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QUANTUM ALGORITHMIC ENTROPY

PETER GÁCS

Abstract. We extend algorithmic information theory to quantum mechanics, taking a universal
semicomputable density matrix (“universal probability”) as a starting point, and define complexity
(an operator) as its negative logarithm.

A number of properties of Kolmogorov complexity extend naturally to the new domain. Ap-
proximately, a quantum state is simple if it is within a small distance from a low-dimensional
subspace of low Kolmogorov complexity. The von Neumann entropy of a computable density ma-
trix is within an additive constant from the average complexity. Some of the theory of randomness
translates to the new domain.

We explore the relations of the new quantity to the quantum Kolmogorov complexity defined
by Vitányi (we show that the latter is sometimes as large as 2n−2 logn) and the qubit complexity
defined by Berthiaume, Dam and Laplante. The “cloning” properties of our complexity measure
are similar to those of qubit complexity.

1. Introduction

Kolmogorov complexity (or by a more neutral name, description complexity) is an attractive
concept, helping to shed light onto such subtle concepts as information content, randomness and
inductive inference. Quantum information theory, a subject with its own conceptual difficulties,
is attracting currently more attention than ever before, due to the excitement around quantum
computing, quantum cryptography, and the many connections between these areas. The new interest
is also spurring efforts to extend the theory of description complexity to the quantum setting:
see [6], [1]. We continue these efforts in the hope that the correct notions will be found at the
convergence of approaches from different directions. This has been the case for the theory of classical
description complexity and randomness, What we expect from these researches is an eventual deeper
understanding of quantum information theory itself.

One of the starting points from wich it is possible to arrive at description complexity is Levin’s
concept of a universal semicomputable (semi)measure. We follow this approach in the quantum
setting, where probability measures are generalized into density matrices.

In contrast to the works [6], [1] we do not find the notion of a quantum computer essential for
this theory, even to the notions and results found in these works. The reason is that limitations
on computing time do not play a role in the main theory of description complexity, and given
enough time, a quantum computer can be simulated by a classical computer to any desired degree
of precision.

1.1. Notation. It seems that universal probability can also be defined in an infinite-dimensional
space (it should be simple to extend the notions to Fock space), but we will confine ourselves to
finite-dimensional spaces, in order to avoid issues of convergence and spectral representation for
infinite-dimensional operators. Let us fix for each N a finite-dimensional Hilbert space HN , with a
canonical orthonormal basis |β1〉, . . . , |βN 〉. (We do not use double index here, since we can assume
that HN ⊂ HN+1 and the canonical basis of HN is also the beginning of that of HN+1.) Let
Qn =

⊗n
i=1 Q1 be the Hilbert space of n qubits. Let |0〉, |1〉 be some fixed orthonormal basis of Q1.
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Let Zn2 be the set of binary sequences of length n. If x ∈ Z
n
2 then x = (x(1), x(2), . . . , x(n)), and we

write

l(x) = n.

We denote, as usual, for x ∈ Z
n
2 :

|x〉 =

n
⊗

i=1

|x(i)〉.

We identify Qn with H2n , with the canonical basis element |βx〉 = |x〉.
If we write ψ or |ψ〉 for a state then the corresponding element of the dual space will be written

either as ψ† or as 〈ψ|. Accordingly, the inner product can be written in three ways as

〈φ|ψ〉 = 〈φ, ψ〉 = φ†ψ.

As usual, we will sometimes write

|φ〉 ⊗ |ψ〉 = |φ〉|ψ〉 = |φ, ψ〉.

The operation Tr denotes trace, and over a tensor product space HX ⊗ HY , the operation TrY
denotes partial trace.

As usual, for self-adjoint operators ρ, σ, let us write ρ 6 σ if σ − ρ is nonnegative definite.
Let us call a quantum state |ψ〉, with coefficients 〈βi|ψ〉 that are algebraic numbers, elementary.

The reason for going to coefficients that are algebraic numbers is that this allows us the usual
operations of linear algebra (orthogonalization, finding eigenvalues and eigenvectors) while remaining
in the realm of elementary objects.

Whenever we write U(p) = |φ〉 for a Turing machine U , we mean that U simply outputs the
(algebraic definitions of the) coefficients of the elementary state |φ〉. Similarly, let us call a self-
adjoint operator T elementary if it is given by a matrix with algebraic entries.

We will also write U(p) = |φ〉 if U(p) outputs a sequence of tuples (c1k, . . . , cNk) for k = 1, 2, . . . ,
where cik is an elementary approximation of 〈βi|φ〉 to within 2−k. In this case, we say that |φ〉 is
a computable quantum state with program p. We can talk similarly about a program computing a
linear operator on the finite-dimensional space, or even computing an infinite sequence |φ1〉, |φ2〉, . . .
of states, in which case we output progressively better approximations to more and more elements
of the sequence.

Let
+
< denote inequality to within an additive constant, and

∗
< inequality to within a multiplicative

constant.
We assume that the reader knows the definition and simple properties of Kolmogorov complexity,

even the definition of its prefix-free version K(x). For a reference, use [3].

1.2. Attempts to define a quantum Kolmogorov complexity. In [6], a notion of the description
complexity of a quantum state was introduced. Though that definition uses quantum Turing ma-
chines, this does not seem essential. Indeed, a quantum Turing machine can simulate a classical
one. And if there is no restriction on computing time then any state output by a quantum Turing
machine starting from |0 . . . 0〉 can also be output with arbitrary approximation by some ordinary
Turing machine. We reproduce the definition from [6] as follows. For |ψ〉 ∈ Hn, let

Kq(|ψ〉 | N) = min{ l(p)− log |〈φ|ψ〉|2 : U(p,N) = |φ〉 }.

So, the complexity of |ψ〉 is made up of the length of a program describing an approximation |φ〉 to
|ψ〉 and a term penalizing for bad approximation. It is proved in [6] that for |ψ〉 ∈ Qn,

Kq(|ψ〉 | n)
+
< 2n.

The lower bounds given in that paper are close to n. The following theorem will be proved in
Section 7.

Theorem 1. For large enough n, there are states |ψ〉 ∈ Qn with Kq(|ψ〉 | n) > 2n− 2 logn.
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An entirely different approach to quantum Kolmogorov complexity is used in [1], where even the
defining programs consist of qubits rather than ordinary bits. I will refer informally to complexity
defined in [1] as “qubit complexity”. Despite the difference in some of the goals and basic definitions,
still a number of results of that paper look somewhat similar to ours.

1.3. This paper. The definition of Kq reflects the view that quantum states should not be accorded
the status of individual outcomes of experiments, and therefore Kq strives only to approximate spec-
ification. We go a little further, and approach quantum complexity using probability distributions
to start with. We find a universal semicomputable (semi-) density matrix (“universal probability”)
and define a “complexity operator” as its negative logarithm. Depending on the order of taking the
logarithm and the expectation, two possible complexities are introduced for a quantum state |ψ〉:

H(|ψ〉)
+
< H(|ψ〉).

A number of properties of Kolmogorov complexity extend naturally to the new domain. Approx-
imately, a quantum state is simple if it is within a small distance from a low-dimensional subspace
of low Kolmogorov complexity. (Ideally, the three vague terms should play a role in the following
decreasing order of significance: dimension, complexity, closeness.) This property can be used to
relate our algorithmic entropy to both Vitányi’s complexity and qubit complexity. We find that H
is within constant factor of Vitányi’s complexity, that H essentially lowerbounds qubit complexity
and upperbounds an oracle version of qubit complexity.

