
A Lower Bound for the Shortest Path Problem

Ketan Mulmuley
Dept. of Computer Science

University of Chicago

1100 East 58th Street

Chicago, Il 60637, USA

mulmuley@cs.uchicago.edu

Dept. of Computer Science & Engg.

Indian Institute of Technology, Powai

Mumbai 400 076, India

mulmuley@cse.iitb.ernet.in

Pradyut Shah
Dept. of Computer Science

University of Chicago

1100 East 58th Street

Chicago, Il 60637, USA

pradyut@cs.uchicago.edu

Abstract

We show that the Shortest Path Problem cannot be solved in o(logn) time
on an unbounded fan-in PRAM without bit operations using poly(n) processors
even when the bit-lengths of the weights on the edges are restricted to be of size
O(log3n). This shows that the matrix-based repeated squaring algorithm for the
Shortest Path Problem is optimal in the unbounded fan-in PRAM model without bit
operations.

1 Introduction

Proving the optimality of algorithms for important combinatorial problems and deter-
mining their intrinsic hardness properties requires finding good lower bounds for them.
In this paper, we give a lower bound for the Shortest Path Problem in a natural model
of computation.

The Shortest Path Problem is the following: given a weighted, directed graph and
two special vertices s and t, compute the weight of the shortest path between s and t.

For positive edge weights, Dijkstra’s classical algorithm allows us to compute the
weight of the shortest path in polynomial time. By comparison, if the graph is permitted
to have negative edge weights, then the problem is known to be NP-complete [8].

The model for the lower bound is a variant of the Parallel Random Access Machine
(PRAM for short). The PRAM consists of a set of processors that have access to a shared
memory. Each processor has a set of registers and local memory and can access the

1

shared memory at unit cost. The complexity class NC is defined to be the set of prob-
lems that can be solved on a PRAM in polylogarithmic time using polynomially many
processors.

The Shortest Path Problem is known to be computable in NC by repeatedly squar-
ing the adjacency matrix of the graph where the operations {+,∗} are replaced by
{min,+} [14]. On a PRAM this can be done in O(log2n) arithmetic operations with
poly(n) processors.

One of the features of this algorithm is that it is completely arithmetic in nature i.e.,
it performs arithmetic operations on its inputs, but doesn’t look at the individual bits of
the inputs. This property is shared by many important parallel algorithms for combina-
torial problems. Accordingly, Mulmuley [16] defined a restricted PRAM model without
bit operations. Mulmuley’s model eliminates those operations that allow bit-extraction
or updates of the bits of the individual registers, but provides the usual arithmetic,
indirect referencing, conditional and unconditional branch operations at unit cost (in-
dependent of the bit-lengths of the operands). We consider here an unbounded fan-in
model, in which the operations {+,min,max} have unbounded fan-in at unit cost (inde-
pendent of the bit-lengths of the operands). However, multiplication (∗) is restricted to
have bounded fan-in.

Unlike earlier models used for proving lower bounds, such as the constant-depth [12]
or monotone circuit model [19], the PRAM model without bit operations is natural. Vir-
tually all known parallel algorithms for weighted optimization and algebraic problems
fit inside the model. Examples include fast parallel algorithms for solving linear sys-
tems [6], minimum weight spanning trees [14], shortest paths [14], global min-cuts in
weighted, undirected graphs [13], blocking flows and max-flows [9, 21], approximate
computation of roots of polynomials [2, 18], sorting algorithms [14] and several prob-
lems in computational geometry [20]. In constrast to Boolean circuits where no lower
bounds are known for unbounded depth circuits, our result gives a lower bound for a
natural problem in a natural model of computation.

There are many natural combinatorial problems that are known to be polynomially
computable but have resisted all efforts at efficient parallelization. Many problems such
as the Weighted Max Flow problem are P–complete [10]. Hence, assuming that P is
different from NC, we cannot expect to find fast parallel algorithms for these problems.

In the PRAM model without bit operations, Mulmuley [16] proved a lower bound on
the Weighted Max Flow problem (or equivalently, the Weighted s-t MIN CUT prob-
lem). He showed that it is not possible to solve the problem in time o(n1/8) using
2Ω(n

1/8) processors even when the bit-lengths of the weights are O(nc) for some con-
stant c > 0. This rules out the possibility of any fast parallel algorithm (which does not
use bit operations) for the problem.

