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Comparing Entropies in Statistical Zero Knowledge
with Applications to the Structure of SZK

Oded Goldreich� Salil Vadhany
Abstract

We consider the following (promise) problem, denoted
ED (for Entropy Difference): The input is a pair of
circuits, andYES instances (resp.,NO instances) are such
pairs in which the first (resp., second) circuit generates a
distribution with noticeably higher entropy.

On one hand we show that any language having a
(honest-verifier) statistical zero-knowledge proof is Karp-
reducible toED. On the other hand, we present apublic-
coin (honest-verifier) statistical zero-knowledge proof for
ED. Thus, we obtain an alternative proof of Okamoto’s re-
sult by whichHVSZK (i.e., honest-verifier statistical zero
knowledge) equalspublic-coinHVSZK. The new proof is
much simpler than the original one. The above also yields
a trivial proof thatHVSZK is closed under complementa-
tion (sinceED easily reduces to its complement). Among the
new results obtained is an equivalence of a weak notion of
statistical zero knowledge to the standard one.

1 Introduction

Zero-Knowledge proofs, introduced by Goldwasser, Mi-
cali and Rackoff [16], are fascinating and extremely useful
constructs. Their fascinating nature is due to their seem-
ingly contradictory nature; they are both convincing and
yet yield nothing beyond the validity of the assertion being
proven. Their applicability in the domain of cryptography
is vast; they are typically used to force malicious parties
to behave according to a predetermined protocol (which re-
quires parties to provide proofs of the correctness of their
secret-based actions without revealing these secrets).�Department of Computer Science, Weizmann Institute of Science, Re-
hovot, ISRAEL. E-mail: oded@wisdom.weizmann.ac.il. Work
done while visiting LCS, MIT. Supported by DARPA grant DABT63-96-
C-0018.yLaboratory for Computer Science, Massachusetts Instituteof Technol-
ogy, Cambridge, MA 02139. E-mail:salil@theory.lcs.mit.edu.
Supported by a DOD/NDSEG Graduate Fellowship and in part by DARPA
Grant DABT63-96-C-0018.

Zero-knowledge proofs come in many flavors. One cen-
tral parameter is to the strength of the zero-knowledge (or
simulability) condition: The requirement that theverifier
learns nothingfrom the proof is formulated by saying that
the transcript of its interaction with the prover can besimu-
lated by the verifier itself. That is, there exists an efficient
procedure that, when given a valid assertion as input, pro-
duces a distribution which is “similar” to the distribution of
transcripts of the executions of the proof system on that as-
sertion. The key parameter is the interpretation of “similar-
ity”. Three notions have been commonly considered in the
literature (cf., [16, 10]). Perfect zero knowledge (PZK) re-
quires that the two distributions be identical.Statistical zero
knowledge(SZK) requires that these distributions be sta-
tistically close (i.e., the variation distance between them is
negligible). Finally, computational zero knowledge (CZK)
refers to the case that these distributions are computation-
ally indistinguishable (cf., [15, 26]).

This paper focuses on statistical zero knowledge (SZK).
This class has quite an intriguing status in complexity the-
ory. On one hand,SZK contains several problems which
are commonly believed to be hard (i.e., not inBPP) such
as Quadratic Residuosity [16], Graph Isomorphism [13],
and a problem equivalent to the Discrete Logarithm Prob-
lem [12]. On the other hand,SZK lies quite low in the
Polynomial-Time Hierarchy; specifically, it lies in the in-
tersectionAM \ coAM (cf., [10, 1]). (Recall thatAM
denotes the class of two-round Arthur-Merlin proofs, which
by [17] and [3] is equivalent to constant-round interactive
proofs.) Furthermore,SZK has a (natural) complete prob-
lem [24] (and we are going to see another one in this paper).

Additional motivation for studying statistical zero
knowledge comes from cryptography. For one, it offers
a higher level of security than computational zero knowl-
edge; that is,SZK provides information-theoretic (or ab-
solute) security whereasCZK only provides computational
security (i.e., security against adversaries of bounded com-
putational resources). Another motivation for the study ofSZK is that it provides a good test ground for developing
techniques to studyCZK proofs (cf., [21, 22, 6, 7, 14]). We
note that although it is long known thatCZK = IP (pro-



vided one-way functions exist; cf., [13, 19, 4]), the devel-
opment of methodologies for the construction of (efficient)
zero-knowledge proof systems is still of great importance.

The study ofSZK has gained much momentum in re-
cent years. In particular, two results which assert trans-
formations of one type ofSZK proof system into another,
have played an important role in recent study. A key notion
in these results is the notion ofhonest-verifierSZK, de-
notedHVSZK. Unlike the general notion ofSZK, which
requires that no matter what the verifier does, it learns noth-
ing from the interaction with the prover, here one only re-
quires that the “honest” verifier (i.e., one that follows the
prescribed protocol) learns nothing from the interaction.
The two results referred to above are:

Thm. I: Every promise problem1 having a honest-verifierSZK proof system has also apublic-coin honest-
verifierSZK proof system (cf., Okamoto [20]).

Thm. II: Every promise problem having apublic-coin
honest-verifierSZK proof system has a (public-coin)
generalSZK proof system (cf., Goldreich, Sahai and
Vadhan [14]).

Combining these two results one obtains that any promise
problem having a honest-verifierSZK proof system also
has a generalSZK proof system (i.e., one in which zero-
knowledge holds with respect to any cheating verifier). We
stress the key role of Thm. I in providing the adequate start-
ing point for Thm. II. Furthermore, the starting point pro-
vided by Thm. I is relied on also in the following intriguing
results:

Thm. III: The classHVSZK is closed under complemen-
tation (cf., Okamoto [20]): That is, if a promise prob-
lem has a honest-verifierSZK proof system then so
has its complement.

Thm. IV: The classHVSZK has a natural complete prob-
lem (cf., Sahai and Vadhan [24]).

Thus, Thm. I plays a key role in this area. Unfortunately,
the proof of Thm. I in [20] is very complicated and was
fully understood by very few researchers.

The primary motivation of this work is to provide a
simpler proof of Thm. I. Our basic idea is to apply some
of Okamoto’s techniques [20] to the Aiello–Hastad trans-
formation [1] of HVSZK into AM, rather than apply-
ing them (as done in [20]) to the Goldwasser–Sipser trans-
formation [17] of IP into AM. To further clarify the
proof, we introduce a new promise problem, and show that:
(1) any problem inHVSZK reduces to the new promise
problem, and (2) the new promise problem has apublic-
coinHVSZK proof system. Combining (1) and (2), Thm. I
follows.1 A promise problem� is a pair of disjoint sets of strings, correspond-
ing toyes andno instances, respectively [9].

1.1 Statistical zero-knowledge proof systems

Following [12], we extend the standard definition of
interactive proof systems to promise problems� =(�yes;�no). That is, we require the completeness condition
to hold foryes instances (i.e.,x 2 �yes), require the sound-
ness condition to hold forno instances (i.e.,x 2 �no), and
do not require anything for inputs which violate the promise
(i.e.,x =2 �yes [ �no).

This paper focuses on such proof systems which are
honest-verifier statistical zero-knowledge:

Definition 1.1 (Honest-verifier statistical zero knowledge
–HVSZK): Let (P; V ) be an interactive proof system for
a promise problem� = (�yes;�no).� We denote byhP; V i(x) the view of the verifierV

while interacting withP on common inputx; this con-
sists of the common input,V ’s internal coin tosses, and
all messages it has received.� (P; V ) is said to behonest-verifier statistical zero
knowledge if there exists a probabilistic polynomial-
time machine(called a simulator),S, and a negligible2
function� : N 7! [0; 1] (called the simulator deviation)
so that for everyx 2 �yes the statistical difference be-
tweenS(x) andhP; V i(x) is at most�(jxj).� HVSZK denotes the class of promise problems hav-
ing honest-verifier statistical zero-knowledge interac-
tive proof systems.

We comment that generalstatistical zero-knowledgeproof
systems are such where the zero-knowledge requirement
holds for any (polynomial-time computable) verifier stat-
egy, rather than merely for the prescribed/honest verifierV .
Actually, even a stronger requirement can be proven to be
equivalent toHVSZK – see [14].

1.2 Public-coin versus general proof systems

Recall thatpublic-coin(a.k.a Arthur-Merlin) proof sys-
tems [2, 3] are interactive proof systems [16] in which the
prescribed verifier’s strategy amounts to sending uniformly
chosen messages at each round, and deciding whether to
accept by evaluating a polynomial-time predicate of the
conversation transcript. That is, in each round, the veri-
fier tosses a predetermined number of coins and sends the
outcome to the prover, and at the end it decides whether
to accept by applying a predicate to the (full) sequence of
messages it has sent and received.

Public-coin proof systems are easier to analyze and
manipulate than general interactive proofs, and thus the2Recall that a functionf :N ! N is negligible if for any polynomialp(�), f(n) < 1=p(n) for sufficiently largen.



result of Goldwasser and Sipser [17] by which the for-
mer are as powerful as the latter found many applications
(e.g., [11, 19, 4]). As mentioned above, the same and more
so is true regarding statistical zero knowledge: That is,
Okamoto’s result [20] (i.e., Thm. I), by which public-coinHVSZK equalsHVSZK, has played a major role in sub-
sequent results (e.g., Thms. II, III, and IVmentioned above).
Thus, providing a clear proof of Thm. I is of major impor-
tance to this area.

1.3 A newHVSZK-complete problem: Entropy
Difference

The new promise problem referred to earlier is called
Entropy Difference. The promise problem involves
the entropies of distributions which are encoded by circuits
which sample from them. That is, ifX is a circuit map-
pingf0; 1gm to f0; 1gn, we identifyX with the probability
distribution induced onf0; 1gn by feedingX the uniform
distribution onf0; 1gm. We writeH(X) for the entropy of
distributionX (defined in Section 2.1).

Definition 1.2 (Entropy Difference):The promise problem
Entropy Difference, denotedED = (EDyes; EDno),
consists ofEDyes def= f(X;Y ) : H(X) > H(Y ) + 1gEDno def= f(X;Y ) : H(Y ) > H(X) + 1g
whereX andY are distributions encoded as circuits which
sample from them.

As stated above, our main results are

Theorem 1.3 (HVSZK-hardness):Any promise problem
in HVSZK reduces (via a Karp reduction) toED.

