f(h)

R weh=1(0) weD
Pr l 2t m\/E] <27t By 2-universality, forh selected uniformly irf, the ran-
Observe thaE(w(X;)) = 3, Pr[X = z]w(z) = H(X),

dom variableq x., (k) }wep €ach have meaty|R| and are
pairwise independent. Thus,

for everyi. Thus, the lemma follows by a straightfor- Enlf(h)] = Z Pr[Z = w] _ 1-9

ward application of Hoeffding Inequality: Specifically, de- h |R| |R|

fine random variableg; = w(X;), let p = E(¢;) and

k

> w(X;) — k- H(X)

i=1

weL

6 = tm//k, and use and
Pr[Z = w]’
- - van[fn) < Y~
Pr||[&==22 )l >80 < 2-exp<——2-k) wel
k m < Z PriZ =w]-¢e
= 2-exp(—2t?) el |R|?
€

The lemma follows. H < R2



By Chebyshev's inequality,

1-6 —&'f3 Vary(f(h)) _
— < < I < g3,
|R| IR| | = (¢¥/3/|R])* —

Pr| f(h)

LetG = {h € H: f(h) > (1 -6 —€'/?)/|R|} be the
set “good”h’s for which f (k) is not too much smaller than
1/|R|. Then for every: € D andh € G,

< Pr(Z =Z] ‘ |R|

- |H] 1—6—¢gl/3

Pr[B = (h,z2)]
1—6—¢l/3

Thus, foranyS ¢ H x D,

Pr[A = (h,2)]

Pr[A € S]

IN

Pr[A € SandAy € G]+ Pr[Ay ¢ G]
Pr[B € S andBy € G] PRYE
1—-§—¢l/3
Pr[B € S|
5 +el/?
<1 —§—el/3
Pr[B € S]+3(6 +£'/?),

IN

IN

> -Pr[BeS]+¢'/?

IN

(as long as + ¢'/% < 1/2, which we may assume as oth-
erwise the lemma is trivially satisfied). This completes the
proof.