1.1 Technique

The proof of this lower bound begins by giving a lower bound on the parametric com-
plexity of the Shortest Path Problem, building on the work of Carstensen [4]. This is a
general technique for giving lower bounds on parallel computation times of homoge-

2

neous weighted combinatorial problems [16].
A weighted combinatorial problem is homogeneous if scaling all the weights in the

problem by a factor ρ scales the weight of the answer by ρ as well.
Assume that the weights on the edges of the input graph are not just real numbers,

but linear functions in a parameter λ. Then for each value of λ, we can compute the
weight of the shortest path in the graph. If we plot the weight of the shortest path as
a function of λ, the resulting optimal cost graph is piecewise linear and concave. The
parametric complexity of the problem for a fixed graph and a fixed set of linear weight
functions is defined as the number of breakpoints i.e. points at which the function
changes slope.

The parametric complexity of the Shortest Path Problem for size n and size param-
eter β is the maximum parametric complexity over all possible choices of graphs on n
vertices and all possible linear weight functions of the form a+bλ, where the bit-lengths
of a and b are restricted to be less than β.

The following theorem (Theorem 3.1.1 from [16]) relates the parametric complexity
of a general weighted combinatorial problem to a lower bound on its computation time
in the unbounded fan-in PRAM model without bit operations. The proof in Mulmuley’s
paper only considers the bounded fan-in case but can be extended to the unbounded
fan-in case.

Theorem 1.1 (Mulmuley) Let φ(n,β(n)) be the parametric complexity of any homoge-
neous optimization problem where n denotes the input cardinality and β(n) the bit-size
of the parameters. Then the decision version of the problem cannot be solved in the PRAM
model without bit operations in o

(√
logφ(n,β(n))

)
time using 2

√
logφ(n,β(n)) processors,

even if we restrict every numeric parameter in the input to size O(β(n)).

Carstensen [4, 3] proved the following theorem:

Theorem 1.2 (Carstensen) There is an explicit family of graphs Gn on n vertices with
edge weights that are linear functions in a parameter λ, such that the optimal cost graph
of the shortest path between s and t has 2Ω(log2n) breakpoints.

However, Carstensen’s proof is very complex and does not take into account the
issue of bit-lengths. It is not possible to obtain a lower bound using Theorem 1.1 that
is sensitive to bit-lengths without obtaining good bounds on the bit-lengths of the coef-
ficients of the edge weights. We give a simplified proof of her theorem (using a similar
construction) which allows us to to take into account the issue of bit-lengths.

Theorem 1.3 There is an explicit family of graphs Gn on n vertices, with edge weights
that are linear functions in a parameter λ, such that the optimal cost graph of the weight
of the shortest path between s and t has 2Ω(log2n) breakpoints. In addition, the bit-lengths
of the coefficients of the cost functions have size O(log3n). Thus, the parametric com-
plexity of the Shortest Path Problem for graph size n and bit-length O(log3n) is 2Ω(log2n).

By combining the above result with Theorem 1.1, we get the following theorem:

Theorem 1.4 (Main Theorem) The Shortest Path Problem cannot be computed in o(logn)
steps on an unbounded fan-in PRAM without bit operations using poly(n) processors, even
if the weights on the edges are restricted to have bit-lengths O(log3n).

3

1.2 Tightness

The matrix-based repeated squaring algorithm for Shortest Path Problem can be solved
in ε logn steps for any ε > 0 with poly(n) processors on a PRAM that allows unbounded
fan-in min operations (but only bounded fan-in additions), because multiplying kmatri-
ces (for any fixed constant k) can be done in 2 steps in this model usingnk+1 processors.

Since the model for the lower bound assumes unit cost for all operations (including
some with unbounded fan-in), the result shows that the above algorithm for the Shortest
Path Problem is optimal in the unbounded fan-in PRAM model without bit operations. In
particular, the problem cannot be solved using o(logn) operations in this model using
poly(n) processors even if we restrict the edge weights to have bit-lengths O(log3n)
(or, alternatively, magnitude 2O(log3n)).

