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Abstract 
In analogy of classical Kolmogorov complexity we de­

velop a theory of the algorithmic information in bits con­
tained in any one of continuously many pure quantum 
states: quantum Kolmogorov complexity. Classical Kol­
mogorov complexity coincides with the new quantum Kol­
mogorov complexity restricted to the classical domain. 
Quantum Kolmogorov complexity is upper bounded and 
can be effectively approximated from above. With high 
probability a quantum object is incompressible. There are 
two alternative approaches possible: to define the complex­
ity as the length of the shortest qubit program that effec­
tively describes the object, and to use classical descriptions 
with computable real parameters. 

1 Introduction 
While Kolmogorov complexity is the accepted absolute 

measure of information content in a classical individual 
finite object, a similar absolute notion is needed for the in­
formation content of a pure quantum state. 1 Quantum 
theory assumes that every complex vector, except the null 
vector, represents a realizable pure quantum state. 2 This 
leaves open the question of how to design the equipment 
that prepares such a pure state. While there are contin­
uously many pure states in a finite-dimensional complex 
vector space--corresponding to all vectors of unit length­
we can finitely describe only a countable subset. Impos­
ing effectiveness on such descriptions leads to constructive 
procedures. The most general such procedures satisfying 
universally agreed-upon logical principles of effectiveness 
are quantum Turing machines, [2]. To define quantum Kol­
mogorov complexity by way of quantum Turing machines 
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1 For definitions and theoiy of Kolmogorov complexity consult [4], 
and for quantum theoiy consult [5]. 

2 That is, eveiy complex vector that can be normalized to unit length. 
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leaves essentially two options: 

1. We want to describe every quantum superposition ex­
actly; or 

2. we want to take into account the number of bits/qubits 
in the specification as well the accuracy of the quan­
tum state produced. 

We have to deal with three problems: 

• There are continuously many quantum Turing ma­
chines; 

• There are continously many pure quantum states; 

• There are continuously many qubit descriptions. 

There are uncountably many quantum Turing machines 
only if we allow arbitrary real rotations in the definition 
of machines. Then, a quantum Turing machine can only be 
universal in the sense that it can approximate the computa­
tion of an arbitrary machine, [2]. In descriptions using uni­
versal quantum Turing machines we would have to account 
for the closeness of approximation, the number of steps re­
quired to get this precision, and the like. In contrast, if 
we fix the rotation of all contemplated machines to a sin­
gle primitive rotation() with cos()= 3/5 and sin()= 4/5 
then there are only countably many Turing machines and 
the universal machine simulates the others exactly [l]. Ev­
ery quantum Turing machine computation using arbitrary 
real rotations can be approximated to any precision by ma­
chines with fixed rotation B but in general cannot be sim­
ulated exactly-just like in the case of the simulation of 
arbitrary quantum Turing machines by a universal quan­
tum Turing machine. Since exact simulation is impossible 
by a fixed universal quantum Turing machine anyhow, but 
arbitrarily close approximations are possible by Turing ma­
chines using a fixed rotation like(), we are motivated to fix 
Q1, Q2, ... as a standard enumeration of quantum Turing 
machines using only rotation B. 

Our next question is whether we want programs (de­
scriptions) to be in classical bits or in qubits? The intuitive 



notion of computability requires the programs to be classi­
cal. Namely, to prepare a quantum state requires a physical 
apparatus that "computes" this quantum state from classi­
cal specifications. Since such specifications have effective 
descriptions, every quantum state that can be prepared can 
be described effectively in descriptions consisting of classi­
cal bits. Descriptions consisting of arbitrary pure quantum 
states allows noncomputable (or hard to compute) informa­
tion to be hidden in the bits of the amplitudes. In Defini­
tion 2 we call a pure quantum state directly computable if 
there is a (classical) program such that the universal quan­
tum Turing machine computes that state from the program 
and then halts in an appropriate fashion. In a computa­
tional setting we naturally require that directly computable 
pure quantum states can be prepared. By repeating the 
preparation we can obtain arbitrarily many copies of the 
pure quantum state. 3 Restricting ourselves to an effec­
tive enumeration of quantum Turing machines and classi­
cal descriptions to describe by approximation continuously 
many pure quantum states is reminiscent of the construc­
tion of continuously many real numbers from Cauchy se­
quences ofrational numbers, the rationals being effectively 
enumerable. 