Though Vitányi’s complexity is typically close to 2n, while qubit complexity is
+
< n, these are

differences only within a constant factor; on the other hand, occasionally H can be much smaller
than H and thus Vitányi’s complexity is occasionally much smaller than qubit complexity. This is
due to the permissive way in which Vitányi’s complexity deals with approximations.

The von Neumann entropy of a computable density matrix is within an additive constant from
the average complexity. Some of the theory of randomness translates to the new domain, but new
questions arise due to non-commutativity.

The results on the maximal complexity of clones are sharp, and similar to those in [1].

2. Universal probability

Let us call a nonnegative real function f(x) defined on strings a semimeasure if
∑

x f(x) 6 1, and a
measure (a probability distribution) if the sum is 1. A function is called lower semicomputable if there
is a monotonically increasing sequence gn(x) of functions converging to it such that (n, x) 7→ gn(x)
is a computable function mapping into rational numbers. It is computable when it is both lower and
upper semicomputable. (A lower semicomputable measure can be shown to be also computable.)
The reason for introducing semicomputable semimeasures is not that computable measures are not
felt general enough; rather, this step is analogous to the introduction of recursively enumerable
sets and partial recursive functions. Just as there are “universal” (or, “complete” in terms of, say,
many-one reduction) recursively enumerable sets but no universal recursive sets, there is a universal
semicomputable semimeasure in the sense of the following proposition, even though there is no
universal computable measure.

Let U be an optimal prefix Turing machine used in the definition of K(x), and let z1, z2, . . . be
an infinite sequence. Then the quantity U(z) is well-defined: it is the output of U when z is written
on the input tape. Let Z1, Z2, . . . be an infinite coin-tossing 0-1 sequence, and let us define

m′(x) = Prob[U(Z) = x].(2.1)

Proposition 2.1 (Levin). There is a semicomputable semimeasure µ with the property that for any
other semicomputable semimeasure ν there is a constant cν > 0 such that for all x we have cνν(x) 6

µ(x). Moreover, µ
∗
= m′.

Proof sketch. We define a Turing machine T that will output a sequence (pt, xt, rt) where rt is a
positive rational number. At any time t, let rt(p, x) be defined as follows. If there is no i 6 t for
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which some (p, x, ri) has been outputted then rt(p, x) = 0; otherwise, rt(p, x) is the maximum of
those ri. The machine T will have the following property for all p:

∑

x

rt(p, x) 6 1.(2.2)

To define T , take a universal Turing machine V (p, x, n). Let T simulate V simultaneously on all
inputs. If at any stage of the simulation, some V (p, x, n) has been found, then T checks whether it can
interpret V (p, x, n) as a positive rational number r, and whether it can output the triple (p, x, r) while
keeping the condition (2.2). If yes, the triple is outputted, otherwise it is not, and the simulation
continues. Define ν(p, x) = limt rt(p, x). Then it is easy to check that µ(x) =

∑

p 2
−p−1ν(p, x)

satisfies the conditions of the proposition.

To show µ
∗
= m′, note that the random variable whose distribution is µ can be represented as a

function of the coin-tossing infinite sequence. It is not difficult to check that the function in question
now can be implemented by a prefix Turing machine.

We will call any semicomputable semimeasure µ with the property in the proposition “universal”.
Any two universal semimeasures dominate each other within a multiplicative constant. We fix one
such measure and denote it by

m(x)

and call it the universal probability. Its significance for complexity theory can be estimated by by
the following theorem, deriving the prefix complexity K(x) from the universal probability.

Proposition 2.2 (Levin’s Coding Theorem). We have K(x) = − logm(x).

The lower bound (− logm(x))
+
< K(x) comes easily from the fact that K(x) is upper semicom-

putable and satisfies the “Kraft inequality”
∑

x 2
−K(x) 6 1. For the proof of the upper bound,

see [3].
The above concepts and results can be generalized to the case when we have an extra parameter

in the condition: we will therefore talk about m(x | N), the universal probability conditional to N , a
function maximal within a multiplicative constant among all lower semicomputable functions f(x,N)

which also satisfy the condition
∑

x f(x,N) 6 1. The coding theorem generalizes to 2−K(x|N) ∗
=

m(x | N).
Constructive objects other than integers or strings can be encoded into integers in some canon-

ical way. Elementary quantum states |ψ〉 ∈ HN also correspond to integers, and this is how we
understand the expression

m(|ψ〉 | N),

which is therefore nonzero only for elementary states |ψ〉. (This is not our definition of quantum
universal probability or complexity, only a tool from classical complexity theory helpful in its dis-
cussion.)

The quantum analog of a probability distribution is a density matrix, a self-adjoint positive
semidefinite operator with trace 1. Just as with universal probability, let us allow operators with
trace less than 1, and call them semi-density matrices.

We call a sequence AN of operators, where AN is defined over HN , lower semicomputable if there
is a double sequence of elementary operators ANk with the property that for each N , the sequence
ANk is increasing and converges to AN .

Lemma 2.3.

1. A computable sequence of operators is also lower semicomputable.
2. If AN is nonnegative then the elements of the sequence ANk can be chosen nonnegative.

Proof. Both these statements are proved via standard approximations.

From now on, we suppress the index N whenever it is not necessary to point out its presence for
clarity.
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Theorem 2. There is a lower semicomputable semi-density matrix µ dominating all other such ma-
trices in the sense that for every other such matrix σ there is a constant cσ > 0 with cσσ 6 µ. We

have µ
∗
= µ

′ where

µ
′ =

∑

|ψ〉

m(|ψ〉)|ψ〉〈ψ|.(2.3)

Also

µ
∗
=

∑

ν

m(ν)ν
∗
=

∑

P

m(P )P/ dimP

where ν runs through all elementary semi-density matrices and P runs through all elementary pro-
jections.

Proof. The proof of the existence of µ is completely analogous to the proof of Proposition 2.1.

To prove µ
∗
= µ

′, note first that the form of its definition guarantees that µ
′ is a lower semi-

computable semi-density, and therefore µ
′

∗
< µ. It remains to prove µ

∗
< µ

′. Since µ is lower
semicomputable, there is a nondecreasing sequence µk of elementary semi-density matrices such
that µ = limk µk, with µ0 = 0. For k > 1, let δk = µk − µk−1. Each of the nonnegative self-adjoint
operators δk can be represented as a sum

δk =

n
∑

i=1

pki|φki〉〈φki|.

Thus, µ =
∑

ki pki|φki〉〈φki|, with a computable sequence pki > 0, where
∑

k,i pki < 1. The vectors

|φki〉 and the values pnk can be chosen elementary. Noting pki
∗
< m(k, i)

∗
< m(|φki〉) finishes the

proof.
The statement of sum representations using projections and elementary density matrices is weaker

than the statement about µ′.

We will call µ the quantum universal (semi-) density matrix. Thus, the quantum universal
probability of a quantum state |ψ〉 is given by

〈ψ|µ|ψ〉.