(Theorem 1.3 combined with a simple constant-round inter-
active proof forED implies thatHVSZK � AM\coAM.
We believe that this provides a much simpler argument than
the one presented in [10, 1], although it does use all the un-
derlying ideas of these works.)3
Theorem 1.4 (ED in public-coinHVSZK): ED has a
public-coin honest-verifier statistical zero-knowledge proof
system.

Combining Theorems 1.3 and 1.4,4 we see that any promise
problem inHVSZK has a public-coinHVSZK proof3 We note that much of the simplification is due to [23].4 Actually, we also use the fact that the reduction in Theorem 1.3 is
not length-decreasing. Alternatively, one may use the factthatED is easily
padded to increase the length of instance descriptions.

system. Thus, we provide an alternative (and much sim-
pler) proof of Thm. I. Furthermore, observing thatED eas-
ily reduces to its complement, it follows thatHVSZK is
closed under complementation (i.e., we provide an alterna-
tive proof of Thm. III).

Discussion: Some superficial similarity does exist be-
tween the above and what was done in [24]. In the
latter work, the authors defined a promise problem,
calledStatistical Difference (denotedSD),5 and
showed that it is complete for the classHVSZK. How-
ever, their reduction ofHVSZK to SD used Thm. I to re-
strict attention to public-coinHVSZK only. Thus, the re-
sults in [24] (relying on Thm. I) cannot be used to establish
Thm. I. Furthermore, theHVSZK proof system forSD pre-
sented in [24] is not of the public-coin type.

In retrospect, the termstatisticalzero knowledge (coined
by Goldwasser, Micali and Rackoff [16]) sounds prophetic
of the key role played by computational problems regarding
statistical measures in the study of this class (which is also
known by the name “almost-perfect zero knowledge”).

1.4 Extensions

Let us stress that by (honest-verifier) statistical zero
knowledge we mean a simulation, up to negligible devia-
tion error, by astrict (rather than expected) probabilistic
polynomial-time machine. This makes Theorem 1.4 seem-
ingly stronger, but potentially weakens Theorem 1.3. How-
ever, as we shortly explain, Theorem 1.3 is in fact stronger
than stated.

Definition 1.5 (simulator deviation):Let (P; V ) be a proof
system for a promise problem� = (�yes;�no), and letM be a probabilistic polynomial-time machine. Suppose
that for some function� : N 7! [0; 1] and everyx 2 �yes
the statistical difference between the verifier’s view, denotedhP; V i(x) andM(x) is at most�(jxj). Then we say thatM
simulates(P; V ) with deviation �.
As defined above,HVSZK is the class of promise prob-
lems having interactive proofs with negligible simulator de-
viation. A weaker level of security (or zero-knowledge
property) is provided by the notion ofweak-HVSZK
(which is analogous to weak-SZK considered in, e.g., [8]):5 Statistical Difference, denotedSD = (SDyes; SDno), con-
sists of SDyes def= f(X; Y ) : �(X ; Y ) < 1=3gSDno def= f(X; Y ) : �(X ; Y ) > 2=3g
whereX andY are as in Definition 1.2, and�(X ; Y ) denote the statisti-

cal difference between them (i.e.,�(X ; Y ) def= 12 �P� jPr [X = �]�Pr [Y = �] j).



Definition 1.6 (weak-HVSZK): A proof system is said to
be weak (honest-verifier) statistical zero knowledgeif for
every polynomialp there exists a probabilistic polynomial-
time machineMp which simulates the proof system with
simulator deviation1=p(�).
Specifically, the running-time ofMp may depend onp.
Note that weak-HVSZK contains promise problems hav-
ing HVSZK proof sytems under a liberal definition al-
lowing expectedpolynomial-time simulators. That is, sup-
pose that� has an interactive proof system(P; V ) and
anexpectedpolynomial-time simulatorM which simulates(P; V ) with negligible deviation. Then, for any polyno-
mial p, we can construct a strict polynomial-time simulatorMp which simulates(P; V ) with deviation1=p(�) simply
by truncating long runs ofM ; that is, runs which take more
thanp times the expected number of steps. It follows that(P; V ) is a weak-HVSZK proof system. All these vari-
ants ofHVSZK are covered by the following extension of
Theorem 1.3:

Theorem 1.7 (Theorem 1.3, extended):Any promise prob-
lem in weak-HVSZK reduces(via a Karp reduction)toED.

In fact, the proof only utilizes a simulator with deviation
smaller than the reciprocal of the (cube of the) total number
of bits sent in the proof system. On the other hand, Theo-
rem 1.4 can be strengthened as follows:

Theorem 1.8 (Theorem 1.4, extended):ED has a public-
coin proof system which can be simulated with exponen-
tially vanishing deviation.

Combining Theorems 1.7 and 1.8, we get

Corollary 1.9 Every language in weak-HVSZK has a
public-coin proof system which can be simulated with ex-
ponentially vanishing deviation.

Using the results in [14] we infer that weak-HVSZK
equalsSZK, where the latter refers to statistical zero
knowledge against any verifier. Specifically,

Corollary 1.10 Every language in weak-HVSZK has a
(public-coin)general statistical zero-knowledge proof sys-
tem. Furthermore, the latter can be simulated using a uni-
versal probabilistic polynomial-time simulator which uses
any verifier strategy as a black-box and has only an expo-
nentially vanishing deviation.

1.5 Techniques

As stated above our main results are Theorems 1.3
and 1.4 which establish, respectively, a Karp reduction of

HVSZK to ED, and a public-coin honest-verifierSZK
proof system forED.

The proof of the first main result relies on the works of
Fortnow, Aiello and Hastad [10, 1]. The key observation un-
derlying these works is that any simulator establishing the
(honest-verifier)SZK property of a proof system must be-
have very differently onYES andNO-instances. This differ-
ence is used in [10, 1] in order to construct certainconstant-
roundproof systems. We use this difference to construct a
reduction toED. Specifically, we use the characterization
of the simulator’s behavior as provided in [1] and further
simplified in [23]. This characterization allows us to reduce
instances of any problem inHVSZK to instances ofED.

The proof of the second main result relies on the work
of Okamoto [20]. Specifically, we follow his basic idea of
“complementary usage of messages” and use two of his sub-
protocols. We stress that we provide self-contained defini-
tions, implementations and analysis of the latter two sub-
protocols.

1.6 Open Problems

Our proof of Thm. I (as well as the original proof of
Okamoto [20]) actually provides a transformation of proof
systems (from private-coin to public-coin while preserving
a certain zero-knowledge property, namelyHVSZK). Nei-
ther our transformation nor Okamoto’s preserves the num-
ber of rounds in the original proof system, nor the compu-
tational complexity of the prover. It would be desirable to
present an alternative transformation which does preserve
both complexity measures, and it would be of interest even
to present a transformation which preserves only one of
these measures.

For a wider perspective, we mention the following facts.

1. The transformation of private-coin interactive proofs
to public-coin ones (cf., [17]) preserves the number of
rounds (up to an additive constant), but does not pre-
serve the computational complexity of the prover.

(Note that this transformation does not seem to pre-
serve any zero-knowledge property. Furthermore, it
is not known how to transform computational zero-
knowledge proofs into public-coin ones (without as-
suming the existence of one-way functions which al-
lows one to construct the latter from scratch).)

2. The transformation of honest-verifier zero-knowledge
public-coin proof systems into general zero-
knowledge ones (cf., [14]) preserves the computational
complexity of the prover and only increases mildly the
round complexity.

(Actually, this transformation preserves both mea-
sures, but introduces a noticeable soundness error



which can be eliminated by repeating the proof system
sequentially any non-constant number of times.)

1.7 Organization

In Section 2, we prove Theorem 1.3; that is, we show that
every problem inHVSZK reduces toED. In Section 3, we
prove Theorem 1.4; that is, we exhibit a public coin statisti-
cal zero-knowledge proof system forED. This proof system
uses two subprotocols which are specified in Section 3 and
implemented in Section 4.

2 HVSZK reduces toED
In this section, we prove Theorems 1.3 and 1.7, which

state that every problem inHVSZK (and weak-HVSZK)
reduces toED. Our reduction is based on the Aiello–Hastad
characterization of statistical zero-knowledge [1]. Follow-
ing Petrank and Tardos [23], we present the Aiello–Hastad
characterization using a formulation of entropy, rather than
in the formulation of set sizes used in [1].

In Section 2.1, we define the information-theoretic no-
tions used in the Aiello–Hastad characterization. In Sec-
tion 2.2, we motivate and state the lemmas which com-
prise the Aiello–Hastad characterization (with proofs in Ap-
pendix A). In Section 2.3, we exhibit the reduction from any
problem inHVSZK to ED, prove its correctness using the
Aiello–Hastad characterization, and thereby deduce Theo-
rems 1.3 and 1.7.

2.1 Entropy and Relative Entropy

Recall the definition of theentropy, denotedH(X), of a
random variableX :H(X) def= X� Pr [X = �] � log(1=Pr [X = �])= E��X [log(1=Pr [X = �])] ;
where all logarithms above and in the sequel are to base

2. Thebinary entropy function, H2(p) def= p log(1=p) +(1� p) log(1=(1� p)), equals the entropy of a 0-1 random
variable with expectationp.

We will make use of two measures of similarity between
probability distributions. The first measure is the well-
known statistical difference: Thestatistical differencebe-
tween the random variablesX andY , denoted�(X ; Y ),
is defined by�(X ; Y ) def= 12 �X� jPr [X = �]� Pr [X = �] j= maxS fPr [X 2 S]� Pr [Y 2 S]g
The second measure is the Kullback–Leibler distance:

Definition 2.1 Let X and Y be two probability distribu-
tions on a finite setD. Therelative entropy (or Kullback–
Leibler distance)betweenX andY is defined asKL(X jY ) = E��X �log Pr [X = �]Pr [Y = �] � :
We letKL2(p; q) def= p log(p=q)+ (1� p) log((1� p)=(1�q)). Note that if X and Y are 0-1 random variables
with expectionsp andq respectively, thenKL (X jY ) =KL2(p; q). It can be shown thatKL (X jY ) is always
nonnegative andKL(X jY ) = 0 iff X andY are identi-
cally distributed [5, Thm. 2.6.3]. Hence,KL(X jY ) can
be viewed as some sort of “distance” betweenX andY ,
though it does not satisfy symmetry or the triangle inequal-
ity.