The second approach considers the shortest effective 
qubit description of a pure quantum state. This can also 
be properly formulated in terms of the conditional version 
of the first approach. An advantage of this version is that 
the upper bound on the complexity of a pure quantum state 
is immediately given by the number of qubits involved in 
the literal description of that pure quantum state. The sta­
tus of incompressibility and degree of uncomputability is 
as yet unknown and potentially a source of problems with 
this approach. 

The third approach is to give programs for the 2n+1 real 
numbers involved in the precise description of the n-qubit 
state. Then the question reduces to the problem of describ­
ing lists of real numbers. 

In the classical situation there are also several vari­
ants of Kolmogorov complexity that are very meaningful 
in their respective settings: plain Kolmogorov complex­
ity, prefix complexity, monotone complexity, uniform com­
plexity, negative logarithm of universal measure, and so on 
[4]. It is therefore not surprising that in the more com­
plicated situation of quantum information several different 
choices of complexity can be meaningful and unavoidable 
in different settings. 

3 See the discussion in [5], pp. 49-51. If descriptions are not effective 
then we are not going to use them in our algorithms except possibly on 
inputs from an "unprepared" origin. Every quantum state used in a quan­
tum computation arises from some classically preparation or is possibly 
captured from some unknown origin. If the latter, then we can consume it 
as conditional side-information or an oracle. 
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2 Classical Descriptions 
The complex quantity (xjz) is the inner product of vec­

tors jx) and lz). Since pure quantum states jx), lz) have 
unit length, j(xlz)I =I cos8j where 8 is the angle between 
vectors jx) and jz) and j(xjz)l2 is the probability of out­
come Ix) being measured from state lz), [5]. The idea is 
as follows. Avon Neumann measurement is a decomposi­
tion of the Hilbert space into subspaces that are mutually 
orthogonal, for example an orthonormal basis is an observ­
able. Physicists like to specify observables as Hermitian 
matrices, where the understanding is that the eigenspaces 
of the matrices (which will always be orthogonal) are the 
actual subspaces. When a measurement is performed, the 
state is projected into one of the subspaces (with probabil­
ity equal to the square of the projection). So the subspaces 
correspond to the possible outcomes of a measurement. In 
the above case we project jz) on outcome Ix) using projec­
tion jx)(xj resulting in (xjz)jx). 

Our model of computation is a quantum Turing machine 
with classical binary program p on the input tape and a 
quantum auxiliary input on a special conditional input fa­
cility. We think of this auxiliary input as being given as 
a pure quantum state jy) (in which case it can be used 
only once), as a mixture density matrix p, or (perhaps par­
tially) as a classical program from which it can be com­
puted. In the last case, the classical program can of course 
be used indefinitely often.4 It is therefore not only im­
portant what information is given conditionally, but also 
how it is described-like this is the sometimes the case in 
the classical version of Kolmogorov complexity for other 
reasons that would additionally hold in the quantum case. 
We impose the condition that the set of halting programs 
Py = {p : T(pjy) < oo} is prefix-free: no program in 
Py is a proper prefix of another program in Py. Put dif­
ferently, the Turing machine scans all of a halting program 
p but never scans the bit following the last bit of p: it is 
self-delimiting. 5 6 

4 We can even allow that the conditional information y is infinite or 
noncomputable, or an oracle. But we will not need this in the present 
paper. 

5 0ne can also use a model were the input p is delimited by distin­
guished markers. Then the Turing machine always knows where the in­
put ends. In the self-delimiting case the endmarker must be implicit in 
the halting program p itself. This encoding of the endmarker carries an 
inherent penalty in the form of increased length: typically a prefix code 
of an n-length binary string has length about n +log n + 2 log log n bits, 
[4]. 

6There are two possible interpretations for the computation relation 
Q(p,y) === Ix). In the narrow interpretation we require that Q with p 
on the input tape and y on the conditional tape halts with Ix) on the out­
put tape. In the wide interpretation we can define pure quantum states 
by requiring that for every precision o > O the computation of Q with p 
on the input tape and y on the conditional tape and o on a tape where 
the precision is to be supplied halts with Ix') on the output tape and 
l(xlx'}i2 2: 1 - o. Such a notion of "computable" or "recursive" pure 
quantum states is similar to Turing's notion of "computable numbers." In 



DEFINITION 1 The (self-delimiting) complexity of Ix) 
with respect to quantum Turing machine Q with y as con­
ditional input given for free is 

KQ(lx)ly) := min{l(p)+f- log ~(zjx)l 2 )l : Q(p, y) = [z)} 
p 

where l (p) is the number of bits in the specification p, y is 
an input quantum state and lz) is the quantum state pro­
duced by the computation Q (p, y), and Ix) is the target 
state that one is trying to describe. 