A representation analogous to (2.1) holds also for the quantum universal probability µ. It is not
necessary to introduce a quantum Turing machine in place of a classical Turing machine, since instead
of outputting an elementary quantum state |ψ〉, we can just output the probabilities themselves,
leaving the preparation of the state itself to whatever device we want, which might as well be a
quantum Turing machine. The output of U(Z) classically is a probability distribution over the set
of strings: string x comes out with probability m(x). When the outputs are quantum states |φ〉
with probability m(|φ〉), then the relevant output is not the distribution |φ〉 7→ m(|φ〉): by far not
all this information is available. The actual physical output is just the density matrix µ

′ as given
in (2.3). Thus, we take the projection associated with each possible output |φ〉, multiply it with its
probability and add up all these terms. Indeed, assume that A is any self-adjoint operator expressing
some property. The expected value of A over U(Z) is given by TrAµ′. In particular, suppose that
for some quantum state |ψ〉 we measure whether U(Z) = |ψ〉. The measurement will give a “yes”
answer with probability

∑

|φ〉

m(|φ〉)|〈φ|ψ〉|2 =
∑

|φ〉

m(|φ〉)〈ψ|(|φ〉〈φ|)|ψ〉

= 〈ψ|µ′|ψ〉 = Tr |ψ〉〈ψ|µ′.

These analogies suggest to us to define complexity also as a self-adjoint operator:

κ = − logµ.(2.4)

Proposition 2.4. The operator function A 7→ logA is monotonic.
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For a proof, see [2]. This implies the upper semicomputability of (− logµ). For some readers to
appreciate that the proposition is nontrivial, we mention that for example A 7→ eA is not monotonic
(see the same references). We will also use the following theorem, which could be called the “quantum
Jensen inequality”:

Proposition 2.5. If f(x) is a convex function in an interval [a, b] containing the eigenvalues of oper-
ator A then for all |ψ〉 we have

f(〈ψ|A|ψ〉) 6 〈ψ|f(A)|ψ〉.(2.5)

Proof. Easy, see [7].

This implies:

Lemma 2.6. Let f be a function concave in the interval [a, b], and |ψ〉 a vector. Then the function
A 7→ 〈ψ|f(A)|ψ〉 is concave for self-adjoint operators A whose spectrum is contained in [a, b].

We have now two alternative definitions for quantum complexity of a pure state, depending on
the order of taking the logarithm and taking the expectation:

H(|ψ〉) = − log 〈ψ|µ|ψ〉,(2.6)

H(|ψ〉) = −〈ψ|(logµ)|ψ〉 = 〈ψ|κ|ψ〉.(2.7)

An inequality in one direction can be established between them easily:

Theorem 3.

H(|ψ〉) 6 H(|ψ〉).

Proof. Use (2.5).

The difference between the two quantities can be very large, as shown by the following example.

Example 2.7. Let |1〉, . . . , |N〉 be the eigenvectors of µ ordered by decreasing eigenvalues pi. Then

p1
∗
= 1 and pN

∗
= N−1. For vector |ψ〉 = 2−1/2(|1〉+ |N〉) we have

H(|ψ〉) = − log 〈ψ|µ|ψ〉 = − log(p1/2 + pN/2)
+
= 0,

H(|ψ〉) = 〈ψ|κ|ψ〉 = (− log p1 − log pN)/2
+
= (logN)/2.

♦

Which one of the two definitions is more appropriate? We prefer H since we like the idea of a
complexity operator; however, in the present paper, we try to study both.

The complexity Kq introduced in [6] can be viewed as the formula resulting from H(|ψ〉) when
the sum in (2.3) is replaced with supremum. In classical algorithmic information theory, the result
does not change by more than a multiplicative constant after replacement, but Theorem 1 shows
that it does in the quantum case.

Remark 2.8. It seems natural to generalize H(|ψ〉) and H(|ψ〉) to density matrices ρ by

H(ρ) = Trκρ, H(ρ) = − logTrµρ,

but we do not explore this path in the present paper, and are not even sure that this is the right
generalization. ♦

3. Properties of algorithmic entropy

3.1. Relation to classical description complexity. It was one of the major attractions of the original
Kolmogorov complexity that it could be defined without reference to probability and then it could be
used to characterize randomness. Unfortunately, we do not have any characterization, even to good
approximation, of H(|ψ〉) or H(|ψ〉) in terms avoiding probability. As a generalization of classical
complexity, it has the properties of classical complexity in the original domain, just as Kq and qubit
complexity.
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Theorem 4. Let |1〉, |2〉, . . . be a computable orthogonal sequence of states. Then for H = H or H,
we have

H(|i〉)
+
= K(i),(3.1)

where the constant in
+
= depends on the definition of the sequence.

Proof. The function f(i) = 〈i|µ|i〉 is lower semicomputable with
∑

i f(i) 6 1, hence it is dominated

by m(i). This shows K(i)
+
< H(|i〉).

On the other hand, the semi-density matrix ρ =
∑

im(i)|i〉〈i| is lower semicomputable, so ρ
∗
< µ,

− log ρ
+
> κ, hence

K(i) = 〈i|(− log ρ)|i〉
+
> 〈i|κ|i〉 = H(|i〉).

3.2. Upper and lower bounds in terms of small simple subspaces. The simple upper bound follows
immediately from the domination property of universal probability.

Theorem 5. Assume that |ψ〉 ∈ HN . Then

κ
+
< (logN)1.

In particular, if |ψ〉 ∈ Qn then H(|ψ〉)
+
< n.

Proof. Let ρ = N−11, then ρ
∗
< µ, hence κ

+
< (logN)1.

Remark 3.1. N is an implicit parameter here, so it is more correct to write κ(· | N)
+
< (logN)1. We

do not have any general definition of quantum conditional complexity (just as no generally accepted
notion of quantum conditional entropy is known), but conditioning on a classical parameter is not
problematic. ♦

There is a more general theorem for classical complexity. For a finite set A let K(A) be the length
of the shortest program needed to enumerate the elements of A. Then for all x ∈ A we have

K(x)
+
< K(A) + log#A+ 2 log#A.

What may correspond to a simple finite set A is a projector P that is lower semicomputable as a
nonnegative operator. What corresponds to #A is the dimension TrP of the subspace to which P
projects. What corresponds to x ∈ A is measuring the angle between |ψ〉 and the space to which P
projects.

Theorem 6. Let P be a lower semicomputable projection with d = TrP . We have

H(|ψ〉)
+
< K(P ) + log d− log 〈ψ|P |ψ〉,(3.2)

H(|ψ〉)
+
< K(P ) + log d+ (1− 〈ψ|P |ψ〉) logN.(3.3)

Proof. Let ρ be the semi-density matrix

1

2
(
P

d
+

1− P

N
) =

1

2
(1/N + P (1/d− 1/N))

From the first form, it can be seen that it is semi-density, from the second form, it can be seen that

it is lower semicomputable. By Theorem 2, we have 2K(ρ)ρ
∗
< µ. Since K(ρ)

+
= K(P ), we have

H(|ψ〉) = − log 〈ψ|µ|ψ〉
+
< K(P ) + log 〈ψ|(P/d)|ψ〉

+
= K(P ) + log d− log 〈ψ|P |ψ〉.
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On the other hand,

H(|ψ〉) = 〈ψ|(− logµ)|ψ〉

+
< K(P ) + 〈ψ|P |ψ〉 log d+ (1− 〈ψ|P |ψ〉) logN.