2.2 The Aiello–Hastad Characterization

In this section, we motivate and state the lemmas which
comprise the Aiello–Hastad characterization of statistical
zero-knowledge. Proofs can be found in Appendix A.

Intution. Let� be any language (or promise problem) inHVSZK and consider a statistical zero-knowledge proof
system for� and the corresponding simulator. We think of
the output of the simulator as describing the moves of avir-
tual proverand avirtual verifier. Following Fortnow [10],
the Aiello–Hastad characterization describes properties of
the output of the simulator which distinguish betweenyes
instances andno instances. One thing we are guaranteed
by the statistical zero-knowledge property is that the simu-
lator outputs accepting conversations with high probability
when the input is ayes instance. Thus, if on some inputx,
the simulator outputs rejecting or invalid conversations with
high probability,x is easily identified to be ano-instance.
The difficulty comes from the fact that the simulator might
output accepting conversations with high probability even
when x is a no-instance, even though this cannot occur
when any real prover interacts with the true verifier due
to the soundness of the proof system. Intuitively, this dis-
crepancy comes from the fact that the virtual prover has the
ability to cheat and “see” future verifier messages, a power
which the real prover does not have. Thus, Aiello and Has-
tad consider what happens when one takes away the power
of the virtual prover to cheat. That is, following [10], they
consider a real prover strategyPS , called thesimulation-
based prover, which determines its messages based on the
same distribution as the virtual prover’s residual probability
space conditioned only on past messages. Now, the interac-
tion betweenPS and the real verifier describes exactly what
happens when we take away the power of the simulated
prover to cheat. Thus, the relative entropy between the out-
put ofS and the interaction betweenPS and the real verifier



is a measure of the amount of cheating that virtual prover
performs, and this distinguishes betweenyes instances andno instances. The final crucial observation in the Aiello–
Hastad characterization is that this relative entropy can be
rewritten as a simple expression involving entropies of pre-
fixes of the simulator’s output.

Notation. Let � be any language (or promise problem)
in HVSZK (or weak-HVSZK) and let(P; V ) be a sta-
tistical zero-knowledge proof system for� with simulatorS. Without loss of generality, we assume that on inputs of
lengthn, the verifier tosses exactlỳ= `(n) coins, and the
interaction betweenP andV consists of2r = 2r(n) mes-
sages, each of length` = `(n) so that the prover’s messages
are those with odd index. Also, we may assume that the last
message of the verifier consists of its random coins. We are
interested in the random variables,hP; V i(x) andS(x), de-
scribing the real interaction and the simulation, respectively.
We also consider prefixes of these random variables, wherehP; V i(x)i andS(x)i denote the prefix of lengthi � ` of the
corresponding random variable. At times, we may dropx
from these notations. We say that a2r � ` bit string
 is a
transcript(w.r.t V ) if the verifier messages in
 correspond
to what it would have sent given the random coins (as speci-
fied in the last bits in
) and previous messages of the prover
(included in
). We say that a transcript
 is acceptingif the
verifier accepts on it.

The simulation-based prover. Given an execution pre-
fix 
 2 f0; 1g(i�1)`, the simulation-based prover, denotedPS , responses as follows:� If S(x) outputs conversations that begin with
 with

probability0, thenPS replies with a dummy message,
say0`(jxj).� Otherwise,PS replies according with the same con-
ditional probability as the prover in the output of the
simulator. That is, it replies� 2 f0; 1g`(jxj) with prob-
ability p� = Pr[S(x)i = 
�jS(x)i�1 = 
]

Following our previous notation, we denote conversation
transcripts coming from the interaction betweenPS andV
by hPS ; V i(x), and its prefixes byhPS ; V i(x)i.
Rewriting KL(S(x) j hPS ; V i(x)). The Aiello–Hastad
characterization uses the relative entropy betweenS(x) andhPS ; V i(x) to distinguish betweenyes andno instances.
This relative entropyKL(S(x) j hPS ; V i(x)) can be rewrit-
ten as a simple expression referring only to entropies of pre-
fixes ofS(x).

Lemma 2.2 (implicit in [1], explicit in [23]):KL (S(x) j hPS ; V i(x))= `� rXi=1 [H(S(x)2i)�H(S(x)2i�1)]
The behaviour ofPS on yes instances: Note that even
in case of ayes instance, the behaviour ofPS need notex-
actlyfit the behavior of either the prescribed proverP or the
simulated prover (i.e., the distribution of prover messages
in the output of the simulator) . Yet, in the case ofyes in-
stance, proverPS behaves “almost” asP and the simulated
prover. More generally,

Lemma 2.3 (implicit in

[1, 23]): Let � def= �(S(x) ; hP; V i(x)) and suppose that� � 1=2. Then,KL(S(x) j hPS ; V i(x)) � 3r2 � ` � �+ 2r � H2(�)
The behaviour ofPS onno instances: In contrary to the
above, forno instances, ifS(x) outputs accepting tran-
scripts with high probability thenS(x) and hPS ; V i(x)
must be very different. More generally,

Lemma 2.4 (implicit in [1, 23]): Let p denote the prob-
ability that S(x) outputs an accepting transcript, andq
be the maximum, taken over all possible proversP �, thathP �; V i(x) is accepting. Suppose thatp � q. Then,KL(S(x) j hPS ; V i(x)) � KL2(p; q)
2.3 The Reduction

Using the above characterization, we easily Karp-reduce
any promise problem� inHVSZK (or weak-HVSZK) toED. Let (P; V ) andS be a proof system and a simulator
as formulated in the previous subsection (namely, the proof
system consists of2r messages of length̀ and the veri-
fier’s last message consists of its random coins). Then, an
instancex is reduced to a pair of distributions(Xx; Yx) as
follows.� Xx is the cross product of the distributionsS(x)2,S(x)4, ...,S(x)2r .� Yx is the cross product of the distributionsS(x)1,S(x)3, ..., S(x)2r�1 and a uniform distribution on`(jxj)� 2 bits.

Lemma 2.5 (Validity of the reduction): Suppose thatS
simulates a proof system(P; V ) with soundness error66Recall that thesoundness errors(n) 2 [0; 1] of an interactive proof
system(P;V ) is an upper bound on the probability that the verifier ac-
cepts after interacting with any potential prover strategyP � on input ano
instance of lengthn.



at most0:1 for � with simulator deviation smaller than1=(2r`)2. Further suppose thatS always outputs an ac-
cepting transcript. Then,

1. If x 2 �yes thenH(Xx) > H(Yx) + 1.

2. If x 2 �no thenH(Yx) > H(Xx) + 1.

The extra condition (of always outputing an accepting tran-
script) can be easily enforced by a minor modification of
the simulator (and possibly the proof systems). See details
in the proof of Theorems 1.3 and 1.7 below.

Proof: We may assume thatr` > 128, by simply padding
messages with extra bits. Suppose first thatx 2 �yes. Com-
bining Lemmas 2.2 and 2.3, we haveH(Yx)�H(Xx)=  `� 2 + rXi=1 H(S(x)2i�1)!� rXi=1 H(S(x)2i)!= KL(S(x) j hPS ; V i(x))� 2� 3r2` � �+ 2r � H2(�)� 2 < �1
where� def= �(S(x) ; hP; V i(x)) � 1=(2r`)2, and the last
inequality also usesH2(�) � p�=4 (since� < 2�14) andp�=4 < 1=8r. Thus,H(Xx) > H(Yx) + 1 and(Xx; Yx) 2EDyes follows.

Suppose now thatx 2 �no. Combining Lemmas 2.2
and 2.4, we haveH(Yx)�H(Xx) = KL (S(x) j hPS ; V i(x))� 2� KL2(1; 0:1)� 2= log 10 � 2 > 1
(In the first inequality, we usedKL(S(x) j hPS ; V i(x)) >KL2(1; q), whereq is the the maximum, taken over all
possible proversP �, that hP �; V i(x) is accepting.) Thus,H(Yx) > H(Xx) + 1 and(Xx; Yx) 2 EDno follows.

Proof of Theorems 1.3 and 1.7: Let � be any promise
problem in weak-HVSZK and consider any weak-HVSZK proof system for�. Informally, by repeating the
proof systempoly(n) times (either sequentially or in paral-
lel) and modifying the proof system and simulator slightly,
we can easily satisfy the requirements of Lemma 2.5.
Namely, we obtain a proof system with soundness error at
most0:1 in which the last message of the verifier consists
of its random coins (as was required throughout the Aiello–
Hastad characterization), together with a simulator which
always outputs accepting transcripts and has simulator devi-
ation at most1=(2r`)2. Once these conditions are satisfied,
Lemma 2.5 tells us that the mapx 7! (Xx; Yx) is a Karp re-
duction from� to ED, yielding Theorem 1.7. Theorem 1.3

then follows as a special case. Below, we do the calcula-
tions in more detail to show that the original proof system
need only have a simulator achieving deviation smaller than
the reciprocal of the (cube of the) total number of bits sent
in the proof system (plus the number of coins used by the
verifier).

Suppose the proof system for� consists of2r0 � 1 mes-
sages of lengthm, and let`0 = max(m; q), whereq is the
number of coins used by the verifier. Assume the proof
system has completeness and sounded errors both bounded
by 1/3 and simulator deviation(r0`0)�2 � (log r0`0)�5. We
now modify the proof system by having the verifier send the
prover its coins at the end and modify the simulator accord-
ingly. This does not affect the completeness error, sound-
ness error, or simulator deviation. Now there are2r0 mes-
sages, each of length at most`0. Repeating the proof sys-
tem fork times (either sequentially or in parallel) and rul-
ing by majority, we obtain two-sided error ofexp(�
(k)).
Using k = �(log r0`0) we obtain a proof system with to-
tal communication2r` = O(r0`0 log r0`0), two-sided error(2r`)�2=2 and simulation error(2r`)�2=2.

Next, modify the proof system so that02r` becomes an
accepting transcript, and modify the simulator so that it al-
ways outputs an accepting transcript (by possibly substitut-
ing the output with02r`). The resulting proof system has
soundness error at most2�` + (2r`)�2=2, and the simula-
tion error is at most(2r`)�2. Assuming, without loss of
generality, that2�` + (2r`)�2=2 < 0:1, we are in position
to apply Lemma 2.5, and the theorems follow.