THEOREM 1 There is a universal machine 7 U such that 
for all machines Q there is a constant CQ (the length of 
the description of the index of Q in the enumeration) such 
that for all quantum states [x) we have Ku([x)ly) :::; 
KQ(lx)[y) + CQ. 

PROOF. There is a universal quantum Turing ma­
chine U in the standard enumeration Q 1 , Q2 , ... such that 
for every quantum Turing machine Q in the enumeration 
there is a self-delimiting program iQ (the index of Q) and 
U(iQp,y) = Q(p,y) for all p,y. Setting CQ = l(iQ) 
proves the theorem. D 

We fix once and for all a reference universal quantum 
Turing machine U and define the quantum Kolmogorov 
complexity as 

K(lx)ly) := Ku(lx)ly), 

K(jx)) := Ku(lx)lc), 

where E denotes the absence of any conditional informa­
tion. The definition is continuous: If two quantum states 
are very close then their quantum Kolmogorov complexi­
ties are very close. Furthermore, since we can approximate 
every (pure quantum) state Ix) to arbitrary closeness, [2], 
in particular, for every constant E > 0 we can compute a 
(pure quantum) state lz) such that I (zlx) [2 > 1 - E. 8 For 
this definition to be useful it should satisfy: 

• The complexity of a pure state that can be directly 
computed should be the length of the shortest pro­
gram that computes that state. (If the complexity is 
less then this may lead to discontinuities when we re­
strict quantum Kolmogorov complexity to the domain 
of classical objects.) 

• The quantum Kolmogorov complexity of a classical 
object should equal the classical Kolmogorov com­
plexity of that object (up to a constant additive term). 

the remainder of this section we use the narrow interpretation. 
7 We use "U" to denote a universal (quantum) Turing machine rather 

than a unitary matrix. 
8 We can view this as the probability of the possibly noncomputable 

outcome \x) when executing projection \x)(x\ on \z) and measuring out­
come \x). 
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• The quantum Kolmogorov complexity of a quantum 
object should have an upper bound. (This is necessary 
for the complexity to be approximable from above, 
even if the quantum object is available in as many 
copies as we require.) 

• Most objects should be "incompressible" in terms of 
quantum Kolmogorov complexity. 

• In a probabilistic ensemble the expected quantum 
Kolmogorov complexity should be about equal (or 
have another meaningful relation) to the von Neu­
mann entropy. 9 

For a quantum system [z) the quantity P(x) := I (zjx) [2 

is the probability that the system passes a test for Ix), and 
vice versa. The term r - log ~ ( z Ix) 12 ) l can be viewed as 
the code word length to redescribe [x) given lz) and an 
orthonormal basis with Ix) as one of the basis vectors us­
ing the well-known Shannon-Pano prefix code. This works 
as follows: For every state [z) in N := 211-dimensional 
Hilbert space with basis vectors B = {I e0), ... , I e N -1)} 
we have L~~ 1 j(eilz)[2 = 1. If the basis has [x) 
as one of the basis vectors, then we can consider jz) 
as a random variable that assumes value Ix) with prob­
ability [(x[z)l 2 . The Shannon-Pano code word for Ix) 
in the probabilistic ensemble B, ([(eilz)l2).; is based on 
the probability l(xlz)[ 2 of [x) given [z) and has length 
I - log([ (xlz)i2)l Considering a canonical method of con­
structing an orthonormal basis B = [e0 ), ... , [eN-1) from 
a given basis vector, we can choose B such that K(B) = 
min;{K(je;))} + 0(1). The Shannon-Pano code is appro­
priate for our purpose since it is optimal in that it achieves 
the least expected code word length-the expectation taken 
over the probability of the source words-up to 1 bit by 
Shannon's Noiseless Coding Theorem. 

2.1 Consistency with Classical Complexity 
Our proposal would not be useful if it were the case that 

for a directly computable object the complexity is less than 
the shortest program to compute that object. This would 
imply that the code corresponding to the probabilistic com­
ponent in the description is possibly shorter than the differ­
ence in program lengths for programs for an approxima­
tion of the object and the object itself. This would penalize 
definite description compared to probabilistic description 
and in case of classical objects would make quantum Kol­
mogorov complexity less than classical Kolmogorov com­
plexity. 