This theorem points out again the difference between H and H . If |ψ〉 has a small angle with a
small-dimensional subspace this makesH(|ψ〉) small. ForH(|ψ〉), the size of the angle gets multiplied
by logN , so if nothing more is known about |ψ〉 then not only the dimension of P counts but also
the dimension of the whole space we are in.

Above, we defined what it means for a program to recursively “enumerate a subspace” by saying
that it approximates the projector from below as a nonnegative operator: call this “weak enumer-
ation”. There is a simpler possible definition: let the program just list a sequence of orthogonal
vectors that generate the subspace: call this “strong enumeration”.

Remarks 3.2.

1. The rest of the paper makes no use of the discussion of strong and week enumeration, so this
part can be skipped.

2. What is important is not only that the sequence of vectors in question can be enumerated,
since this is in some sense trivially true for any finite sequence of elementary vectors. A
recursively enumerable finite-dimensional subspace is always elementary. What matters is
that the enumeration is done with a short program (which can use the dimension N as input).
Without this remark, there is clearly no difference between an elementary subspace and a
strongly enumerable one.

♦

Proposition 3.3. The strong and weak kinds of enumeration of a subspace are equivalent. In other
words, there is a program of length k enumerating a subspace in the weak sense if and only if there

is a program of length
+
= k enumerating it in the strong sense.

Proof. Given a strong enumeration |φ1〉, |φ2〉, . . . , the sum
∑

i |φi〉〈φi| clearly defines the projector
in a form from which the possiblity of approximating it from below is seen.

Assume now that P is a projector and ρ1 6 ρ2 6 · · · is a sequence of elementary nonnegative
operators approximating it.

Note that for a nonnegative operator A, we have 〈ψ|A|ψ〉 = 0 iff A|ψ〉 = 0. Now for any of
the ρi, and any vector |ψ〉, if P |ψ〉 = 0 then 〈ψ|P |ψ〉 = 0, which implies 〈ψ|ρi|ψ〉 = 0 and thus
ρi|ψ〉 = 0. Hence the kernel of ρi contains the kernel of P and hence the space of eigenvectors of ρi
with nonnegative eigenvalues is contained in PH. This shows that from ρi, i = 1, 2, . . . we will be
able to build up a sequence |φ1〉, |φ2〉, . . . of orthogonal vectors spanning PH.

Theorem 7 below is analogous to the simple lower bound on classical description complexity. That
lower bound says that the number of objects x with K(x) < k is at most 2k. What corresponds
here to “number of objects” is dimension, and the statement is approximate: if |ψ〉 has complexity
< k then it is within a small angle from a certain fixed 2k+1-dimensional space. The angle is really
small for H ; it is not so small for H but it is still small enough that the whole domain within that
angle makes up only a small portion of the Hilbert space.

Let |u1〉, |u2〉, . . . be the sequence of eigenvectors of µ with eigenvalues µ1 > µ2 > · · · . (Since our
space is finite-dimensional, the sequence exists.) Let κi = − logµi. Let Ek be the projector to the
subspace generated by |u1〉, . . . , |uk〉.

Remark 3.4. The universal density matrix µ is an object with an impressive invariance property: for

any other universal density matrix ν we have ν
∗
= µ. On the other hand, the individual eigenvectors

|ui〉 probably do not have any invariant significance. It is currently not clear whether even the
projectors Ek enjoy any approximate invariance property. ♦
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Theorem 7 (Lower bounds). Let |ψ〉 be any vector and let λ > 1. If H(|ψ〉) < k then we have

〈ψ|E2λk |ψ〉 > 1− 1/λ.(3.4)

If H(|ψ〉) < k then we have

〈ψ|Eλ2k |ψ〉 > 2−k(1− 1/λ).(3.5)

Proof. AssumeH(|ψ〉) < k and expand |ψ〉 in the basis {|ui〉} as |ψ〉 =
∑

i ci|ui〉. By the assumption,

we have
∑

i κi|ci|
2 < k. Let m be the first i with κi > λk. Since

∑

i 2
−κi < 1 we have m 6 2λk.

Also,

λk
∑

i>m

|ci|
2 <

∑

i>m

κi|ci|
2 < k,

hence
∑

i>m |ci|
2 < 1/λ, which proves (3.4).

Now assume H(|ψ〉) < k, then we have
∑

i µi|ci|
2 > 2−k. Let m be the first i with µi < 2−k/λ.

Since
∑

i µi < 1 we have m 6 2kλ. Also,
∑

i>m

µi|ci|
2 < 2−k/λ

∑

i

|ci|
2 = 2−k/λ,

hence

〈ψ|Em|ψ〉 =
∑

i<m

|ci|
2 >

∑

i<m

µi|ci|
2
> 2−k −

∑

i>m

µi|ci|
2

> 2−k(1 − 1/λ).

(3.6)

The defect of this theorem is that the operators Ek are uncomputable. I do not know whether
the above properties can be claimed for some lower semicomputable operators Fk.

3.3. Quantum description complexities.

3.3.1. Vitányi’s complexity. Theorem 8 says that the complexity Kq from [6], (defined in Section 1)
is not too much larger than H, so we do not lose too much in replacing the sum (2.3) with a
supremum: if the sum is > 2−k then the supremum is > 2−4k/k2.

Theorem 8 (Relation to Kq).

H
+
< Kq

+
< 4H + 2 logH.(3.7)

Proof. We start from the end of the proof of Theorem 7. We use (3.6) with λ = 2, and note that
one term, say, |cr|

2 of the sum
∑

i6m |ci|
2 must be at least 2−2k−2. We would be done if we could

upperbound K(|ur〉) appropriately. It would seem that K(|ur〉) can be bounded approximately by
k since m 6 2k+1. But unfortunately, neither the vectors |ui〉 nor their sequence are computable;
so, an approximation is needed. Let r be the largest binary number of length 6 k smaller than Trµ.
Then there is a program p of length 6 k+2 log k computing a lower approximation µ̂ of µ such that
Trµ−Tr µ̂ 6 2−k. Indeed, let p specify the binary digits of r and then compute an approximation
of Trµ that exceeds r.

The condition 〈ψ|µ|ψ〉 > 2−k implies 〈ψ|µ̂|ψ〉 > 2−k+1. We can now proceed with µ̂ as with µ.
We compute eigenvectors |ûi〉 for µ̂, and find an elementary vector |ûr〉 with

K(|ûr〉)
+
< 2k + 2 log k, |〈ψ|ûr〉|

2 ∗
> 2−2k.

The extra k + 2 log k in K(|ûr〉) is coming from the program p above.
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3.3.2. Qubit complexity. Let us define the qubit complexity introduced in [1]. We refer to that
paper for further references on quantum Turing machines and detailed specifications of the quantum
Turing machine used. Our machine starts from an input (on the input tape) consisting of a qubit
program and a rational number ε > 0. On the output tape, an output appears, preceded by a 0/1
symbol telling whether the machine is considered halted. The halting symbol as well as the content
of the output tape does not change after the halting symbol turns 1. (The input tape, which is also
the work tape, keeps changing.) We can assume that input and output strings of different lengths
can always be padded to the same length at the end by 0’s, or if this is inconvenient, by some special
“blank”, or “vacuum” symbol. The input of the machine is a density matrix ρ. For any segment
of some length n of the output, and any given time t there is a completely positive operator Φk,t
such that the n symbols of the output at time t are described by a density matrix σ = Φk,tρ. We
only want to consider the output state when the machine halted. If H is a projection to the set of
those states then the semi-density matrix HσH is the output we are interested in. The operation
Ψn,t : ρ 7→ HσH is a completely positive operator but it is not trace-preserving, it may decrease the
trace. It is also monotonically increasing in t.