3 A public-coinHVSZK proof system forED
In this section, we prove Theorems 1.4 and 1.8. That

is, we present a public-coin honest-verifier statistical zero-
knowledge proof system forEntropy Difference
(ED). In presenting the proof system, we will use two sub-
protocols due to Okamoto [20], which we will describe in
Section 4.

In Section 3.1, we give an overview of the proof system.
In particular, as a motivation we start by treating a special
case ofED in which all distributions are “flat” (i.e., uniform
over some subset of their range). We conclude the overview
by discussion of the ideas underlying the extension of this
special case to the general one. In Section 3.2, we discuss
a standard technique for “flattening” distributions, which is
an essential part of the final proof system. In Section 3.3, we
state the properties of Okamoto’s subprotocols that are used
in the proof system forED; the actual description of these
subprotocols and their proofs of correctness are deferred to
Section 4. Finally, in Section 3.4, we give the proof system
for ED and prove its correctness.



3.1 Overview

We begin with an exposition of the standard protocol
for proving lower bounds on set sizes, which is the start-
ing point for our proof system. We stress that all protocols
described in this section (as well as in the rest of the paper)
are public-coin protocols.

3.1.1 The standard lower bound protocol

SupposeS is some subset off0; 1gn and a proverM
(“Merlin”) wants to convince a verifierA (“Arthur”) thatjSj � 2m. AssumingA has oracle access to a procedure
which tests membership inS, there is a simple public-coin
protocol which can be used to accomplish this task. The
protocol was first described in [2, 17] and orginates with a
lemma of Sipser [25]. For every pair of integersk and`,
letHk;` be a family of 2-universal hash functions mappingf0; 1gk to f0; 1g`.
Lower bound protocol (M;A), on input n and m (and
membership oracle forS � f0; 1gn)

1. A selectsh uniformly fromHn;m and sendsh toM .
2. M selectsx uniformly fromS \ h�1(0) (if this inter-

section is nonempty) and sendsx to A.7 If the inter-
section is empty,M sendsfail toA.

3. A accepts if bothh(x) = 0 andx 2 S and rejects
otherwise.

The best analysis of the above protocol was provided in [1].
Lemma 3.1 Completeness:If jSj � 2k � 2m, thenA ac-

cepts with probability at least1� 2�k.
Soundness:If jSj � 2�k �2m, then no matter what strategyM uses,A accepts with probability at most2�k.

In fact, this protocol also has a sort of statistical zero-
knowledge property. The property holds with respect to the
inputsn andm, provided thatjSj � 2m and that one is
given a uniformly selected element ofS.

Lemma 3.2 (implicit in [20]) LetH be a 2-universal family
of hash functions mapping a domainD to a rangeR. LetS
be a subset ofD such thatjRj � � � jSj. Then the following
two distributions have statistical difference�
(1):
(A) Chooseh uniformly inH, andx uniformly inh�1(0)\S. Output(h; x).8
(B) Choosex uniformly in S, andh uniformly in fh0 2H : h0(x) = 0g. Output(h; x).
Think of D = f0; 1gn, R = f0; 1gm, and� = 2m=jSj.
Then, Distribution (A) corresponds toA’s view of the exe-
cution of the protocol and Distribution (B) provides a sim-
ulation with deviation (at most)(2m=jSj)
(1) for it.7Here0 is a canonically fixed element off0; 1gm.8 In caseh�1(0) \ S = ; the output is defined to be a special failure
symbol.

3.1.2 A simple case ofED
We now sketch how the above lower bound protocol can
be used to give a public-coinHVSZK proof system for a
simplified version ofED. We call a distributionX flat if
all strings in the support ofX have the same probability.
That is,X is the uniform distribution on some subset of its
domain. The simplifying assumptions we make are that we
are working with a pair of distributionsX andY (encoded
by circuits which sample from them) such that

1. X andY are both flat.
2. jH(X) � H(Y )j > k, wherek is the “security param-

eter.”

Now, we want to give a statistical zero-knowledge protocol
by whichM can convinceA to accept ifH(X) > H(Y )+k
andM cannot convinceA to accept ifH(Y ) < H(X) +k. SinceX andY are flat, they are uniform over subsetsSX andSY of their domain. By the definition of entropy,jSX j = 2H(X) andjSY j = 2H(Y ). So proving thatH(X)�H(Y ) is equivalent to proving thatjSX j � jSY j. So, one
approach would be to use the above lower bound protocol
to prove a lower bound onjSX j, and use an upper bound
protocol with similar properties (cf., [10]) to prove an upper
bound onjSY j. Note that this by itself would do for placing
the simplified version ofED in AM (and similar ideas can
be applied to the general versionED; seex3.1.3).

The problem with the above is that it requires the prover
to revealH(X) and H(Y ) (or approximations of these
quantities). In fact, the zero-knowledge properties asserted
above are relative to the given/asserted lower bound, and
do not seem to hold when the bound is not given. Indeed,
there seems to be no efficient way for the verifier to approx-
imate the size ofS, even when given a membership ora-
cle toS. To overcome this difficulty, we adopt a technique
of Okamoto [20] (which he calls “complementary usage of
messages”).

Recall that we are given a circuit (which we also denoteY ) which samples fromY , and letm denote the length of
the input to this circuit. So, for any pointy in the support
of Y , we let
Y (y) � f0; 1gm denote the set of inputs
to the circuit which yield outputy. Then,Pr [Y = y] =2�m � j
Y (y)j. SinceY is flat, we havej
Y (y)j = 2m � Pr [Y = y] = � 2m � 2�H(Y ) if y 2 SY .0 otherwise.

Thus, proving an upper bound onH(Y ) is equivalent to
proving a lower bound on
Y (y) for anyy in the support
of Y .

The key observation is that for anyy 2 SY , jSX �
Y (y)j = 2H(X)+m�H(Y ). So proving thatH(X)� H(Y )
(which was our original goal) is equivalent to proving thatjSX � 
Y (y)j � 2m. Now we’ve reduced the problem



to proving a lower bound for a set size which we know
(namely2m, which can be computed by just looking at the
circuit which computesY )! This gives rise to the following
“zero-knowledge” protocol.

Proof system (M;A) for simple case ofED, on input(X;Y )
Letm denote the input length ofY , andn denote the output
length ofX .

1. M selectsy distributed according toY and sendsy toA.

2. A selects a hash functionh uniformly fromHn+m;m
and sendsh toM .

3. M selects(x; r) uniformly from (SX � 
Y (y)) \h�1(0) and sends(x; r) toA.

4. A checks thatY (r) = y and thath(x; r) = 0. If either
does not hold,A rejects immediately and the protocol
ends.

5. M selectsq uniformly from
X(x) and sendsq toA.

6. A checks thatX(q) = x and accepts if this holds and
rejects otherwise.

The last two steps in the above protocol are forM to prove
thatx is in fact in the support ofX . Now it follows immedi-
ately from our earlier discussion and the completeness and
soundness of the lower bound protocol that this protocol is
also complete and sound.

1. Completeness: IfH(X) > H(Y ) + k andX andY
are both flat, thenA accepts with probability at least1� 2�k.

2. Soundness: IfH(Y ) < H(X) + k andX andY are
both flat, then no matter what strategyM uses,A ac-
cepts with probability at most2�k.

The statistical zero-knowledge property of this proof system
also follows readily from that of the lower bound protocol.
Consider the following simulator:

Simulator for simplified ED proof system, on input(X;Y )
1. Chooseq andr uniformly at random and letx = X(q),y = Y (r).
2. Chooseh uniformly fromfh 2 Hn+m;m : h(x; r) =0g.
3. Output(y; h; (x; r); q).

The deviation of this simulator can be analyzed as follows:
The stringy is clearly distributed identically in both the
proof system and the simulator. In the simulator, con-
ditioned ony, the pair(x; r) is selected uniformly fromSX �
Y (y), and thenh is selected uniformly among those
that map(x; r) to 0. In the protocol, conditioned ony,

the functionh is selected uniformly inHn+m;m and then(x; r) is selected uniformly from(SX �
Y (y)) \ h�1(0).
Thus, by Lemma 3.2, it follows that ifH(X) � H(Y ) >k (i.e., jSX � 
Y (y)j > 2m+k), then the distributions
on (y; h; (x; r)) in the simulator and the proof system
have statistical difference2�
(k). Finally, conditioned on(y; h; (x; r)), the stringq is selected uniformly from
X(x)
in both distributions, and so it does not increase the statisti-
cal difference.

3.1.3 Treating general instances ofED
There are several problems in generalizing the proof sys-
tem of x3.1.2 to arbitrary instances ofED. Clearly, the
simplifying assumptions we made will not hold in gen-
eral. The assumption thatjH(X) � H(Y )j > k is easy
to achieve. If we letX 0 (resp.,Y 0) consist ofk indepen-
dent copies ofX (resp.,Y ), thenH(X 0) = k �H(X) (resp.,H(Y 0) = k � H(Y )). So, the difference in entropies is mul-
tiplied byk.

The assumption thatX andY are both flat presents more
serious difficulties. As we will see, taking many inde-
pendent copies of each distribution yields distributions that
are “nearly flat” (in a sense to be made precise later), but
the protocol still needs further modification to work with
“nearly flat” rather than truly flat distributions. The first
problem is that ifY is only nearly flat, thenM may selecty
to be “too heavy” (i.e.,y has probability much greater than2�H(Y )), allowing him too many choices forr and leading
to violation of the soundness property. Similarly, although
there are only about2H(X) choices forx that have probabil-
ity near2�H(X), if X is only nearly flat, there may be many
more choices forx (alas these are “too light” – i.e., have
probability much smaller than2�H(X)). This too givesM
too much freedom (this time in choice ofx) and may lead
to violation of the soundness property.

In order to solve these problems, we use two subproto-
cols of Okamoto [20]: The first is a “sample generation”
protocol, which is a protocol forM andA to select a sam-
ple from a nearly flat distributionY such that no matter what
strategyM uses, the sample will not be too heavy. This will
replace Step 1 in the proof system ofx3.1.2, and guarantee
thatM does not have too much freedom in its choice ofr
(in Step 3). The second protocol is a “sample test” protocol,
which is a way forM to prove that a samplex taken from a
nearly flat distributionX is not too light. This will replace
Steps 5 and 6 in the proof system ofx3.1.2, and guarantee
thatM does not have too much freedom in its choice ofx
(in Step 3).