9In the classical case the average self-delimiting Kolmogorov com­
plexity equals the Shannon entropy up to an additive constant depending 
on the complexity of the distribution concerned. 



THEOREM 2 Let U be the reference universal quantum 
Turing machine and let Ix) be a basis vector in a di­
rectly computable orthonormal basis B given y: there is 
a program p such that U(p,y) = Ix). Then K(lx)ly) 
minp{Z(p) : U(p, y) = Ix)} up to K(Bly) + 0(1). 

PROOF. Let lz) be such that 

K(lx)ly) = min{Z(q)+l-log(j(zlx)l 2)l : U(q,y) = lz) }. 
q 

Denote the program q that minimizes the righthand side 
by qmin and the program p that minimizes the expression 
in the statement of the theorem by Pmin· 

By running U on all binary strings (candidate programs) 
simultaneously dovetailed-fashion 10 one can enumerate 
all objects that are directly computable given y in order 
of their halting programs. Assume that U is also given a 
K(Bly) length program b to compute B-that is, enumer­
ate the basis vectors in B. This way qmin computes lz), 
the program b computes B. Now since the vectors of B arc 
mutually orthogonal 

L l\zle/1 2 = l. 
le)EB 

Since Ix) is one of the basis vectors we have - log I ( z Ix) 12 

is the length of a prefix code (the Shannon-Pano code) to 
compute Ix) from lz) and B. Denoting this code by r we 
have that the concatenation qmin br is a program to compute 
Ix): parse it into qmin, b, and r using the self-delimiting 
property of qmin and b. Use qmin to compute lz) and use 
b to compute B, determine the probabilities l(zle)l 2 for 
all basis vectors le) in B. Determine the Shannon-Pano 
code words for all the basis vectors from these probabili­
ties. Since r is the code word for Ix) we can now decode 
Ix). Therefore, 

Z(qmin) +I- log(l(zlx)l 2 )l ~ l(Pmin) - K(Bly) - 0(1) 

which was what we had to prove. D 

COROLLARY 1 On classical objects (that is, the natural 
numbers or finite binary strings that are all directly com­
putable) the quantum Kolmogorov complexity coincides 
up to a fixed additional constant with the self-delimiting 
Kolmogorov complexity since K(Bln) = 0(1) for the 

io A dovetailed computation is a method related to Cantor's diagonal­
ization to run all programs alternatingly in such a way that every program 
eventually makes progress. On an list of programs p1, p2, ... one divides 
the overall computation into stages k :::::: 1, 2, .... In stage k of the over­
all computation one executes the 'ith computation step or every program 
Pk-i+l fori ::=. 1, ... ,k. 
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standard classical basis B = { O, 1} n. 11 (We assume 
that the information about the dimensionality of the Hilbert 
space is given conditionally.) 

REMARK 1 Fixed additional constants are no problem 
since the complexity also varies by fixed additional con­
stants due to the choice of reference universal Turing ma­
chine. o 

2.2 Upper Bound on Complexity 
A priori, in the worst case K(lx) In) is possibly oo. We 

show that the worst-case has a 2n upper bound. 

LEMMA 1 For all n-qubit quantum states Ix/ we have 
K(lx) In) ::::; 2n + 0(1). 

PROOF. For every state Ix) in N := 2n-dimensional 
Hilbert space with basis vectors le0 ), ... , leN-i) we have 

L:~~ 1 l(e;lx)l2 = 1. Hence there is an i such that 
J(e;lx)l 2 ~ 1/N. LetpbeaK(iln)+O(l)-bitprogramto 
construct a basis state le;) given n. Then l(p) ::::; n + 0(1). 
Then K(lx)jn)::::; l(p) - log(l/ N)::::; 2n + 0(1). D 

2.3 Computability 
In the classical case Kolmogorov complexity is not 

computable but can be approximated from above by a com­
putable process. The non-cloning property prevents us 
from copying an unknown pure quantum state given to 
us. Therefore, an approximation from above that requires 
checking every output state against the target state destroys 
the latter. To overcome the fragility of the pure quantum 
target state one has to postulate that it is available as an 
outcome in a measurement. 

THEOREM 3 Let Ix) be the pure quantum state we want to 
describe. 