1.3 Extensions

There are other combinatorial problems in P, such as Weighted Graph Matching [15],
that have eluded all attempts at efficient parallelization. The problem is not even known
to be P–complete. Our motivation behind studying the Shortest Path Problem started by
wanting to give a lower bound for the Weighted Graph Matching problem. Since the
Shortest Path Problem on directed graphs can be reduced to Weighted Graph Match-

ing, our result yields a lower bound for the latter problem as well.

Corollary 1.5 The Weighted Bipartite Matching problem cannot be solved in o(logn)
steps on an unbounded fan-in PRAM without bit operations using poly(n) processors even
if the weights on the edges are restricted to have bit-lengths O(log3n).

We conjecture that it should be possible to obtain super-polylogarithmic lower bounds
using similar techniques for Weighted Matching in general graphs. It would also be
interesting to give similar lower bounds for other problems that are not known to be in
NC, nor known to be P–complete. This paper is a step towards that goal.

2 Preliminaries

Definition 2.1 A directed graph is said to be layered if its vertices can be arranged in
columns so that all edges go between vertices in adjacent columns.

All the graphs used in this paper are directed and layered. We imagine the graph to
be embedded in a grid and label each vertex of the graph by its coordinate. The vertex in
the r th row and cth column will be labelled as (r , c). Occasionally, we omit the column
number for the vertex if it is clear from the context.

Edges are denoted by (r , c) → (k, c + 1) or simply r → k if the column number is
unambiguous. The weights of edges are labelled by wr ,k. If we wish to emphasize the
fact that the weights are linear functions in the parameter λ, we denote the weight as
wr ,k(λ).

4

All the graphs in this paper will have two special vertices s and t between which we
wish to compute the shortest path. Since all the graphs we use are layered, we may
assume that the vertex s sits in the 0th column and the vertex t in the last column.

Definition 2.2 The core of a graph is the graph obtained by eliminating the vertices s
and t.

3 Outline

Theorem 3.1 For anym,n ∈ N, there exists a graph with coreGm,n having the following
properties:

(i) Gm,n is a layered graph with at most 2m(2n− 1) rows and 3m columns, having
exactly n vertices in the first column.

(ii) The edges of Gm,n are labelled by linear functions in a parameter λ such that the
optimal cost graph of the weight of the shortest path between s and t (as a function
of λ) has at least nm breakpoints.

(iii) There is an edge from s to each of the n vertices in the first column with weights

ws,(i,1)(λ) =
i(i+ 1)

2
− iλ (0 ≤ i < n).

(iv) All the vertices q in the last column of the core are connected to t with weight:

w(q,3m),t = 0.

The substitutionm = logn will yield a graph on n3.585 vertices such that the optimal
cost graph of the shortest path has at least 2log2n breakpoints. We can rephrase this to
say that graphs Gn on n vertices can be constructed with 2Ω(log2n) breakpoints on the
optimal cost graph of the shortest path. The coefficients involved in this construction
will be shown to have bit-lengths O(log3n).

The construction will use negative edge weights, but since the graphs are layered,
we can always add a large positive weight to each edge without changing the structure
of the optimal paths.

4 Construction

The graph Gm,n is constructed inductively from Gm−1,n. The idea behind the proof is
that each optimal path in Gm−1,n yields n optimal paths in Gm,n with varying slopes,
thus increasing the number of breakpoints by a factor of n.

Given a layered graph and a particular shortest path over some fixed interval of the
parameter λ, one can easily create n shortest paths by breaking up the interval into n

5

pieces, appending a new layer of n vertices, and attaching them to the endpoint of the
given path with suitable weights. However, the weights would depend on the interval.
The goal of the construction is to create a gadget that behaves the same way but with a
choice of weight functions that are independent of the interval.

The rest of this paper is laid out as follows. Section 4.1 gives the stronger inductive
hypothesis (Lemma 4.1) that we need to prove the theorem. Section 4.2 specifies the
intervals. Section 4.3 gives the proof of the main theorem (Thm 3.1). Section 4.4 defines
the topology of the graph Gm,n. Section 4.5 defines the inductive construction of the
weights on the edges of the graph Gm,n. The proof of Lemma 4.1 can be found in
section 4.6.