We stress that both of these subprotocols will be public-
coin and will possess appropriate simulability properties to
ensure that the resulting protocol forED is a public-coinHVSZK proof system. In the rest of this section, we will



specify the properties of these subprotocols, and formulate
and analyze the proof system forED assuming that these
subprotocols exist. In Section 4, we present these subproto-
cols and prove that they have the asserted properties.

3.2 Flattening distributions

As a preliminary step towards treating the general in-
stances ofED, we formulate the process of “flattening” dis-
tributions (i.e., making them “nearly flat” by taking many
independent copies).

Definition 3.3 (heavy, light and typical elements):Let X
be a distribution,x an element possibly in its support, and� a positive real number. We say thatx is�-heavy(resp.,�-light ) if Pr [X = x] � 2� �2�H(X) (resp.,Pr [X = x] �2�� � 2�H(X)). Otherwise, we say thatx is�-typical.

A natural relaxed definition of flatness follows. The def-
inition links the amount of slackness allowed in “typical”
elements with the probability mass assigned to non-typical
elements.

Definition 3.4 (flat distributions): A distribution X is
called�-flat if for everyt > 0 the probability that an ele-
ment chosen fromX is t ��-typical is at least1� 2�t2+1.
By straightforward application of Hoeffding Inequality (cf.,
Appendix C), we have

Lemma 3.5 (flattening lemma):LetX be a distribution,k
a positive integer, and
kX denote the distribution com-
posed ofk independent copies ofX . Suppose that for allx
in the support ofX it holds thatPr [X = x] � 2�m. Then
kX is

pk �m-flat.

The key point is that the entropy of
kX grows linearly
with k, whereas its deviation from flatness grows signifi-
cantly more slowy (i.e., linear in

pk) as a function ofk.

3.3 Subprotocol specifications

Below (as above), all distributions are given in form of
a circuit which generate them. The input to these protocols
will consist of a distribution, denotedX . We will denote
by m (resp.,n) the length of the input to (resp., output of)
the circuit generating the distributionX . In all protocols
partyA is required to run in polynomial-time (in length of
the common input), which means in particular that the total
number of bits exchanged in the interaction is so bounded.

Definition 3.6 (Sample Generation Protocol):A public-
coin protocol(M;A) is called asample generation pro-
tocol if on common input a distributionX and parameters�; t, such thatX is�-flat andt � �,9 the following holds:9The conditiont � � is to simplify the error expressions and will
always be satisfied in our applications.

1. (“completeness”):If both parties are honest thenA’s
output will bet � �-typical with probability at least1�m � 2�
(t2).

2. (“soundness”):If A is honest then, no matter howM
plays,A’s output is2pt� � �-heavy with probability
at mostm � 2�
(t2). (A may abort with no output.10)

3. (strong “zero-knowledge”):There exists a polynomial-
time simulatorS so that for every(X;�; t) as above,
the following two distributions have statistical differ-
ence at mostm � 2�
(t2):
(A) Execute(M;A) on common input(X;�; t) and

output the view ofA, appended byA’s output.
(B) Choosex � X and output(S((X;�; t); x); x).

The above zero-knowledge property is referred to as
strong since the simulator cannot produce a view-output
pair by first generating the view and then computing the
corresponding output. Instead, the simulator is forced (by
the explicit inclusion ofx in Distribution (B)) to generate a
consistent random view for a given random output (ofA).
We comment that the trivial protocol in whichA uniformly
selects an inputr to the circuitX and reveals bothr and
the outputx = X(r) cannot be used since the simulator is
only givenx and it may be difficult to find anr yieldingx
in general. Still, a Sample Generation protocol is implicit
in Okamoto’s work [20] (where it is called a “Pre-test”).

Theorem 3.7 (implicit in [20]) There exists a public-coin
sample generation protocol. Furthermore, the number of
communication rounds in the protocol is linear inq.
A proof of Theorem 3.7 is presented in Section 4.

Definition 3.8 (Sample Test Protocol):A public-coin pro-
tocol(M;A) is called asample test protocolif on common
input a distributionX , a stringx 2 f0; 1gn and parameters�; t, such thatX is�-flat andt � �,the following holds:

1. (“completeness”):If both parties are honest andx ist � �-typical thenA accepts with probability at least1�m � 2�
(t2).
2. (“soundness”):If x is 6pt� ��-light andA is honest

then, no matter howM plays,A accepts with proba-
bility at mostm � 2�
(t2).

3. (weak “zero-knowledge”):There exists a polynomial-
time simulatorS so that for every(X;�; t) as above
and for everyt ��-typicalx, the following two distri-
butions have statistical difference at mostm � 2�
(t2):
(A) Execute(M;A) on common input(X; x;�; t)

and output the view ofA, prepended byx.
(B) On input (X; x;�; t) and an auxiliary in-

put r uniformly distributed in
X(x), output(x; S((X; x;�; t); r)).10 It will indeed do so if detecting cheating.



The above zero-knowledge property is referred to asweak
since the simulator gets a randomr giving rise tox (i.e.,x = X(r)) as an auxiliary input (whereasA is only givenx). We comment that a simple public-coin testing protocol
exists in case one can approximate the size of
X(x) and
uniformly sample from it. However, this may not be the
case in general. Still, a Sample Testing protocol is implicit
in Okamoto’s work [20] (where it is called a “Post-test”).

Theorem 3.9 (implicit in [20]) There exists a public-coin
sample testing protocol. Furthermore, the number of com-
munication rounds in the protocol is linear inq.
A proof of Theorem 3.9 is presented in Section 4.

3.4 The protocol for ED
We assume, without loss of generality, that the number

of input (resp., output) bits ofX equals the number forY
(e.g., by augmenting one circuit by dummy input or out-
put bits). Letm andn denote the corresponding quantities.
Furthermore, lets denote the total length of the descrip-
tion of bothX andY . The first step in the following pro-
tocol is an “amplification step” which yields distributions
which are adequately flat. The protocol uses subprotocols
for Sample Generation and Sample Testing as guaranteed
by Theorems 3.7 and 3.9, respectively.

Proof system(M;A) for ED, on input (X;Y )
1. BothA andM setV = 
kX andW = 
kY , wherek def= 216 �m6 � s.
2. The parties utilize a Sample Generation protocol, with

inputs(W;pk � m;ps), obtaining an output denotedw.

3. PartyA uniformly selectsh 2 Hkn+km;km, and sends
it to M .

4. M selects(v; r) from the distributionV � 
W (w)11
conditioned onh(v; r) = 0, and sends(v; r) toA.

5. A checks thatW (r) = w and thath(v; r) = 0. If ei-
ther does not hold,A rejects immediately and the pro-
tocol ends.

6. The parties utilize a Sample Test protocol, with inputs(V; v;pk �m;ps), andA accepts iff the test was con-
cluded satisfactorily.

We first show that the amplification step (i.e., Step 1) is in-
deed appropriate. That is,

Fact 3.10 DistributionsV andW are
pk �m-flat.11Here, and in the rest of the paper, we write use the same notation for a

set (e.g.,
W (w)) and the uniform distribution on that set.

Fact 3.10 is immediate by Lemma 3.5 and the setting of the
parameters. Given Fact 3.10, we turn to the essence of the
analysis of the protocol. The completeness property of the
protocol will follow from the zero-knowledge one, and so
we start by establishing the soundness property.

Lemma 3.11 (soundness):Suppose thatH(Y ) > H(X) +1. ThenA accepts with probability at mostexp(�
(s)).
Proof: By the hypothesis we haveH(W ) > H(V ) + k.
By Fact 3.10, both distributions are�-flat, with� = pk �m = 28m4ps. Observe that the Sample Generation and
Testing subprotocols are invoked with parameterst = ps
and� = pk � m. Thus, the soundness condition of the
Sample Generation protocol implies that with probability at
mostkm � exp(�
(t2)) = exp(�
(s)) the outcome,w, is2pt� ��-heavy.

Suppose thatw is not2pt� � �-heavy. Then we claim
thatM will be forced to select av that is6pt� � �-light
with probability at least1 � exp(�
(s)). By Lemma 3.1,
it suffices to show that the number of pairs(v; r) such thatW (r) = w andv is not6pt� ��-light is at most2�
(s) �2km. Sincew is not 2pt� � �-heavy, there are at most2km�H(W )+2pt��� values ofr such thatW (r) = w. In
addition, the number of non-6pt� � �-light choices forv
is at most2H(V )+6pt��� (as each suchv has probability at
least2�6pt��� � 2�H(V ) underV ). Thus, the total number
of pairs(v; r) such thatW (r) = w andv is not6pt� ��-
light is at most2km�H(W )+2pt��� � 2H(V )+6pt���= 28pt���+H(V )�H(W ) � 2km:

However, by our hypothesis and our setting of parame-
ters8pt� ��+H(V )�H(W ) < 8pt� ��� k= (8 � 212 � 216) �m6s< �s:
Thus, by Lemma 3.1, the probability thatM can return
a suitable non-6pt� � �-light v in Step 4 is at mostexp(�
(s)). On the other hand, ifM returns a6pt� ��-
light v then the probability that it will be accepted by the
Sample Test is at mostkm � exp(�
(t2)) = exp(�
(s)).
The claim follows.

Simulator for the above protocol, on input (X;Y )
1. SetV = 
kX andW = 
kY , wherek def= 216 �m6 �s.
2. Select uniformlyr0; r 2 f0; 1gkm, and letv = V (r0)

andw =W (r).



3. Simulate an execution of the Sample Generation pro-
tocol on input((W;pk �m;ps); w), obtaining a view,
denoted�, ending with outputw.

4. PartyA uniformly selectsh 2 Hkn+km;km so thath(v; r) = 0.12
5. Simulate an execution of the Sample Generation pro-

tocol on input(V; v;pk � m;ps) and auxiliary inputr0, obtaining a view, denoted�.

6. Output((�;w); h; (v; r); �).
The correctness of this simulator will rely on the follow-

ing variant of the Leftover Hash Lemma [18], proved in Ap-
pendix D.

Lemma 3.12 (implicit in [20]) LetH be a 2-universal fam-
ily of hash functions mapping a domainD to a rangeR
and let0 be any fixed element ofR. LetZ be a distribution
onD such that with probability1 � � overz selected ac-
cording toZ, Pr [Z = z] � "=jRj. Then the following two
distributions have statistical difference at most3(�+ "1=3):

(A) Chooseh uniformly inH. Selectz according toZ
conditioned onh(z) = 0. Output(h; z).