(i) The quantum Kolmogorov complexity K(lx)) is not 
computable. 

(ii) {f we can repeatedly execute the projection jx)(xl 
and peiform a measurement with outcome Ix/. then the 
quantum Kolmogorov complexity K (Ix/) can be approxi­
mated from above by a computable process with arbitrarily 
small probability of error a of giving a too small value. 

PROOF. The uncomputability follows a fortiori from 
the classical case. The semicomputability follows be­
cause we have established an upper bound on the quan­
tum Kolmogorov complexity, and we can simply enumer­
ate all halting classical programs up to that length by run­
ning their computations dovetailed fashion. The idea is 

11 This proof does not show that it coincide up to an additive con­
stant term with the original plain complexity defined by Kolmogorov, 
[ 4], based on Turing machines where the input is delited by distinguished 
markers. The same proof for the plain Kolmogorov complexity shows 
that it coincides up to a logarithmic additive term. 



as follows: Let the target state be Ix) of n qubits. Then, 
K(\x)\n) S: 2n + 0(1). (The unconditional case K(lx)) 
is similar with 2n replaced by 2(n + logn).) We want 
to identify a program x* such that p := x* minimizes 
l(p) - log l(xlU(p, n))l 2 among all candidate programs. 
To identify it in the limit, for some fixed k satisfying (2) 
below for given n, a, E, repeat the computation of every 
halting programp with l(p) S: 2n + 0(1) at least k times 
and perform the assumed projection and measurement. For 
every halting program p in the dovetailing process we esti­
mate the probability q := l(xlU(p,n))\ 2 from the fraction 
m/k: the fraction of m positive outcomes out of k mea­
surements. The probability that the estimate m / k is off 
from the real value q by more than an Eq is given by Cher­
noff's bound: for 0 S: E :::; 1, 

P(\m - qk\ > €qk) :::; 2e-<2qk/3. (1) 

This means that the probability that the deviation Im/ k- qi 
exceeds Eq vanishes exponentially with growing k. Every 
candidate program p satisfies (1) with its own q or 1 -
q. There are 0 (22n) candidate programs p and hence also 
0(22n) outcomes U (p, n) with halting computations. We 
use this estimate to upper bound the probability of error 
a. For given k, the probability that some halting candidate 
programp satisfies Im - qk\ > Eqk is at most a with 

a S: 2::: 2e-•'qk/3. 

U(p,n)<oo 

The probability that no halting program does so is at least 
1 - a. That is, with probability at least 1 - a we have 

m 
(1 - i:)q :::; k s: (1 + €)q 

for every halting program p. It is convenient to restrict 
attention to the case that all q's are large. Without loss of 
generality, if q < ~ then consider 1 - q instead of q. Then, 

logo::::; 2n - (t:2kloge)/6 + 0(1). (2) 

The approximation algorithm is as follows: 
Step 0: Set the required degree of approximation i: < 

1/2 and the number of trials k to achieve the required prob­
ability of error a. 

Step 1: Dovetail the running of all candidate programs 
until the next halting program is enumerated. Repeat the 
computation of the new halting program k times 

Step 2: If there is more than one program p that 
achieves the current minimum then choose the program 
with the smaller length (and hence least number of suc­
cessfull observations). If p is the selected program with m 
successes out of k trials then set the current approximation 
of K(\x)) to 

m 
l(p) - log (l + €)k. 
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This exceeds the proper value of the approximation based 
on the real q instead of m/ k by at most 1 bit for all t: < 1. 

Step 3: Goto Step 1. D 

2.4 Incompressibility 
DEFINITION 2 A pure quantum state Ix) is computable if 
K(\x)) < oo. Hence all finite-dimensional pure quantum 
states are computable. We call a pure quantum state di­
rectly computable if there is a program p such that U (p) = 
Ix). 

The standard orthonormal basis-consisting of all n-bit 
strings-of the 2n-dimensional Hilbert space 1-lN has at 
least 2n (1-2-c) basis vectors \ei) that satisfy K ( \e;) In) ~ 
n - c. This is the standard counting argument in [4]. But 
what about nonclassical orthonormal bases? 

LEMMA 2 There is a (possibly nonclassical) orthonormal 
basis of the 2n-dimensional Hilbert space 1-lN such that at 
least 2n(1 - 2-c) basis vectors le;) satisfy K(lei)\n) ~ 
n-c. 