For a state |ψ〉, let QCε(|ψ〉) be the length k of the smallest qubit program (an arbitrary state
in Qk, or more precisely the density matrix corresponding to this pure state) which, when given as
input along with ε, results in an output density matrix σ with 〈ψ|σ|ψ〉 > 1− ε. The paper [1] shows
that this quantity has the same machine-independence properties as Kolmogorov complexity, so we
also assume that a suitable universal quantum Turing machine has been fixed. For the following
theorem, we will compute complexities of strings in HN = Qn, so N = 2n.

Lemma 3.5. If for a semi-density matrix ρ and a state |ψ〉 we have 〈ψ|ρ|ψ〉 > 1 − ε and ρ has the
eigenvalue decomposition

∑

i pi|i〉〈i| where p1 > p2 > · · · , then

p1 > 1− ε, |〈1|ψ〉|2 > 1− 2ε.

Proof. Let ci = 〈i|ψ〉, then 〈ψ|ρ|ψ〉 =
∑

i pi|c
2
i | > 1− ε. Hence p1 > 1− ε, therefore

|c1|
2 + ε >

∑

i

pi|c
2
i | > 1− ε,

giving |c21| > 1− 2ε.

Theorem 9. For ε < 0.5, if QCε(|ψ〉) 6 k then

H(|ψ〉)
+
< k +K(k) + 2εn.

Proof. For each k, let Ik be the projection to the space Qk of k-length inputs. The operator

λ =
∑

k

m(k)2−kIk

is a semicomputable semi-density matrix on the set of all inputs. For each time t, the semi-density
matrix Ψn,tλ is semicomputable. As it is increasing in t, the limit ν = limtΨn,tλ is a semicomputable

semi-density matrix, and therefore ν
∗
< µ. Let |φ〉 ∈ Qk, then |φ〉〈φ| 6 Ik, hence m(k)2−k|φ〉〈φ| 6 λ,

hence for each t we have

m(k)2−kΨt,k|ψ〉〈ψ| 6 ν
∗
< µ.

Since also 2−nIn
∗
< µ, we can assert, with ρt,k = Ψt,k|φ〉〈φ|, that

σ = m(k)2−kρt,k + 2−nIn
∗
< µ.

Assume that 〈ψ|ρt,k|ψ〉 > 1 − ε. Then by Lemma 3.5, if ρt,k has the eigenvalue decomposition
∑

i pi|i〉〈i| then p1 > 1− ε and |〈1|ψ〉|2 > 1− 2ε. The matrix (− log σ) can be written as

−
∑

i

log(m(k)2−kpi + 2−n)|i〉〈i|.
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Hence, with ci = 〈i|ψ〉, and using Lemma 3.5 and ε < 0.5

−〈ψ| logµ|ψ〉
+
< −〈ψ| log σ|ψ〉

=
∑

i

log(m(k)2−kpi + 2−n)|ci|
2

6 k +K(k) + log(1− ε) + 2εn.

In the last inequality, the first two terms come from the first term of the previous sum, while 2εn
comes from the rest of the terms.

Using the definitions of [1], we write QC(|ψ〉) 6 k if there is a |φ〉 such that for all ε of the form
1/m, when |φ〉 is given as input along with ε, we get an output density matrix σ with 〈ψ|σ|ψ〉 > 1−ε.
The above theorem implies that in this case,

H(|ψ〉)
+
< k +K(k).(3.8)

Let x be a bit string, then we know from (3.1) that

H(|x〉)
+
= K(x).(3.9)

It has been shown in [1] that QC(|x〉)
+
< C(x) where C(x) is the (not prefix-free) Kolmogorov

complexity. We can show directly that also C(x)
+
< QC(|x〉), but we will not do it in this paper.

It follows from (3.8) and (3.9) that K(x)
+
= H(|x〉)

+
< QC(|x〉) +K(QC(|x〉)). This is in some way

stronger, since another interesting quantity, H(|x〉) is interpolated, and in another way it seems
slightly weaker. But only very slightly, since one can bound K(x) by C(x) in general only via

K(x)
+
< C(x) +K(C(x)).

Just as we obtained an upper bound on Kq using (3.5) combined with an approximation of the
uncomputable µ, we may hope to obtain an upper bound on QC using (3.4) combined with a suitable
approximation of the uncomputable µ or (− logµ). But we did not find an approximation in this
case for a reasonable price in complexity: the best we can say replaces H(|ψ〉) with 〈ψ|(− logµ)|ψ〉
for any computable density matrix µ. Or, we can upperbound not QC(|ψ〉) but QC(|ψ〉 | χ) where
χ is an encoding of the halting problem into a suitable infinite binary string. The concept of an
oracle quantum computation with a read-only classical oracle tape presents no difficulties.

Theorem 10. For each rational ε and any computable density matrix µ we have

QCε(|ψ〉)
+
< 〈ψ|(− logµ)|ψ〉/ε+K(µ).

Similarly,

QCε(|ψ〉 | χ)
+
< H(|ψ〉)/ε.

Proof. For the second inequality, we can use (3.4) with k = H(|ψ〉) and λ = 1/ε. The oracle χ
allows us to compute the space E2λk with arbitrary precision. Then our quantum Turning machine
can simply map the space of λk-length qubit strings into the (approximate) E2λk .

Similarly, for the first inequality, if µ is computable then we can compute the subspaces corre-
sponding to E2λk with arbitrary precision.

3.4. Invariance under computable transformations.

Theorem 11. Let U be any computable unitary transformation. Then we have

H(U |ψ〉)
+
= H(|ψ〉), H(U |ψ〉)

+
= H(|ψ〉).

Proof. Straightforward.

This theorem needs to be generalized: it should be understood how complexity changes under a
completely positive operator.
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4. Complexity and entropy

In classical algorithmic information theory, if ρ is a discrete computable probability distribution
then its entropy is equal, to a good approximation, to the average complexity. In the quantum case,
entropy is defined as

S(ρ) = −Tr ρ log ρ.

There is a quantity corresponding to the Kullback information distance, and called relative entropy
in [7]: it is defined as

S(ρ ‖ σ) = Tr ρ(log ρ− log σ),

where ρ and σ are density matrices.

Proposition 4.1.

S(ρ ‖ σ) > 0.(4.1)

Proof. See [7].

The following theorem can be interpreted as saying that entropy is equal to average complexity:

Theorem 12. For any lower semicomputable semi-density matrix ρ we have

S(ρ)
+
= Tr ρκ(4.2)

Proof. Let Ω = Trµ, then σ = µ/Ω is a density matrix, and hence by (4.1), S(ρ ‖ σ) > 0. It follows

that S(ρ)
+
< Tr ρκ.

On the other hand, since ρ
∗
< µ, the monotonicity of logarithm gives κ

+
< − log ρ which gives the

other inequality.

For what follows the following property of logarithm is useful:

Lemma 4.2. If A and B are nonnegative operators over X and Y respectively, then

logA⊗B = (logA)⊗ 1Y + 1X ⊗ (logB).(4.3)

Proof. Direct computation.

Some properties of complexity that can be deduced from its universal probability formulation will
carry over to the quantum form. As an example, take subadditivity:

K(x, y)
+
< K(x) +K(y).