4.1 Inductive Hypothesis

Lemma 4.1 For any D1,D2 ∈ R, m,n ∈ N, and g : Z × Z → Z such that g(r ,0) = 0,
there is a graph having core Gm,n with the following properties:

(i) There are nm−1 disjoint intervals

Ij,m = [αj,m + ε, βj,m − ε] (0 ≤ j < nm−1)

with βj,m − αj,m > n and ε < 1. The intervals Ij,m will be independent of the
parameters D1, D2 and g, and will depend only on m and n.

(ii) For each interval, there exist n paths Pi,j (from vertices in the first column of G to
the last column of G) that are pairwise vertex-disjoint.

Notationally, Pi,j always denotes the path in the core of the graph starting from the
vertex (i,1), and Pi,j denotes the s-t path that contains Pi,j in it. That is, Pi,j = (s →
i) ∪ Pi,j ∪ (ri,j → t) where ri,j denotes the last vertex of the path Pi,j .

(iii) For 0 ≤ i < n, Pi,j is the optimal path starting from vertex (i,1) in the interval Ij,m.

(iv) For 0 ≤ i < n, let j = nd+ r where 0 ≤ r < n. Then

C(Pi,j)(λ) = C(P0,j)(λ)+ iD1αd,m−1 + iD2λ+ g(r , i). (1)

(v) The difference in cost between Pi,j and any other non-optimal path starting at vertex
(i,1) is at least ε.

6

4.2 Construction of the Intervals

Fix N >mn3. Let j = nd+ r where 0 ≤ r < n. Define αj,m and βj,m as follows:

α0,1 = 0

β0,1 = N2

αj,m = αnd+r ,m
= Nαd,m−1 + rN2

βj,m = βnd+r ,m
= Nβd,m−1 + (r + 1)N2

Intuitively, at each stage we stretch the intervals by a factor of N and divide it into n
parts. Hence, βj,m − αj,m = N2 � n, and this satisfies condition (i) of the inductive
hypothesis.

4.3 Proof of Theorem 3.1

Proof: Before we prove Lemma 4.1, it is instructive to see how the main theorem
follows from it. Let Gm,n be the graph obtained by choosing the parameters D1 = N,
D2 = 0 and g(r , i) = N2ir . Substituting the values into equation (1) and simplifying
using the definition of the intervals above, we get the following equation for the optimal
paths in the core of the graph:

C(Pi,j)(λ) = C(P0,j)(λ)+ iαj,m.

Therefore, for s-t paths we have that

C(Pi,j)(λ) = C(P0,j)(λ)+ iαj,m +
i(i+ 1)

2
− iλ.

Hence, we have that Pi,j is the optimal path for the interval

[αj,m + i,αj,m + i+ 1]∩ Ij,m,

and since ε < 1, it follows that each of these paths is optimal in a non-zero interval.
Each path must have a different slope because of its linear term depends on i. Hence
we get n breakpoints in each of the nm−1 intervals, yielding nm breakpoints in all.

�

4.4 Construction of the Core

The graph Gm,n is constructed by induction on the parameter m.
The graph G1,n has 3 columns with n, n and 2n − 1 vertices respectively as shown

in Figure 1. Each of the n vertices in the first column is connected to the corresponding
vertex in the second column, and each vertex (i,2) in the second column is connected
by n edges to the vertices (i+ j,3) where 0 ≤ j ≤ n− 1.

7

2n−1

n

Figure 1: Base Case with Chains

Gm,n is constructed recursively from two copies ofGm−1,n and a third copy ofGm−1,2n−1

(which are referred to as GL, GM and GR respectively) as shown in Figure 2.
The first two copies of Gm−1,n are connected back-to-back. GM is a reflection of GL

with the edges reversed as well. GM has exactly n vertices in the last column (because
it is a mirror image of GL). GR (which is a copy of Gm−1,2n−1) has 2n− 1 vertices in the
first column. We connect the ith vertex in the last column of GM to the (i+ j)th vertex
in the first column of GR where 0 ≤ j ≤ n − 1 (similar to the construction in the base
case).

n−1

0 0

n−1

0

n−1

0n

i

G G
L M

G
R

G(m−1,n) G(m−1,n)
Reversed G(m−1,2n−1)

Figure 2: Construction of Gm,n

8

4.5 Construction of the Weight Functions

4.5.1 Weight Functions for the Base Case

Fix the parameters D1, D2 and the function g : Z× Z→ Z. The parameter K in the
definition of the weights will be a constant whose value is fixed later. Define the weights
on the edges as follows:

w(k,1),(k,2) = 0

w(k,2),(k+r ,3) =


K
[
r(r+1)

2 N2 − rλ
]

k = 0,
0 ≤ r < n;

w(0,2),(r ,3) + kD1α0,1 + kD2λ+ g(r , k) 1 ≤ k < n,
0 ≤ r < n.