PROOF. Every orthonormal basis of 1-lN has 2n ba­
sis vectors and there are at most m s; L:z;0c-i 2i = 
2n-c - 1 programs oflength less than n - c. Hence there 
are at most m programs available to approximate the ba­
sis vectors. We construct an orthonormal basis satisfying 
the lemma: The set of directly computed pure quantum 
states lxo), ... , \xm-1) span an m'-dimensional subspace 
A with m 1 s; m in the 2n-dimensional Hilbert space 1lN 
such that 1lN = A EEl AJ... Here Al. is a (2n - m 1 )­

dimensional subspace of 1-lN such that every vector in it 
is perpendicular to every vector in A. We can write every 
element \x) E 1lN as 

m'-1 2n-m'-l 

L a;\ai) + L 
i=O i=O 

where the la;) 's form an orthonormal basis of A and the 
lbi)'s form an orthonormal basis of AJ.. so that the \a;)'s 
and \bi) 's form an orthonormal basis K for 1-lN. For every 
directly computable state lxi) EA and basis vector \b;) E 
AJ.. we have \(xjlbi)l 2 = 0 implying that K(lxi)ln) -
log \(xj\bi)\2 = oo and therefore K(lb;)ln) > n - c (0:::; 
j < m, 0 :::; i < 2n - m 1). This proves the lemma. D 

We generalize this lemma to arbitrary bases: 

THEOREM 4 Every orthonormal basis leo), ... , \e2 .. -1) 
of the 2n-dimensional Hilbert space 1-lN has at least 
2n(1 - 2-c) basis vectors \ei) that satisfy K(le;)ln) ~ 
n-c. 

PROOF. Use the notation of the proof of Lemma 2. As­
sume to the contrary that there are > 2n-c basis vectors 



lei) with K(je;)ln) < n - c. Then at least two of them, 
say leo) and le1 ) and some pure quantum state jx) directly 
computed from a< (n - c)-length program satisfy 

(i = 0, 1). This means that K(lx)ln) < n- c-1 since not 
both leo) and le1 ) can be equal to jx). Hence for every di­
rectly computed pure quantum state of complexity n - c - 1 
there is at most one basis state of the same complexity (in 
fact only if that basis state is identical with the directly 
computed state.) Now eliminate all directly computed pure 
quantum states Ix) of complexity n - c - 1 together with 
the basis states le) that stand in relation Equation 3. We are 
now left with > 2n-c-1 basis states that stand in relation of 
Equation 3 with the remaining at most 2n-c- 1 -1 remain­
ing directly computable pure quantum states of complexity 
:::; n - c - 2. Repeating the same argument we end up with 
> 1 basis vector that stand in relation of Equation 3 with 
0 directly computable pure quantum states of complexity 
:::; 0 which is impossible. D 

COROLLARY 2 The uniform probability 
Pr{lx): K(jx)ln) ~ n - c} ;:-:: 1- 1/2c. 

EXAMPLE 1 We elucidate the role of the - log l(xlz)l 2 

term. Let x be a random classical string with K ( x) ;:-:: l ( x) 
and let y be a string obtained from x by complementing 
one bit. It is known (Exercise 2.2.8 in [4]) that for ev­
ery such x of length n there is such a y with complex­
ity K(yln) = n - logn + 0(1). Now let lz) be a pure 
quantum state which has classical bits except the differ­
ence bit between x and y that has equal probabilities of 
being observed as "l" and as "O." We can prepare lz) by 
giving y and the position of the difference bit (in log n 
bits) and therefore K(lz)ln) :::; n + 0(1). Since from 
jz) we have probability ~of obtaining x by observing the 
particular bit in superposition and K(xln) ~nit follows 
K(lz)ln) ;:-:: n+O(l) andthereforeK(lz)ln) = n+O(l). 
From lz) we have probability~ of obtaining y by observing 
the particular bit in superposition which (correctly) yields 
that K(yln) :::; n + 0(1). <> 

2.5 Conditional Complexity 
We have used the conditional complexity K(lx)ly) 

to mean the minimum sum of the length of a classical 
program to compute lz) plus the negative logarithm of 
the probability of outcome Ix) when executing projection 
jx)(xj on jz) and measuring, given the pure quantum state 
y as input on a separate input tape. In the quantum situa­
tion the notion of inputs consisting of pure quantum states 
is subject to very special rules. 
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Firstly, if we are given an unknown pure quantum state 
jy) as input it can be used only once, that is, it is irrevo­
cably consumed and lost in the computation. It cannot be 
copied or cloned without destroying the original [5]. This 
phenomenon is subject to the so-called no-cloning theo­
rem and means that there is a profound difference between 
giving a directly computable pure quantum state as a clas­
sical program or giving it literally. Given as a classical 
program we can prepare and use arbitrarily many copies 
of it. Given as an (unknown) pure quantum state in su­
perposition it can be used as start of a computation only 
once-unless of course we deal with an identity computa­
tion in which the input state is simply transported to the 
output state. This latter computation nonetheless destroys 
the input state. 