What corresponds to this in the quantum formulation is the following:

Theorem 13 (Subadditivity). We have

µX ⊗ µY

∗
< µXY .(4.4)

For |φ〉, |ψ〉 ∈ HN and H = H or H we have

H(|φ〉|ψ〉)
+
< H(|φ〉) +H(|ψ〉).(4.5)

Proof. The density matrix µX ⊗ µY over the space HXY = HX ⊗ HY is lower semicomputable,
therefore (4.4) follows. Hence

(〈φ|µX |φ〉)(〈ψ|µY |ψ〉) = 〈φ|〈ψ|(µX ⊗ µY )|φ〉|ψ〉
∗
< 〈φ|〈ψ|µXY |φ〉|ψ〉.

which gives (4.5) for H = H . For H = H note that by the monotonicity of logarithm, identity (4.3)
and (4.4) implies

(logµX)⊗ 1Y + 1X ⊗ (logµY ) = logµX ⊗ µY

+
< logµXY .
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Taking the expectation (multiplying by 〈ψ| on left and |ψ〉 on right) gives the desired result.

The analogous subadditivity property also holds for the quantum entropy S(ρ).

For classical complexity we have K(x)
+
< K(x, y), and the corresponding property also holds for

classical entropy. This monotonicity property can also be proved for quantum complexity.

Theorem 14 (Monotonicity). We have

TrY µXY
∗
= µX ,(4.6)

κXY

+
> κX ⊗ 1Y .(4.7)

For |φ〉, |ψ〉 ∈ HN , and H = H or H we have

H(|φ〉)
+
< H(|φ〉|ψ〉).(4.8)

Proof. Let ρX = TrY µXY . Then ρX is a semicomputable semi-density matrix over HX and thus

ρX
∗
< µX . At the same time, for any fixed vector |ψ〉, the matrix σXY = µX ⊗ |ψ〉〈ψ| is a lower

semicomputable semi-density matrix, hence µXY

∗
> σXY . Taking the partial trace gives

µX = TrY σXY
∗
< TrY µXY = ρX .

This proves (4.6), which implies the inequality for H .
Let {|ψi〉} be any orthogonal basis of HY with |ψ1〉 = |ψ〉. Then we have

〈φ|〈ψ|µX ⊗ 1Y |φ〉|ψ〉 = 〈φ|µX |φ〉
∗
= 〈φ|TrY µXY |φ〉 =

∑

i

〈φ|〈ψi|µXY |φ〉|ψi〉 > 〈φ|〈ψ|µXY |φ〉|ψ〉,

which proves µX ⊗ 1Y
∗
> µXY . Taking logarithms and noting that log 1Y = 0, we get (4.7) which

proves the inequality for H .

The quantum entropy analog of this monotonicity fails in a spectacular way. It is not true in
general that S(ρX) 6 S(ρXY ). Indeed, ρXY could be the density matrix of a pure state, and then
S(ρXY ) = 0. At the same time, if this pure state is an entangled state, a state that cannot be
represented in the form of |φ〉|ψ〉, only as the linear combination of such states, then S(ρX) > 0.
This paradox does not contradict to the possibility that entropy is “average complexity”. It just
reminds us that Theorem 14 says nothing about entangled states. An entangled state can be simple
even if it is a big sum, but in this case it will contain a lot of complex components.

5. The cloning problem

5.1. Maximal complexity of cloned states. For classical description complexity, the relation

K(x, x)
+
= K(x)

holds and is to be expected: once we have x we can copy it and get the pair (x, x). But there is a
“no cloning theorem” [4] in quantum mechanics saying that there is no physical way to get |ψ〉|ψ〉
from |ψ〉. It is interesting to see that a much stronger form of this theorem also holds, saying that
sometimes H(|ψ〉|ψ〉) is much larger than H(|ψ〉) (of course, at most twice as large). Moreover, we

can determine the maximum complexity of states of the form |ψ〉
⊗k

. Our results in this are very
similar in form to those of [1], and the proof method is also similar.

For |ψ〉 ∈ HN , let |ψ〉
⊗m

denote the m-fold tensor product of |ψ〉 with itself, an element of H⊗m.
Let

SN,m = H∨m ⊂ H⊗m
N
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be the subspace of elements of H⊗m
N invariant under the orthogonal transformations arising from

the permutations

|φ1〉 . . . |φm〉 7→ |φπ(1)〉 . . . |φπ(m)〉.

Lemma 5.1 (see [8]).

1. dimSN,m =
(

m+N−1
m

)

.
2. SN,m is invariant under unitary transformations of the form U⊗m.
3. If a density matrix over SN,m commutes with all such transformations then it is a multiple of

unity.

Let

CN,m = max
|ψ〉∈HN

H(|ψ〉
⊗m

),(5.1)

and let CN,m be defined the same way with H in place of H .

Theorem 15. We have

CN,m
+
< K(m) + log

(

m+N − 1

m

)

,

CN,m > log

(

m+N − 1

m

)

.

Proof. The upper bound follows from the fact that |ψ〉 ∈ SN,m and from (3.3).

For simplicity, let us write for the moment, |ψ〉
m

= |ψ〉
⊗m

. For the lower bound, let us first set
c = CN,m. We have

Trµ|ψ〉
m
〈ψ|

m
= 〈ψ|

m
µ|ψ〉

m
> 2−c(5.2)

for all states |ψ〉 ∈ HN . Let PS be the projection to SN,m. Let Λ be the uniform distribution on
the unit sphere in HN . Then

ρ =

∫

|ψ〉
m
〈ψ|

m
dΛ

is a density matrix over SN,m. It commutes with all unitary transformations of the form U⊗m, and
therefore according to Lemma 5.1,

ρ =

(

m+N − 1

m

)−1

PS .

Integrating (5.2) by dΛ we get

2−c 6 Trµρ =

(

m+N − 1

m

)−1

TrµPS 6

(

m+N − 1

m

)−1

.

Taking negative logarithm, we get the lower bound on C.

5.2. An algebraic consequence. This subsection says nothing new about quantum complexities, it
only draws some technical inferences from the previous subsection.

The problem of estimating H(|ψ〉|ψ〉) can be reformulated into an algebraic problem for which
we are not aware of any previous solution. The results obtained above solve the problem: maybe
such a solution will also have some independent interest. For any N ×N matrix A, let

u(A) =
‖A†A‖

TrA†A
= max

i

αi
∑

j αj

where αj are the eigenvalues of A†A. The function u(A) measures the “unevenness” of the dis-
tribution of eigenvalues of A†A. It can vary between 1/N for A = 1 and 1 (when A†A has rank
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1). For a subspace F of the vector space of symmetric (not necessarily self-adjoint!) matrices, let
u(F ) = maxA∈F u(A). Let N

′ = N(N + 1)/2. For 0 < d < N ′, we are interested in the quantity

u(d,N) = min{ u(F ) : dimF > d }.

Theorem 16. We have u(d,N) > d/N ′.

Remark 5.2. This theorem has been strengthened from its preprint version. ♦

Before the proof, we give some lemmas setting up the connection with cloning.

Lemma 5.3. Let A be a symmetric N ×N matrix (aij) and let

α =
∑

ij

a∗ij |βi〉|βj〉.