4.5.2 Weight Functions for the Inductive Case

Let the parameters to the construction be F1, F2 and h : Z× Z→ Z. K1, K2 and K3 are
constants whose values will be fixed later.
GL and GM are chosen with parameters:

D1 = N
2K3

(
F1 −

K2

K1

)
D2 = 0

g(r , i) = NriD1.

The graph GR (which is a copy of Gm−1,2n−1) is chosen with parameters:

D1 = N
K1

D2 = − 1
K1

g(r , i) = N
K1

i(i+ 1)
2

+NriD1.

Since GM has exactly n vertices in the last column and GR has 2n− 1 vertices in the
first column, we define the edges analogously to the base case but with the following
weights:

wi,i+r (λ) = h(r , i)−NK2

K1

{
ir + i(i+ 1)

2

}
+ i

(
F2 +

K2

NK1

)
λ (0 ≤ r < n).

The cost functions on the edges of Gm,n are defined by shifting the cost functions
in GL and GM and then scaling them by a factor of K3, by shifting the cost function in
GR, and then scaling it by a factor of K2 as follows:

we(λ) =


K3 ·wLe

(
λ
N

)
e ∈ GL

K3 ·wMe
(
λ
N

)
e ∈ GM

K2 ·wRe
(
λ
N

)
e ∈ GR.

9

Figure 3: Joining Edges

4.6 Proof of the Inductive Hypothesis

4.6.1 Proof of Lemma 4.1 (Base Case)

Proof: [Base Case]
Define Pi,j to be the path ((i,1)→ (i,2)) ∪ ((i,2)→ (i+ j,3)). These paths Pi,j are

vertex-disjoint. All of the conditions of the inductive hypothesis can be easily verified
provided:

K�
max
r ,i

∣∣g(r , i)∣∣
ε

.

�

4.6.2 Proof of Lemma 4.1 (Inductive Case)

Proof: [Inductive Case]
Fix j and λ ∈ Ij,m. Let j = nd+ r where 0 ≤ r < n. Then λ/N ∈ Id,m−1, and hence

the path PLi,d is optimal in GL starting from vertex (i,1).
Define Pi,j to be PLi,d ∪ PMi,d ∪ (i → i + r) ∪ PRi+r ,d. The following two lemmas

provide the proof that Pi,j is an optimal path starting at vertex (i,1). These paths are
vertex-disjoint (as required by the inductive hypothesis).

Lemma 4.2 shows that PMi,d, which is the mirror image of PLi,d, is optimal inGM . This is
not at all clear a priori since there is no reason to believe that optimal paths will remain
optimal when the edges are reversed. In particular, we would like to have the optimal
path in GM end at (i,2 · 3m−1). Lemma 4.3 finishes up the proof by showing that the
path PRi+r ,d is indeed optimal in GR in the interval Ij,m.

Lemma 4.2 Fix λ ∈
⋃

k=nd+r
0≤r<n

Ik,m. Then for sufficiently large values of K3, the optimal path

in GL and GM starting at node (i,1) will be PLi,d ∪ PMi,d.

10

Q

P

Q

k

k

i
PiL

M

M

M

Figure 4: Chains in Lemma 4.2

Proof: Assume thatQ is the optimal path in this interval, and thatQ is not symmetric
in GL and GM . Furthermore, assume without loss of generality that QL = PLi,j and QM ≠
PMi,j . Let QM end at vertex k where k ≠ i.

The idea of the proof is that the difference between the costs of PMi,j and PMk,j is small

but the difference in costs between QM and PMk,j is at least ε before scaling, and hence
at least K3ε after scaling.

Consider the situation in Figure 4. Before scaling, in the graph Gm−1,n, the inductive
hypothesis guarantees that

C(QM)(λ)−C(PMk,j)(λ) > ε.