(B) Choosez according toZ. Selecth uniformly infh0 2 H : h(z) = 0g. Output(h; z).
Lemma 3.13 (zero-knowledge and completeness):Sup-
pose thatH(X) > H(Y ) + 1. Then the statistical dif-
ference between the view of the verifier on common input(X;Y ) and the output of the simulator on input(X;Y ) is
at mostexp(�
(s)). Furthermore, with probability at least1�exp(�
(s)), the simulator generates an accepting tran-
script, and so in the real interaction the verifier accepts with
probability at least1� exp(�
(s)).
Proof: Analogously to the proof of Lemma 3.11, we note
that bothV andW are�-flat, for � = 28m4ps, and we
haveH(V ) > H(W ) + k.

By the strong zero-knowledge property of the Sample
Generation protocol, the pair(�;w) in the output of the
simulator has statistical difference at mostkm � 2�
(s) =2�
(s) from a real execution of that protocol. SinceW
is �-flat, the stringw is t�-light with probability at most2�
(s) in the simulator. Thus, we consider the distributions
on (h; (v; r)) conditioned on any pair(�;w) such thatw is
not t�-light. To analyze this, we apply Lemma 3.12 withZ = V � 
W (w), D = f0; 1gkn+km, andR = f0; 1gkm.
Distribution (A) (resp., (B)) in Lemma 3.12 corresponds
to the distribution of(h; (v; r)) in the proof system (resp.,
simulator). SinceV is �-flat, the following holds with12This step can be efficiently implemented for all popular constructions
of 2-universal families (e.g., the linear transformationsfamily). Also note
that by the 2-universal property of such families, functions mapping any
fixed string to0 always exist.

probability� 1 � 2�s+1 over (v; r) selected according toV � 
W (w):Pr [V � 
W (w) = (v; r)]= Pr [V = v] � 1j
W (w)j< 2�H(V )+t� � 12km�H(W )�t�< 2�k+2t�jRj= 2�216m6s+2�28m4sjRj� 2�sjRj
Thus, we can take� = 2�s+1 and" = 2�s in Lemma 3.12,
and see that the two distributions on(h; (v; r)) have statis-
tical difference2�
(s) (conditioned on history(�;w)). Fi-
nally, including� only increases the statistical difference by2�
(s) by the weak zero-knowledge property of the Sample
Test protocol (noting that in the simulator,v is t�-light with
probability at most2�s+1 andr is distributed uniformly in
V (v)).

Lemmas 3.11 and 3.13 and the fact that the given proof
system is public coin immediately imply Theorem 1.8. The-
orem 1.4 then follows as a special case. Actually, we can
strengthen Theorem 1.8 somewhat by applying a transfor-
mation of [11] which converts public-coin honest-verifier
statistical zero-knowledge proofs into ones with perfect
completeness (i.e., the verifier accepts with probability 1
on yes instances). Their transformation also preserves an
exponentially small soundness error and an exponentially
small simulator deviation. Thus, we obtain:

Corollary 3.14 ED has a public-coin proof system which
has perfect completeness and exponentially small sound-
ness error, and can be simulated with exponentially van-
ishing deviation.

4 The Sample Generation and Test Protocols

In this section, we present Okamoto’s protocols for gen-
erating and testing samples from a nearly flat distribution.
Recall that these protocols must be public coin and further-
more must satisfy certain “zero-knowledge” properties.

4.1 Overview

Sample Generation. Here the input to the protocol(M;A) is a�-flat distributionX (encoded by a circuit) and
the output should be a samplex from this distribution. We
require that, no matter what strategyM follows, x will not



be too heavy. If, however, both parties play honestly, thenx should be nearly typical with high probability, and should
be simulatable for anexternally specifiedx. In particular,
the protocol should not reveal an input to the circuitX that
yieldsx, as the simulator is only givenx and it may be diffi-
cult to find an input yieldingx in general. If we remove this
condition, the problem becomes trivial:A could just sam-
ple x according toX and reveal bothx and the input used
to produce it. SinceX is nearly flat,x will be nearly typical
with high probability.

Okamoto’s solution to this problem has the following
general structure:M proposes a samplex (which is sup-
posed to be distributed according toX) and sends it toA.
(Of course, ifM is dishonest, he can choosex to be too
heavy.) ThenM andA engage in a short “game” which
ends byM proposing another samplex0. Roughly speak-
ing, this game has the following properties:

1. If x is too heavy, then no matter what strategyM fol-
lows, he will be forced to selectx0 which is noticeably
lighter thanx.

2. If x is not too heavy, then no matter what strategyM
follows, he will be forced to choosex0 that is also not
too heavy.

3. If x is nearly typical andM plays honestly, thenx0 will
also be nearly typical.

4. If M plays honestly, thenA’s view of the game is sim-
ulatable for an externally specifiedx0.

Clearly, repeating this game many times to obtain a se-
quence of samplesx0; : : : ; xm (wherex0 is proposed byM
andxi+1 = x0i) will have the effect of pushing a heavy pro-
posal forx0 closer and closer to the nearly typical set. Tak-
ingm sufficiently large (but still polynomial in the appropri-
ate parameters),xm will be guaranteed to be not too heavy,
no matter howM plays. On the other hand, ifM plays
honestly, all the samples will be nearly typical. Finally, the
simulability property of the game enables the entire Sam-
ple Generation protocol to be simulated “backwards” for an
externally specifiedxm.

Sample Test. Here the input to the protcol(M;A) is a�-flat distributionX (encoded by a circuit) together with
a stringx from the domain ofX . At the end of the proto-
col, A accepts or rejects. We require that ifx is too light,A should reject with high probabability. If, however,x is
nearly typical and both parties play honestly, thenA should
accept with high probability, and, moreover,A’s view of
the interaction should be simulatable (given additionally a
random input forX which yieldsx).

The general structure of this protocol is very similar to
that of the Sample Generation protocol. Givenx, M andA

engage in a short game which ends byM proposing another
samplex0. Roughly speaking, this game has the following
properties:

1. If x is too light, then no matter what strategyM fol-
lows, he will be forced to selectx0 which is noticeably
lighter thanx.

2. If x is nearly typical andM plays honestly, thenx0 will
also be nearly typical.

3. If both parties play honestly, thenA’s view of the game
is simulatable (given a random input toX which yieldsx).

Clearly, repeating this game many times to obtain a se-
quencex0; : : : ; xm (wherex0 = x andxi+1 = x0i) will
have the effect of making a light input sample lighter and
lighter. Takingm sufficiently large,xm�1 will be so light
that it has zero probability, so there is noxm lighter thanxm�1 andA will reject! Notice that we do not care what
happens in the pushing game ifxi is not too light andM
plays dishonestly; if the original input is too light (which is
the the only time we worry about a dishonestM ), all the
subsequentxi ’s will also be too light with high probability.
On the other hand, if the original inputx is nearly typical
andM plays honestly, all the samples will be nearly typi-
cal. Finally, the simulability property of the game enables
the entire Sample Generation protocol to be simulated “for-
wards” given coins forx. Amazingly, the game used for
the Sample Test protocol is identical to the game used for
the Sample Generation protocol. We describe this “push-
ing” game in the next section, and subsequently give formal
descriptions of the two protocols.

4.2 The pushing game

Throughout the remainder of Section 4,X is a�-flat dis-
tribution encoded by a circuit andm (resp.,n) denotes the
length of the input (resp., output) of the circuit generatingX . Recall that for positive integersk and`, Hk;` denotes
a 2-universal family of hash functions mappingf0; 1gk tof0; 1g`.

The basic game underlying the Sample Generation and
Sample Test protocols is the following 1-round protocol
(called “sequentially recursive hashing” in [20]):

Pushing game(M;A), on input (X; x;�; t), wherex 2f0; 1gn and t � �
1. A choosesh uniformly fromHm+n;m�3t� and sendsh toM .
2. M chooses(r; x0) from the distribution
X(x) � X ,

conditioned onh(r; x0) = 0, and sends(r; x0) toA. (If
there is no such pair(r; x0), thenM sendsfail toA.)



3. A checks thatX(r) = x andh(r; x0) = 0. If both
conditions hold,A outputsx0. OtherwiseA rejects.

Observe that ifj
X(x)j = ;, thenA rejects with proba-
bility 1. In order to describe remaining the properties of the
pushing game, we define theweightof a stringx relative to
a circuitX bywtX(x) = log(Pr [X = x] � 2H(X)). So,x is
-heavy iffwtX(x) � 
 andx is 
-light iff wtX(x) � �
.
Also note that forx in the support ofX , jwtX(x)j � m.
When the distributionX is clear from the context, we will
often writewt(x) instead ofwtX (x). The following lemma
asserts that no matter howM plays, if the input to the game
is atypical, then the output is noticeably lighter. (The be-
havior on typical inputs is analyzed later — in Lemma 4.2.)

Lemma 4.1 If A follows the prescribed strategy in the
pushing game, then no matter what strategyM uses, the
following hold:

1. (“heavy gets lighter”) With probability� 1� 2�
(t2),
eitherwt(x0) < max(wt(x) � 1; 2pt�) or A rejects.

2. (“light gets lighter”) If wt(x) � �6pt���, then with
probability� 1� 2�
(t2), eitherwt(x0) < wt(x)� 1
or A rejects.

Proof: 1. Let S be the set ofx0 such thatwt(x0) �max(wt(x) � 1; 2pt� � �). We need to show that with
probability at most2�
(t2) over the choice ofh fromHm+n;m�3t�, there exists a pair(r; x0) 2 
X(x)�S such
thath(x; r0) = 0. By the soundness of the standard lower-
bound protocol (Lemma 3.2), it suffices to prove thatj
X(x) � Sj � 2�
(t2) � 2m�3t�:
The intuition is that the number ofx0 that are heavier thanmax(wt(x)�1; 2pt� ��) is so small that not even the size
of 
X(x) can compensate.