If an unknown state jy) is given as input (in the condi­
tional for example) then the no-cloning theorem of quan­
tum computing says it can be used only once. Thus, for a 
non-classical pure quantum state jx) we have 

K(lx),lx)llx)):::; K(jx)) +O(l) 

rather than K(x, xlx) = 0(1) as in the case for classical 
objects x. This holds even if Ix) is directly computable 
but is given in the conditional in the form of an unknown 
pure quantum state. However, if Ix) is directly computable 
and the conditional is a classical program to compute this 
directly computable state, then that program can be used 
over and over again. 

In the previous example, ifthe conditional Ix) is directly 
computable, for example by a classical program p, then we 
have both K(lx)IP) = 0(1) and K(lx), lx)jp) = 0(1). 
In particular, for a classical program p that computes a di­
rectly computable state Ix) we have 

K(lx), lx)jp) = 0(1). 

It is important here to notice that a classical program 
for computing a directly computable quantum state carries 
more information than the directly computable quantum 
state itself-much like a shortest program for a classical 
object carries more information than the object itself. In 
the latter case it consists in partial information about the 
halting problem. In the quantum case of a directly com­
putable pure state we have the additional information that 
the state is directly computable and in case of a shortest 
classical program additional information about the halting 
problem. 

2.6 Sub-Additivity 
Quantum Kolmogorov complexity of directly com­

putable pure quantum states in simple orthonormal bases 
is sub-additive: 



LEMMA 3 For directly computable Ix), IY) both of which 
belong to (possibly different) orthonormal bases of Ko!­
mogorov complexity 0 ( 1) we have 

K(lx), IY))::; K(lx)llY)) + K(lv)) 

up to an additive constant term. 

PROOF. By Theorem 2 we there is a program Py tu com­
pute Iv) with l(v) = K(lv)) and a programvy-->x to com­
pute Ix) from Iv) with l(Py-+x) = K(lx)llY)) up to addi­
tional constants. Use Py to construct two copies of IY) and 
Vy-+x to construct Ix) from one of the copies of ly). The 
separation between these concatenated binary programs is 
taken care of by the self-delimiting property of the sub­
programs. The additional constant term takes care of the 
couple of 0(1)-bit programs that are required. D 

REMARK 2 In the classical case we have equality in the 
theorem (up to an additive logarithmic term). The proof 
of the remaining inequality, as given in the classical case, 
doesn't hold directly forthe quantum case. It would require 
a decision procedure that establishes equality between two 
pure quantum states without error. While the sub-additivity 
property holds in case of directly computable states, is easy 
to see that for the general case of pure states the subaddi­
tivity property fails due to the "non-cloning" property. For 
example for pure states Ix) that are not "clonable" we have: 

K(lx), Ix))> K(lx)llx)) + K(lx)) = K(lx)) + 0(1). 

0 

We additionally note: 

LEMMA 4 For all directly computable pure states Ix) and 
IY) we have K(lx), !Y)) ::; K(ly)) - log !(xiv) 12 up to an 
additive logarithmic term. 

PROOF. K(lx)lly)) ::; - log l(xly)i2 by the proof of 
Theorem 2. Then, the lemma follows by Lemma 3. D 

3 Qubit Descriptions 
One way to avoid two-part descriptions as we used 

above is to allow qubit programs as input. This leads to 
the following definitions, results, and problems. 