Therefore, after scaling we have that

C(QM)(λ)−C(PMk,j)(λ) > K3ε.

The difference in costs between the parallel paths Pi,j and Pk,j is small by the induc-
tive hypothesis: ∣∣∣C(PMi,j)(λ)−C(PMk,j)(λ)∣∣∣ ≤ nN

(
F1 −

K2

K1

)
N2+m

≤ nO(m)
(
F1 +

K2

K1

)
.

We have that C(Q)(λ) = C(QL)(λ) + C(QM)(λ) + C(QR)(λ). Again, without loss of
generalityQR is optimal. It is possible that the pathQ gains some advantage in the links
between GM and GR and also in GR. If we take the quantity K3ε to be greater than all

11

these gains along with the quantity from above, this would contradict the assumption
that Q is the optimal path in this interval.

The maximum gain in the intermediate links (from Equation (2)) is

max
r ,i
h(r , i)+ 4n2N

K2

K1
+n(F2 +

K2

NK1
)N1+m.

The maximum gain inGR isnN K2
K1
N2+m. ClearlynO(m)

(
F1 + F2 +max |h| + K2

K1

)
dom-

inates all of the above terms. Thus, choosing K3 to be

K3 �
nO(m)

(
F1 + F2 +max |h| + K2

K1

)
ε

(2)

gives us a contradiction which proves our lemma.
�

Lemma 4.3 Fix λ ∈
⋃

k=nd+r
d

Ik,m. Then if K2
K1

is sufficiently large, the optimal path in GR

starting from node (i,1) will be PRi+r ,d.

Proof: Fix a particular value for d. Since λ ∈ Ind+r ,m, therefore λ
N ∈ Id,m−1.

From the previous lemma, it is clear that the optimal paths are symmetric in GL and
GM and that the optimal path in GR is PRk,d for some k. We claim that k = i+ r .

By adding up the costs, we get that

C(Pi,j)(λ)−C(Pi−1,j)(λ) =
1
N
K2

K1
(αj,m − λ)+ h(r , i)− h(r − 1, i)

which means that if we impose the condition

K2

K1
� Nmaxr ,i |h(r , i)|

ε
, (3)

then the optimal path will be as required.
�

By the inductive hypothesis, we get the following equations about paths in GL, GM ,
and GR (before scaling).

C(PLi,d)(λ) = C(PL0,d)(λ)+
i

2K3

(
F1 −

K2

K1

)
αd,m−1

C(PMi,d)(λ) = C(PM0,d)(λ)+
i

2K3

(
F1 −

K2

K1

)
αd,m−1

C(PRi,d)(λ) = C(PR0,d)(λ)+
1
K1

{
Ni(i+ 1)

2
+ iαd,m−1 − iλ

}
.

12

After scaling, adding up the costs of the above paths along with the weights of the
edges joining the end vertices of GM to GR and simplifying, we get:

C(Pi,j)(λ) = C(PLi,d)(λ)+C(PMi,d)(λ)+wi,i+r (λ)+C(PRi+r ,d)(λ)

= C(PL0,d)(λ)+C(PM0,d)(λ)+C(PR0,d)(λ)+
K2

K1

(
N
r(r + 1)

2
+ rαd,m−1 − rλ

)
︸ ︷︷ ︸

+ iF1αd,m−1 + iF2λ+ h(r , i)

= C(PL0,d)(λ)+C(PM0,d)(λ)+C(PRr,d)(λ)︸ ︷︷ ︸+iF1αd,m−1 + iF2λ+ h(r , i)

= C(P0,j)(λ)+ iF1αd,m−1 + iF2λ+ h(r , i).

These yield the required relationships between the optimal paths in the interval Ij,m.
Condition (v) is easily satisfied by noting that if we have an optimal and a sub-optimal

path starting from vertex (i,1), then it must deviate from the optimal path in either GL,
GM , GR, or in the intermediate connecting links. Then the proof of Lemma 4.3 shows
that the difference in optimal costs must be at least ε. This concludes the proof.