By definition ofwt(x), j
X(x)j = 2m�H(X)+wt(x). We
now boundjSj. First, sinceX is�-flat, we have2�4t�+1 � Prx0�X hwt(x0) � 2pt� ��i� Pr [X 2 S]= Xx02SPr [X = x0]
On the other hand, everyx0 2 S is (wt(x) � 1)-heavy, soPr [X = x0] � 2�H(X)+wt(x)�1. Thus,2�4t�+1 � jSj � 2�H(X)+wt(x)�1:

Putting everything together, we havej
X(x)� Sj � 2m�H(X)+wt(x) � � 2�4t�+12�H(X)+wt(x)�1�= 2m�4t�+2� 2�t2+2 � 2m�3t�;

as desired. (In the last inequality, we used the fact thatt � �.)

2. LetS = fx0 : wt(x0) � wt(x) � 1g. Again, it suffices
to show thatj
X(x) � Sj � 2�
(t2) � 2m�3t�. Here the
intuition is thatj
X(x)j is so small (sincex is so light) that
the only way forM to succeed is to choosex0 even lighter
thanx (since there cannot be too many strings of noticeable
probability mass). This time we boundjSj by dividing S
into two parts. DefineS1 = fx0 : wt(x)� 1 � wt(x0) � �2pt� ��gS2 = fx0 : �2pt� �� < wt(x0)g;
so thatS = S1 [ S2. Since everyx0 2 S2 has probability
mass greater than2�H(X)�2pt���, we must havejS2j < 2H(X)+2pt���� 2H(X)�wt(x)�4t�;
where the last inequality follows fromwt(x) � �6pt� ��
and� � t. We now boundjS1j. SinceX is�-flat, we have2�4t�+1 � Pr [X 0 2 S1]� jS1j � 2�H(X)+wt(x)�1:
Thus,jS1j � 2H(X)�wt(x)�4t�+2, and sojSj = jS1j+ jS2j < 2H(X)�wt(x)�4t�+3;
andj
X(x) � Sj � 2m�H(X)+wt(x) � 2H(X)�wt(x)�4t�+3= 2m�4t�+3� 2�t2+3 � 2m�3t�;
as desired.

The pushing game has the following simulability and “com-
pleteness” properties when both parties are honest:

Lemma 4.2 If both parties follow the protocol in the push-
ing game andx is t�-typical, then the following two distri-
butions have statistical difference at most2�
(t2):

(A) Execute the pushing game on input(X; x;�; t) to
obtain(h; r; x0). Output(h; r; x0).

(B) Letx0 be distributed according toX and letr be
selected uniformly from
X(x). Chooseh uniformly
in Hm+n;m�3t� subject toh(r; x0) = 0. Output(h; r; x0).

Proof: We apply Lemma 3.12 withZ = 
X(x)�X ,D =f0; 1gm+n andR = f0; 1gm�3t�. Distribution (A) (resp.,
(B)) in Lemma 3.12 corresponds to Distribution (A) (resp.,



(B)) above. SinceX is �-flat, the following holds with
probability� 1� 2�t2+1 over(r; x0) selected according to
X(x)�X :Pr [
X(x) = (r; x0)] = Pr [X = x0] � 1j
X(x)j< 2�H(X)+t� � 12m�H(X)�t�= 2�t�jRj
Thus, we can take� = 2�t2+1 and" = 2�t� � 2�t2 in
Lemma 3.12, and see that the two distributions have statis-
tical difference2�
(t2).
4.3 The protocols

The sample generation and test protocols simply consist
of many repetitions of the basic pushing game:

Sample Generation Protocol(M;A), on input (X;�; t),
where t � �

1. M selectsx0 2 f0; 1gn according toX and sendsx0
toA.

2. Repeat fori from 1 tom: M andA execute the Push-
ing Game on input(X; xi�1;�; t) and letxi be the
output.

3. A outputsxm unless it rejected in one of the Pushing
Games, in which case it rejects.

Sample Test Protocol (M;A), on input (X; x;�; t),
wherex 2 f0; 1gn and t � �

1. Letx0 = x.
2. Repeat fori from 1 tom + 1: M andA execute the

Pushing Game on input(X; xi�1;�; t) and letxi be
the output.

3. A rejects if it rejected in any of the Pushing Games,
else it accepts.

4.4 Correctness of Sample Generation Protocol

Using the properties of the Pushing Game, we now prove
that the Sample Generation Protocol satisfies Definition 3.6
and thus Theorem 3.7 holds.

Soundness. By Lemma 4.1 (Part 1) and induction, we
see that for every0 � i � m, with probability at least1� i � 2�
(t2), eitherwt(xi) < max(wt(x0)� i; 2pt�) orA rejects. In particular, sincewt(x0) � m, with probability
at least1�m � 2�
(t2), we havewt(xm) < max(wt(x0)�m; 2pt� ��) = 2pt� ��
unlessA rejects, as desired.

Completeness and Zero-Knowledge. First we observe
that the completeness condition follows from the strong
zero-knowledge condition: In Distribution (B) of Defini-
tion 3.6,x is distributed according toX , and hence ist�-
typical with probability� 1� 2�t2+1 by the�-flatness ofX . Sincex corresponds to the output of the Sample Gener-
ation protocol in Distribution (A) and Distributions (A) and
(B) have statistical difference at most2�
(t2), the output
of the Sample Generation Protocol must bet�-typical with
probability at least1� 2�t2+1 � 2�
(t2) = 1� 2�
(t2).

Now we prove the zero-knowledge condition. Consider
the following probabilistic polynomial-time simulator:

Simulator for Sample Generation Protocol, on input((X;�; t); x)
1. Letxm = x.

2. Fori fromm down to1 repeat:

(a) Chooseri�1 uniformly from f0; 1gm and letxi�1 = X(ri�1).
(b) Choosehi uniformly fromHm+n;m�3t� subject

to hi(ri�1; xi) = 0.

3. Output(x0; h1; (r0; x1); h2; (r1; x2); : : : ; hm; (rm�1; xm)):
We prove by induction oni that the distribution onti = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi)) in the output of

the simulator (whenx is chosen according toX) has statis-
tical difference at mosti �2�
(t2) from the verifier’s view of
the Sample Generation protocol up to the end of thei’th ex-
ecution of the Pushing Game. Clearly this is true fori = 0,
as in both casesx0 is distributed according toX . Now sup-
pose it is true fori; we will prove it for i + 1. From the
following two observations it follows that the statistical dif-
ference only increases by2�t2+1+2�
(t2) = 2�
(t2) when
going fromi to i+ 1:

1. In the simulator,xi is t�-typical with probability at
least1� 2�t2+1.

2. For any historyti = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi))
in which xi is t�-typical, the following two distribu-
tions have statistical difference2�
(t2):
(A) A’s view of the(i + 1)’st Pushing Game condi-

tioned on historyti.
(B) The distribution of (hi+1; (ri; xi+1)) condi-

tioned on historyti in the output of the simulator.



Observation 1 is immediate from the fact thatxi is dis-
tributed according toX in the simulator andX is �-flat.
Observation 2 follows from Lemma 4.2, observing that con-
ditioned on historyti, the triple (hi+1; (ri; xi+1)) in the
output of the simulator is selected exactly according to the
Distribution (B) in Lemma 4.2. That is, conditioned on
history ti, ri is selected uniformly from
X(xi), xi+1 is
distributed according toX , andh is selected uniformly inHm+n;m�3t� subject toh(ri; xi+1) = 0.

4.5 Correctness of Sample Test Protocol

Finally, we prove that the Sample Test Protocol satisfies
Definition 3.8 and thus Theorem 3.9 holds.

Soundness. By Lemma 4.1 (Part 2) and induction, we
see that ifwt(x) � �6pt� � �, then with probabil-
ity at least1 � i � 2�
(t2), for every0 � i � m + 1,wt(xi) < wt(x0) � i (or A rejects). In particular, sincewt(x0) < H(X), with probability at least1�m � 2�
(t2),
we havewt(xm) < H(X)�m unlessA rejects at some iter-
ation. Sincem�H(X) +wt(xm) = log j
X(xm)j cannot
be negative unlessj
X(xm)j = ;, it follows that with prob-
ability at least1 �m � 2�
(t2), A must reject in one of the
iterations.

Completeness and Zero-Knowledge. First we prove the
zero-knowledge condition. Consider the following proba-
bilistic polynomial-time simulator:

Simulator for Sample Test Protocol, on input((X; x;�; t); r)
1. Letx0 = x andr0 = r.
2. Fori from 1 tom repeat:

(a) Chooseri uniformly from f0; 1gm and letxi =X(ri).
(b) Choosehi uniformly fromHm+n;m�3t� subject

to hi(ri�1; xi) = 0.

3. Output(x0; h1; (r0; x1); h2; (r1; x2); : : : ; hm+1; (rm; xm+1)):
We prove by induction oni that the distribution onti = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi)) in the output of

the simulator (whenr is selected uniformly from
X(x)
andx is t�-typical) has statistical difference at mosti �2�
(t2) from the verifier’s view of the Sample Test proto-
col up to the end of thei’th execution of the Pushing Game.
Clearly this is true fori = 0. The induction step is proved
analogously to the argument used for the Sample Genera-
tion Protocol, using the same two observations and noting

that, although the simulator works in reverse order, the se-
lection ofri andhi is as before.

Now we observe that the completeness condition follows
from the weak zero-knowledge condition and the particu-
lar simulator we have given above. Specifically, the above
simulator always outputs transcripts which would makeA
accept. Since it has statistical difference at mostm �2�
(t2)
from the Sample Test protocol,Amust accept in the Sample
Test protocol with probability at least1�m � 2�
(t2).
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A The Aiello–Hastad Characterization –
Further Details

Proof of Lemma 2.2: For readability, we will omitx in
the notation. For
 2 f0; 1g2r` andi = 0; :::; 2r, we let
i
denote thei � ` prefix of
. Then, by definition,KL(S j hPS ; V i)= X
2f0;1g2r`Pr [S = 
] � log Pr [S = 
]Pr [hPS ; V i = 
] :
We can rewrite the fraction above as follows:Pr [S = 
]Pr [hPS ; V i = 
]= Q2ri=1 Pr [Si = 
ijSi�1 = 
i�1]Q2ri=1 Pr �hPS ; V ii = 
ijhPS ; V ii�1 = 
i�1�= Qrj=1 Pr [S2j = 
2j jS2j�1 = 
2j�1]Qrj=1 Pr hhPS ; V i2j = 
2j jhPS ; V i2j�1 = 
2j�1i
A key observation is that the denominator in the above frac-
tion equals the reciprocal of the number of possible out-
comes of the verifier coins (i.e.,2�`), since even-indexed
messages ofhPS ; V i are generated byV exactly as inhP; V i. Multiplying both the numerator and denominator
in the above fraction by

Qrj=1 Pr [S2j�1 = 
2j�1], we ob-
tain Pr [S = 
]Pr [hPS ; V i = 
] = Qrj=1 Pr [S2j = 
2j ]2�` �Qrj=1 Pr [S2j�1 = 
2j�1] ;
and thusKL(S j hPS ; V i)= `+ rXj=1 X
2f0;1g2r`Pr [S = 
] � logPr [S2j = 
2j ]rXj=1 X
2f0;1g2r`Pr [S = 
] � log 1Pr [S2j�1 = 
2j�1]= `� rXj=1H(S2j) + rXj=1H(S2j�1)
The lemma follows.