Then

sup
|φ〉∈HN

|〈α|(|φ〉|φ〉)|2 = u(A).(5.3)

Proof. We can restrict ourselves to matrices A with TrA†A = 〈α|α〉 = 1. Then with |ψ〉 = |φ〉|φ〉,
|φ〉 =

∑

i xi|βi〉,

|〈α|ψ〉|2 = |
∑

ij

aijxixj |
2 = |xTAx|2,

where xT is the transpose of x (without conjugation).
By singular value decomposition (see [2]), every matrix can be written in the form V DU where

D is a nonnegative diagonal matrix and U, V are unitary transformations. If the elements of D
are all distinct, positive and in decreasing order then U, V are unique. In this case, clearly if A is
symmetric then V = UT . This can be generalized to the case when the elements of D are not all
positive and distinct, using for example limits. Thus, A = UTDU . This gives xTAx = xTUTDUx =
(Ux)TD(Ux). As x runs through all possible vectors with

∑

i |xi|
2 = 1, so does Ux. Let d1 be the

largest element on the diagonal of D, then d21 = ‖A†A‖.

|(Ux)TDUx| = |
∑

i

di(Ux)
2
i | 6

∑

i

di|(Ux)i|
2
6 d1

since
∑

i |(Ux)i|
2 = 1. The maximum of |(Ux)TD(Ux)|2 is achieved by the element x = U−1|β1〉,

and then it is d21 = u(A).

Lemma 5.4. For 0 < d < N ′, there is a computable semi-density matrix ρ with

sup
|ψ〉=|φ〉|φ〉

− log 〈ψ|ρ|ψ〉 6 log(N ′ − d)− log(1− u(d,N)).

Proof. Using the notation of Lemma 5.3, let F be the subspace of dimension d of vectors α on which
the minimum u(d,N) is achieved. Witn P = 1− F , let ρ be the semi-density matrix defined in the
proof of Theorem 6. Similarly to (3.2) we have, for any ψ = |φ〉|φ〉:

− log 〈ψ|ρ|ψ〉 6 log(N ′ − d)− log(1− 〈ψ|F |ψ〉).

Note that 〈ψ|F |ψ〉 = |〈α|ψ〉|2 for some α ∈ F , hence by (5.3) we have 〈ψ|F |ψ〉 6 u, hence the last
term of the right-hand side is 6 − log(1− u).

Proof of Theorem 16. The reasoning of Theorem 15 implies that logN ′ lower-bounds the left-hand
side in the above lemma. Thus,

logN ′
6 log(1− d/N ′) + logN ′ − log(1− u),

u > d/N ′.
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6. Randomness tests

6.1. Universal tests. In classical algorithmic information theory (see for example [3]), description
complexity helps clarify what experimental outcomes should be called random with respect to a
hypothetical probability distribution. If the set of possible outcomes is a discrete one, say the set of
natural numbers, then, given a probability distribution ν, we call a lower semicomputable function
f(x) a randomness test if

∑

x f(x)ν(x) 6 1. It is known that there is a universal test tν(x), a
test that dominates all other tests to within a multiplicative constant. An outcome is considered
non-random with respect to ν when tν(x) is large. In case of a computable distribution ν, we have

tν(x)
∗
=

m(x)

ν(x)
,(6.1)

where the multiplicative constant in the
∗
= depends on ν. (The general case is more complicated.)

The deficiency of randomness is defined as dν(x) = log tν(x). In case of a computable distribution
ν it is known to be

+
= − log ν(x) + logm(x)

+
= − log ν(x) −K(x)(6.2)

Thus, for a computable distribution, the universal test measures the difference betwen the logarithm
of the probability and the complexity.

In the quantum setting, what corresponds to a probability distribution is a computable density
matrix ρ. What corresponds to a function is a self-adjoint operator. So, let us say that a randomness
test is a lower semicomputable self-adjoint operator Fρ with

TrFρρ 6 1.

Remark 6.1. In the theorem below, the expression

T ′ = ρ−1/2
µρ−1/2

appears, which does not make sense if ρ is not invertible. However, let us write σ = µ1/2ρ−1/2; this
expression makes sense on the subspace V orthogonal to the kernel of ρ, and therefore T ′ = σ†σ also
makes sense there. Therefore we define 〈ψ|T ′|ψ〉 as ∞ for any |ψ〉 /∈ V , and there is no problem for
|ψ〉 ∈ V . ♦

Theorem 17 (Universal test). There is a test Tρ which is universal in the sense that it dominates each

other test R: we have R
∗
< Tρ, where the multiplicative constant in

∗
< may depend on R and ρ. We

have Tρ
∗
= T ′

ρ
∗
= T ′′

ρ where

T ′
ρ =

∑

|φ〉

m(|φ〉)|φ〉〈φ|

〈φ|ρ|φ〉
,

T ′′
ρ = ρ−1/2

µρ−1/2.

Proof. The proof of the existence of a universal test is similar to the proof of Proposition 2.1. The

proof of T
∗
= T ′ is similar to the one showing µ

′ ∗
= µ in Theorem 2.

Let us prove T
∗
= T ′′. To see that T ′′ is lower semicomputable, note that as direct computation

shows, for any operator C the function A 7→ C†AC is monotonic on the set of self-adjoint operators
A with respect to the relation 6. By the cyclic property of the trace, we also have TrT ′′ρ = Trµ 6 1.

This proves T ′′
+
< T , it remains to prove that T

∗
< T ′′. This is equivalent to

ρ1/2Tρ1/2 6 ρ1/2T ′′ρ1/2 = µ.

But the left-hand side is a lower semicomputable nonnegative definite matrix whose trace is 6 1,

again due to the cyclic property of trace. Therefore by the defining property of µ, it is
∗
< µ.



QUANTUM ALGORITHMIC ENTROPY 17

The expression for T ′′
ρ is similar to (6.1), but it does not separate the roles of the density matrix ρ

and of the universal probability µ as neatly, certainly not in the typical cases when µ and ρ do not
commute. Assume that the eigenvalues of ρ are p1 > p2 > · · · , with the corresponding eigenvectors
|vi〉 (these exist since our space is finite-dimensional). Let (mij) be the matrix of the operator µ

when expressed in this basis. For a certain state |ψ〉 =
∑

i ci|vi〉, we can express the value of the
test on |ψ〉 as follows. If there is any i with pi = 0 and ci 6= 0 then according to Remark 6.1, the
value is ∞. Otherwise, it is

〈ψ|T ′′
ρ |ψ〉 =

∑

i,j

mij(pipj)
−1/2c∗i cj .(6.3)

The term (pipj)
−1/2c∗i cj is defined to be 0 if c∗i cj = 0, and we excluded the case when pipj = 0 but

c∗i cj 6= 0. The roles of µ and ρ do not seem to be separable in the same way as in the classical case.
However, if ρ is the uniform distribution then the expression simplifies to

N−1
N
∑

i,j=1

mijc
∗
i cj = N−1〈ψ|µ|ψ〉,

which is the classical comparison of the probability to the universal probability.

6.2. Relation to Martin-Löf tests. The sum for T ′
ρ in Theorem 17 is similar to µ

′ in Theorem 2. In
the classical case and with a computable ρ, just like there, it can be replaced with a supremum. In
the quantum case it cannot: indeed, the expression of µ′ is a special case of T ′, and we have shown
in Section 3 that the sum in µ

′ cannot be replaced with supremum. We do not know whether there
is still an approximate relation like in Theorem 8: the proof does not carry over.