�

5 Analysis

Proof: [Proof of Theorem 1.3]
From Equations (2) and (3) in section 4.6.2, and the fact that N = O(n3 logn) and

ε < 1, we can rewrite the recurrences for the constants as

K2

K1
� nO(1)max

r ,i
|h(r , i)|

K3 � nO(m)
(
F1 +

K2

K1

)
.

At the topmost level of the recurrence, we choose F1 = N and h(r , i) = N2ir , both
of which are polynomial in n. However, the function h and parameter F1 changes as
we descend down the construction. In both GL and GM we choose h(r , i) = N2ir , and
in GR we have |h(r , i)| dominated by poly(n)K2

K1
. We can choose a > 0 large enough so

that recurrence (
K2

K1

)
m−1

�
(
K2

K1

)
m
na

has the solution (
K2

K1

)
r
= na(m−r).

Now in GL and GM , the quantity F1 keeps decreasing by the current value of K2/K1,
and hence its absolute value increases by at most K2/K1. Thus, we can choose c > 0

13

sufficiently large so that

(K3)r � ncr
∑

r≤t≤m

(
K2

K1

)
t
.

This yields the following solution:

(K3)r = nb(m−r) for some b > a > 0.

The coefficients grow as the product of the individual multipliers:

size of coefficients = O(nb(1+···+(m−1)+m))
= O(nb(

m
2))

= 2O(log3n) since m = O(logn).

Since the magnitude of the coefficients is 2O(log3n), it follows that their bit-lengths are
O(log3n).

�

Acknowledgements

We would like to thank Dieter van Melkebeek, Marcus Schaefer, Soren Dayton, Varsha
Dani and Gina Steele for their help in proof-reading the paper and suggesting valuable
comments.

References

[1] Michael Ben-Or. Lower bounds for algebraic computation trees. In 15th ACM Sym-
posium on the Theory of Computing, pages 80–86, 1983.

[2] Michael Ben-Or, Ephraim Feig, Dexter Kozen, and Prasoon Tiwari. A fast parallel
algorithm for determining all roots of a polynomial with real roots. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, pages 340–349,
Berkeley, California, 28–30 May 1986.

[3] Patricia Carstensen. Complexity of some parametric integer and network program-
ming problems. In Mathematical Programming, volume 26, pages 64–75, 1983.

[4] Patricia Carstensen. The Complexity of Some Problems in Parametric Linear and
Combinatorial Programming. PhD thesis, Univ. of Michigan, 1983.

[5] Patricia Carstensen. Parametric cost shortest chain problem. published in
ORSA/TIMS, 1987.

[6] L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,
5(4):618–623, December 1976.

14

[7] A. Frank and Éva Tardos. An application of simultaneous Diophantine approxima-
tion in combinatorial optimization. Combinatorica, 7:49–65, 1987.

[8] Michael R. Garey and David S. Johnson. Computers and Intractability : A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[9] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow
problem. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, pages 136–146, Berkeley, California, 28–30 May 1986.

[10] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Com-
putation : P-Completeness Theory. Oxford Univ. Press, 1995.

[11] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer, Berlin, 1988.

[12] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20,
Berkeley, California, 28–30 May 1986.

[13] David Karger and Rajeev Motwani. An NC algorithm for minimum cuts. SIAM
Journal on Computing, 26, 1997.

[14] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, San Mateo, 1992.

[15] László Lovász and M. D. Plummer. Matching Theory, volume 29 of Annals of Dis-
crete Mathematics. North-Holland Math. Studies, 1986.

[16] Ketan Mulmuley. Lower bounds in a parallel model without bit operations. SIAM
Journal on Computing, 28, 1998.

[17] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7:105–113, 1987.

[18] C. Andrew Neff. Specified precision polynomial root isolation is in NC. Journal of
Computer and System Sciences, 48(3):429–463, June 1994.

[19] Alexander Razborov. Lower bounds on the complexity of some boolean functions.
Dokl. Ak. Nauk., 1985.

[20] John H. Reif. Synthesis of Parallel Algorithms. Morgan Kaufmann, San Mateo, 1993.

[21] Yossi Shiloach and Uzi Vishkin. An O(n2 logn) parallel MAX-FLOW algorithm.
Journal of Algorithms, 3(2):128–146, June 1982.

[22] Andrew Yao. Lower bounds for algebraic computation trees with integer inputs.
In Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science, pages 222–227, 1977.

15