DEFINITION 3 The qubit complexity of Ix) with respect 
to quantum Turing machine Q with y as conditional input 
given for free is 

KQQ(lx)ly) := min{l(lp)): Q(lp),y) =Ix)} 
p 

where l(lp)) is the number of qubits in the qubit specifi­
cation Ip), Iv) is an input quantum state, y is given con­
ditionally, and Ix) is the quantum state produced by the 
computation Q(lp), y ): the target state that one describes. 
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Note that here too there are two possible interpretations 
forthe computation relation Q(lv), y) = Ix). In the narrow 
interpretation we require that Q with IP) on the input tape 
and y on the conditional tape halts with Ix) on the output 
tape. In the wide interpretation we require that for every 
precision o > 0 the computation of Q with IP) on the input 
tape and y on the conditional tape and /5 on a tape where 
the precision is to be supplied halts with Ix') on the output 
tape and l(xlx')l2 :.'.:: 1 - 15. Additionally one can require 
that the approximation finishes in a certain time, say, poly­
nomial in l(lx)) and 1//5. In the remainder of this section 
we can allow either interpretation (note that the "narrow" 
complexity will always be at least as large as the "wide" 
complexity). Fix an enumeration of quantum Turing ma­
chines like in Theorem 1, this time with Turing machines 
that use qubit programs. Just like before it is now straight­
forward to derive an Invariance Theorem: 

THEOREM 5 There is a universal machine U such that 
for all machines Q there is a constant c (the length of 
a self-delimiting encoding of the index of Q in the enu­
meration) such that for all quantum states Ix) we have 
KQu(lx)ly)::; KQQ(lx)lv) +c. 

We fix once and for all a reference universal quantum Tur­
ing machine U and express the qubit quantum Kolmogorov 
complexity as 

KQ(lx)ly) := KQu(lx)ly), 
KQ(lx)) := KQu(lx)lt:), 

where E indicates the absence of conditional information 
(the conditional tape contains the "quantum state" with 0 
qubits). We now have immediately: 

LEMMA 5 KQ(lx))::; l(lx)) + 0(1). 

PROOF. Give the reference universal machine 11 no) @ 

Ix) as input where n is the index of the identity quantum 
Turing machine that transports the attached pure quantum 
state Ix) to the output. D 

It is possible to define unconditional K Q-complexity in 
terms of conditional K-complexity as follows: Even for 
pure quantum states that arc not directly computable from 
effective descriptions we have K(lx)!lx)) = 0(1). This 
naturaly gives: 

LEMMA 6 The qubit quantum Kolmogorov complexity of 
Ix) satisfies 

KQ(lx)) = min{l(IP)): K(lx)llp))} + 0(1), 
p 

where l(lv)) denotes the number of qubits in Iv). 



PROOF. Transfer the conditional IP) to the input using 
an 0(1)-bit program. o 

We can generalize this definition to obtain conditional 
K Q-complexity. 

3.1 Potential Problems of Qubit Complexity 
While it is clear that (just as with the previous aproach) 

the qubit complexity is not computable, it is unknown to 
the author whether one can approximate the qubit com­
plexity from above by a computable process in any mean­
ingful sense. In particular, the dovetailing approach we 
used in the first approach now doesn't seem applicable due 
to the non-countability of the potentential qubit program 
candidates. While it is clear that the qubit complexity of a 
pure quantum state is at least I, why would it need to be 
more than one qubit since the probability amplitude can 
be any complex number? In case the target pure quan­
tum state is a classical binary string, as observed by Harry 
Buhrman, Holevo's theorem [5] tells us that on average one 
cannot transmit more than n bits of classical information 
by n-qubit messages (without using entangled qubits on 
the side). This suggests that for every n there exist clas­
sical binary strings of length n that have qubit complex­
ity at least n. This of course leaves open the case of the 
non-classical pure quantum states-a set of measure one­
and of how to prove incompressibility of the overwhelming 
majority of states. These matters have since been inves­
tigated by A. Berthiaume, S. Laplante, and W. van Dam 
(paper in preparation). 

4 Real Descriptions 
A final version of quantum Kolmogorov complexity 

uses computable real parameters to describe the pure quan­
tum state with complex probability amplitudes. This re­
quires two reals per complex probability amplitude, that is, 
for n qubits one requires 2n+1 real numbers in the worst 
case. Since every computable real number may require a 
separate program, a computable n qubit state may require 
2n+1 finite programs. While this approach does not allow 
the development of a clean theory in the sense of the previ­
ous approaches, it can be directly developed in terms of al­
gorithmic thermodynamics-an extension of Kolmogorov 
complexity to randomness of infinite sequences (such as 
binary expansions of real numbers) in terms of coarse­
graining and sequential Martin-Li:ifftests, completely anal­
ogous to Peter Gacs theory [3, 4]. 
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