It is worth generalizing the sum for T ′
ρ as

∑

F

m(F )F

TrFρ

where F runs through all elementary nonnegative self-adjoint operators. An interesting kind of
self-adjoint operator is a projection P to some subspace. Such a term looks like

m(P )

TrPρ
P.

This term is analogous to a Martin-Löf test. An outcome x would be caught by a Martin-Löf test
in the discrete classical case if it falls into some simple set S with small probability. The fact that
S is simple means that K(S) is small, in other words m(S) is large. Altogether, we can say that x
is caught if the expression

m(S)

ρ(S)
1S(x)

is large, where 1S(x) is the indicator function of the set S. In the quantum case, for state |ψ〉, what
corresponds to this is the expression

m(P )

TrPρ
〈ψ|P |ψ〉.

The probability of S translates to TrPρ, and 1S(x) translates to 〈ψ|P |ψ〉. Thus, a quantum Martin-
Löf test catches a state |ψ〉 if it is “not sufficiently orthogonal” to some simple low-probability
subspace. Compare this with Theorem 6.

As we see, the universal quantum randomness test contains the natural generalizations of the
classical randomness tests, but on account of the possible non-commutativity between ρ and µ,
it may also test |ψ〉 in some new ways that do not correspond to anything classical. It would be
interesting to find what these ways are.
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7. Proof of Theorem 1

Let us denote

Km(|ψ〉) = min{ l(p) : U(p) = |φ〉, − log |〈φ|ψ〉|2 6 m }.

The first lemma lowerbounds K∞(|ψ〉), the later ones lowerbound Km(|ψ〉) for finite m.

Lemma 7.1. For each k there is a subspace V of Qn, of dimension 2n− 2k with the property that for
all |ψ〉 ∈ V we have K∞(|ψ〉) > k.

Proof. Let p1, . . . , pr be all programs of length < k for which U(pm) ∈ Qn. Then r < 2k. Let V be
the set of elements of Qn orthogonal to all vectors of the form U(pi).

Let bn denote the volume of the unit ball in an n-dimensional Euclidean space. Then for the
surface volume sn of this ball we have

bn−1 < sn = nbn.(7.1)

For an angle α, let sn(α) be the surface volume of a subset of the surface cut out by a cone of
half-angle α: for some vector |u〉, this is the set of all vectors |x〉 of unit length with 〈u|x〉 > cosα.
Thus, we have sn = sn(π). We are interested in how fast sn(α) decreases from sn/2 to 0 as α moves
from π/2 to 0.

Lemma 7.2. Let α = π/2− y. Then

sn(α)/sn
∗
< exp(−ny2/2 + lnn).(7.2)

Proof. We have, for k > 2:

sk(α) = sk−1

∫ α

0

sink−2 x dx 6 sk−1α sink−2 α.(7.3)

So, we need to estimate
∫ α

0 sinn x dx. The method used (also called “Laplace’s” method), works for
any twice differentiable function with a single maximum. Let g(x) = ln sinx, then it can be checked
that g′(π/2) = 0, g′′(π/2) = −1, g′′′(x) > 0 for x < π/2. The Taylor expansion around π/2 gives,
for y > 0:

g(π/2− y) = −y2/2− y3g′′′(π/2− z)/6 < −y2/2.

where 0 < z < y. Hence, since sinx is increasing, we have for x < π/2− y,

sinn(x) < e−ny
2/2.

On the other hand, by (7.1), sk > bk−1 = sk−1/(k − 1), showing sn−1 < (n− 1)sn. Hence

sn(α) <
π

2
e−(n−2)y2/2sn−1 <

(n− 1)π

2
e−(n−2)y2/2sn

∗
< sne

−ny2/2+lnn.

Lemma 7.3. In any Hilbert space H of dimension 2n (it may be a subspace of some Qr), the volume
fraction of the set of unit vectors |ψ〉 in H with the property that Km(|ψ〉) < k is

∗
< exp(−2n−m + k ln 2 + n).

Proof. We view Qn as a 2n+1-dimensional Euclidean space. Assume − log |〈φ|ψ〉|2 6 m. If α is the
angle between |φ〉 and |ψ〉 then this means

2−m/2 < |〈φ|ψ〉| = cosα = sin(π/2− α) 6 π/2− α,

giving α < π/2 − 2−m/2. For a fixed |φ〉, the relative volume (with respect to s2n+1) of the set of
vectors with − log |〈φ|ψ〉|2 6 m is therefore by (7.2)

∗
< exp(−2n+12−m/2 + n) = exp(−2n−m + n).
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Let p1, . . . , pr be all programs of length < k for which U(pm) ∈ Qn. Then r < 2k. The volume of
all vectors |ψ〉 that are close in the above sense to at least one of the vectors U(pi) is thus

∗
< 2k exp(−2n−m + n) = exp(−2n−m + k ln 2 + n).

Proof of Theorem 1. According to Lemma 7.1, there is a subspace V ofQn, of dimension 2n−2n−1 =
2n−1 with the property that for all |ψ〉 ∈ V , for all m we have Km(|ψ〉) > n−1. Let m = n−2 logn.
We can apply Lemma 7.3 to this subspace V of dimension 2n−1, and obtain that for a certain
constant c, the volume fraction of vectors with Km(|ψ〉) < 2n is

6 exp(−2(n−1)−(n−2 log n) + 2n ln 2 + (n− 1) + c)

= exp(−n2/2 + n(2 ln 2 + 1) + c− 1).

If n is large this is smaller than 1, so there are states |ψ〉 with K∞(|ψ〉) > n−1 and Kn−2 logn(|ψ〉) >
2n. For these, clearly

Kq(|ψ〉) > (n− 1) + (n− 2 logn+ 1) = 2n− 2 logn.

8. Conclusions

We advanced a new proposal to extend the theory of descriptional complexity to the quantum
setting. The approach starting from the universal density matrix appears to be fruitful and leads to
some attractive relations. However, the theory is still very incomplete. The following tasks seem to
be the most urgent.

1. Strengthen Theorem 10 in a way that the smallness of H(|ψ〉) allows a direct inference on
the smallness of QC(|ψ〉) (or find a counterexample). For this, it seems to us that behavior
of a monotonically increasing sequence of density functions needs to be understood better:
namely, whether some approximate monotonicity can be stated about the subspaces Ek. Even
if such a monotonicity will be found, even if Thoerem 10 can be proved for µ instead of just
computable density matrices, the result is too weak. To strengthen it, probably the theory
of indeterminate-length quantum codes (the quantum analog of variable-length codes) will be
needed, as developed in [5].

2. Find the proper generalization to the quantum setting of the classical theorem saying that
information cannot increase under the effect of any probabilistic computable transformation.

3. What kind of addition theorems can be expected for quantum description complexity? The
question is unsolved even for the von Neumann entropy. Also, the translation between the
results on quantum description complexity and those on the von Neumann entropy will not

be straightforward. As we remarked, the relation H(|φ〉|ψ〉)
+
> H(|φ〉) holds while S(ρX) 6

S(ρXY ) does not. Still, maybe the study of the problem for quantum description complexity
helps with the understanding of the problem for von Neumann entropy, and its relation to
coding tasks of quantum information theory.

Despite all the caveats, let us ask the question (risking that somebody finds a trivial answer):
does H obey strong superadditivity?
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