Proof of Lemma 2.3: By Lemma 2.2,KL(S j hPS ; V i) = `+ 2rXi=1(�1)i+1 � H(Si)� `+ 2rXi=1(�1)i+1 � H(hP; V ii)+ 2rXi=1 jH(Si)�H(hP; V ii)j
Consider a perfect simulator (i.e., of zero deviation), de-
notedS, for (P; V ). Note that the simulator-based-prover
with respect toS is P itself. Thus, by Lemma 2.2,`+ 2rXi=1(�1)i+1 � H(hP; V ii) = `+ 2rXi=1(�1)i+1 �H(Si)= KL �S j hP; V i� = 0
Finally, we use the fact (cf., Appendix B) that for any two
random variables,X andY , ranging over domainD it holds
thatjH(X)�H(Y )j � (log jDj)��(X ; Y ) + H2 (�(X ; Y ))
Combining all the above, we getKL(S j hPS ; V i)� 2rXi=1 jH(Si)�H(hP; V ii)j� 2rXi=1 [i` ��(Si ; hP; V ii) + H2 (�(Si ; hP; V ii))]� (2r2 + r) � ` ��(S ; hP; V i)+2r �H2 (�(S ; hP; V i))
and the lemma follows.

Proof of Lemma 2.4: For any random variablesX
and Y and any functionf it holds thatKL (X jY ) �KL(f(X) j f(Y )) (cf., Appendix B). Lettingf(
) = 1
if 
 is accepting andf(
) = 0 otherwise, we haveKL(S(x) j hPS ; V i(x)) � KL2(p; q0)
whereq0 � q equals the probability thathPS ; V i(x) ac-
cepts. Using the fact thatKL2(p; q0) � KL2(p; q), for anyq0 � q � p (cf., Appendix B), we are done.

B Statistical Inequalities

Fact B.1 For any two random variables,X andY , ranging
over a domainD it holds thatjH(X)�H(Y )j � log(jDj � 1) � � + H2(�)

where� def= �(X ; Y ).
This fact can be inferred from Fano’s Inequality (cf., [5,
Thm. 2.11.1]). A more direct proof follows.

Proof: Assume� > 0 or else the claim is obvious. Letp(x) def= Pr [X = x] and q(x) def= Pr [X = x]. Definem(x) def= minfp(x); q(x)g. Then
Px2Dm(x) = 1 � �.

Define random variablesZ 0,X 0 andY 0 so thatPr [Z 0 = x] = m0(x) def= 11� � �m(x)Pr [X 0 = x] = p0(x) def= 1� � (p(x) �m(x))Pr [Y 0 = x] = q0(x) def= 1� � (q(x) �m(x))
Think ofX (resp.,Y ) as being generated by pickingZ 0 with
probability1� � andX 0 (resp.,Y 0) otherwise. Then,H(X) � (1� �) � H(Z 0) + � � H(X 0) + H2(�)H(Y ) � (1� �) � H(Z 0)
Observing thatPr [X 0 = x] = 0 on at least onex 2 D, it
follows thatH(X 0) � log(jDj � 1), and the fact follows.

Comment: The above bound is tight. Lete 2 D and
considerX which is identicallye, andY which with proba-
bility 1� � equalse and otherwise is uniform overD n feg.
Clearly,�(X ; Y ) = � andH(Y ) � H(X) = � log(jDj �1) + H2(�)� 0.

Fact B.2 For any random variablesX andY and any func-
tion f it holds thatKL(X jY ) � KL(f(X) j f(Y )).
This fact can be easily inferred from the Log Sum Inequal-
ity (cf., [5, Thm. 2.7.1]). A more direct proof follows.

Proof: Expanding the definition ofKL(X jY ), we getKL(X jY ) =Pv Pr [f(X) = v] �Av , whereAv = Xx:f(x)=vPr [X = xjf(X) = v] �log Pr [f(X) = v] � Pr [X = xjf(X) = v]Pr [f(Y ) = v] � Pr [Y = xjf(Y ) = v] :
We can rewriteAv asBv + Cv , whereBv = Xx:f(x)=vPr [X = xjf(X) = v] � log Pr [f(X) = v]Pr [f(Y ) = v] ;
andCv = Xx:f(x)=vPr [X = xjf(X) = v] �log Pr [X = xjf(X) = v]Pr [Y = xjf(Y ) = v]



Now,
Pv Pr [f(X) = v] � Bv equalsKL(f(X) j f(Y )),

whereas the equalsPr [f(X) = v] � KL(Xv jYv) � 0,
whereXv (resp.,Yv) denotes the residual distribution ofX conditioned onf(X) = v (resp.,Y conditioned onf(Y ) = v).

Comment: The above bound is in fact equivalent
to the Log Sum Inequality (i.e.,

Pi ai log(ai=bi) �(Pi ai) log(Pi ai=Pi bi), for all non-negativeai’s andbi’s). To deduce to Log Sum Inequality from the above
bound, one may first prove a special case in which

Pi ai =Pi bi = 1 (by definingX andY so that theai’s andbi’s
represent their probability mass, and letf be a constant
function). The general case is derived by easy manipula-
tion.

Fact B.3 For any 0 � q0 � q � p � 1, it holds thatKL2(p; q0) � KL2(p; q).
Proof: We use the fact (cf., [5, Thm. 2.7.2]) that for every0 � p; q1; q2 � 1 and0 � � � 1.KL2(p; �q1+(1��)q2) � ��KL2(p; q1)+(1��)�KL2(p; q2)
Pickingq1 = q0, q2 = p and� such that�q1+(1��)q2 = q,
we haveKL2(p; q) � � �KL2(p; q0) + (1� �) � 0, and the
fact follows.

C Proof of the Flattening Lemma

For every x in the support ofX , we let w(x) =� logPr [X = x]. Thenw maps the support ofX , denotedD, to [0;m]. Let X1; :::; Xk be identical and independent
copies ofX . The lemma asserts that for everyt,Pr"����� kXi=1 w(Xi)� k � H(X)����� � t �mpk# � 2�t2+1
Observe thatE(w(Xi)) = Px Pr [X = x]w(x) = H(X),
for every i. Thus, the lemma follows by a straightfor-
ward application of Hoeffding Inequality: Specifically, de-
fine random variables�i = w(Xi), let � = E(�i) and� = tm=pk, and usePr"�����Pki=1 �ik � ������ � �# � 2 � exp��2�2m2 � k�= 2 � exp ��2t2�
The lemma follows.

D Proof of the Hashing Lemma

We denote the two distributions on pairs(h; z) in
Lemma 3.12 byA = (AH; AZ) andB = (BH; BZ). By
the definition of statistical difference, it suffices to show that
for every setS � H � D, Pr [A 2 S] � Pr [B 2 S] �3(� + "1=3). In order to do this, we first will argue that for
“most” pairs(h; z), Pr [A = (h; z)] is not too much greater
thanPr [B = (h; z)]. Observe that both distributionsA andB only output pairs(h; z) such thath(z) = 0. Now, for any(h; z) 2 H�D such thath(z) = 0, we havePr [A = (h; z)] = Pr [AH = h] � Pr [AZ = zjAH = h]= 1jHj � Pr [Z = z]Pw2h�1(0) Pr [Z = w] ;
andPr [B = (h; z)] = Pr [BZ = z] � Pr [BH = hjBZ = z]= Pr [Z = z] � 1jfh0 : h0(z) = 0gj= Pr [Z = z] � jRjjHj ;
where the last equality follows from 2-universality.

Thus, showing thatPr [A = (h; z)] is not too much
greater thanPr [B = (h; z)] for most pairs(h; z) amounts
to showing that for mosth,

Pw2h�1(0) Pr [Z = w] is
not too much smaller than1=jRj. In order to prove a
lower bound on this sum (for mosth), we restrict the
sum to a slightly smaller set ofw’s. Let L = fw 2D : Pr [Z = w] � "=jRjg, so by hypothesis,Pr [Z 2 L] =1� �. Forw 2 D andh 2 H, define indicator functions�w(h) = n 1 if h(w) = 00 otherwise
Definef(h) =Pw2LPr [Z = w] � �w(h). Thus,Xw2h�1(0)Pr [Z = w] = Xw2DPr [Z = w] � �w(h) � f(h)

By 2-universality, forh selected uniformly inH, the ran-
dom variablesf�w(h)gw2D each have mean1=jRj and are
pairwise independent. Thus,Eh[f(h)] = Xw2L Pr [Z = w]jRj = 1� �jRj
and Varh[f(h)] � Xw2L Pr [Z = w]2jRj� Xw2L Pr [Z = w] � "jRj2� "jRj2



By Chebyshev’s inequality,Prh �f(h)� 1� �jRj < �"1=3jRj � � Varh(f(h))("1=3=jRj)2 � "1=3:
LetG = fh 2 H : f(h) � (1 � � � "1=3)=jRjg be the

set “good”h’s for whichf(h) is not too much smaller than1=jRj. Then for everyz 2 D andh 2 G,Pr [A = (h; z)] � Pr [Z = z]jHj � jRj1� � � "1=3= Pr [B = (h; z)]1� � � "1=3 :
Thus, for anyS � H�D,Pr [A 2 S] � Pr [A 2 S andAH 2 G] + Pr [AH =2 G]� Pr [B 2 S andBH 2 G]1� � � "1=3 + "1=3� Pr [B 2 S]+� � + "1=31� � � "1=3� � Pr [B 2 S] + "1=3� Pr [B 2 S] + 3(� + "1=3);

(as long as� + "1=3 � 1=2, which we may assume as oth-
erwise the lemma is trivially satisfied). This completes the
proof.


