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Abstract

For an arbitrary hypergraph H, let PM(H) be the propositional formula asserting
that H contains a perfect matching. We show that every resolution refutation of
PM(H) must have size

exp
(

Ω
(

δ(H)
λ(H)r(H)(log n(H))(r(H) + log n(H))

))
,

where n(H) is the number of vertices, δ(H) is the minimal degree of a vertex, r(H)
is the maximal size of an edge, and λ(H) is the maximal number of edges incident
to two different vertices.

For ordinary graphs G our general bound considerably simplifies to exp
(
Ω
(

δ(G)
(log n(G))2

))
(implying an exp(Ω(δ(G)1/3)) lower bound that depends on the minimal degree
only). As a direct corollary, every resolution proof of the functional onto version of
the pigeonhole principle onto− FPHPm

n must have size exp
(
Ω
(

n
(log m)2

))
(which

becomes exp
(
Ω(n1/3)

)
when the number of pigeons m is unbounded). This in turn

immediately implies an exp(Ω(t/n3)) lower bound on the size of resolution proofs
of the principle asserting that the circuit size of the Boolean function fn in n vari-
ables is greater than t. In particular, Resolution does not possess efficient proofs of
NP �⊆ P/poly.

These results relativize, in a natural way, to a more general principle M(U |H)
asserting that H contains a matching covering all vertices in U ⊆ V (H).
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1 Introduction

Propositional proof complexity is an area of study that has seen a rapid de-
velopment over the last decade. It plays as important a role in the theory
of feasible proofs as the role played by the complexity of Boolean circuits in
the theory of efficient computations. Propositional proof complexity is in a
sense complementary to the (non-uniform) computational complexity; more-
over, there exist extremely rich and productive relations between the two areas
(see e.g. [1,2]).

Many combinatorial principles traditionally considered in the propositional
proof complexity naturally appear as statements about graphs or hypergraphs
asserting their most basic properties. The most prominent example is probably
made by Tseitin tautologies [3,4] that are valid for any graph and assert in a
way that the sum of degrees of all vertices is even (we will see several more
examples below).

This naturally brings about the following general question:

which general combinatorial “hardness conditions” imposed on a (hyper)graph
imply hardness of the associated principle with respect to one or another propo-
sitional proof system?

In this paper we confine ourselves to Resolution (which is one of the most
widely studied proof systems), and for this system some previous work at-
tempting to tackle the question above in this generality was done. Urquhart
proved in [4] that Tseitin tautologies are hard for Resolution as long as the
underlying graph has sufficiently good expansion properties. [5] introduced
the Hitting Set principle HS(H) asserting that the hypergraph H contains a
small set of vertices hitting all its edges. He proved that this principle is hard
for Resolution whenever H is a sufficiently good combinatorial design.

Urquhart [6] considered the Matching principle M(G) asserting that the bipar-
tite graph G on U×V has a (multi-valued) matching from U to V . Ben-Sasson
and Wigderson [7] considered the same principle M(G) under another name
G − PHP . They proved that G − PHP is hard for Resolution if G has suffi-
ciently good expansion properties.

Alekhnovich, Ben-Sasson, Razborov and Wigderson [8] introduced the prin-
ciple τ(H, �g) asserting that the Nisan-Wigderson generator based upon the
hypergraph H (treated as a set system) and the Boolean functions g1, . . . , gm

misses a prescribed point in its image. They proved that if H has sufficiently
good expansion properties and g1, . . . , gm are robust with respect to restric-
tions then τ(H, �g) is hard for Resolution, as long as H does not have too many
edges.
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The framework from [8] in particular encompasses a natural generalization of
Tseitin tautologies to hypergraphs. For the case of bounded vertex degree this
generalization was also independently considered by Pudlák and Impagliazzo
[9]. They formulated a combinatorial property of the underlying hypergraph
implying that the resulting Tseitin tautology is very hard for tree-like Reso-
lution, but this property is by far less natural than those mentioned above.

In this paper we look at the Perfect Matching principle PM(H) asserting that
the hypergraph H contains a perfect matching. Our reason to be interested in
this principle is at least two-fold. The first motivation is similar to [5,6]: this
class unifies in an extremely natural framework such popular combinatorial
principles as onto−FPHP m

n , Countnr and the Mutilated Chessboard Problem.

The second reason is that, in the opposite direction, the Perfect Matching
principle PM(H) is a special case of the generator tautologies τ(H, �g) from

[8] mentioned above. Namely, PM(H) is isomorphic to τ(H∗, �E1), where H∗

is the dual hypergraph, and all gis are the EXACT-1 functions outputting
1 iff the number of ones in the input string is exactly equal to 1. Thus, the
principle PM(H) might as well provide a convenient bridge between these two
frameworks.

Our main result is an exp
(
Ω
(

δ(H)
λ(H)r(H)(log n(H))(r(H)+log n(H))

))
lower bound on

the size of any resolution refutation of PM(H), where:

• n(H) is the number of vertices;
• δ(H) is the minimal degree of a vertex;
• r(H) is the maximal size of an edge;
• λ(H) is the maximal number of edges incident to two different vertices.

Unlike previous work [4,5,8], our bound involves only the most basic combi-
natorial parameters of the hypergraph H.

If H = G is an ordinary graph then r(G) = 2, λ(G) = 1 and this general bound

gets simplified to exp
(
Ω
(

δ(G)
(log n(G))2

))
. Also, our result readily relativizes to

the principle M(U |H) asserting that the hypergraph H contains a matching
covering at least all vertices in U ; in the resulting bound n(H) and δ(H) are
re-calculated with respect to U .

Since the functional onto version of the pigeonhole principle onto − FPHP m
n

is isomorphic to PM(Km,n), we immediately get the bound exp
(
Ω
(

n
(log m)2

))
on its resolution size complexity (implying an exp

(
Ω(n1/3)

)
bound when the

number of pigeons m is unlimited). This generalizes the same lower bound
for its functional version proved in [10] (see also [11–14] for the preceding
work). It is worth noting that if we attempt to extract a stand-alone proof
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of this particular result from our general argument, it will look quite funny
(half of the pigeons in its course will change sides and turn into holes and
vice versa). This is one additional reason why we prefer to work in the more
general framework of arbitrary (hyper)graphs.

As another immediate application of our general result we get an exp(Ω(n/(r2(log n)(r+
log n)))) bound on the resolution size complexity of the counting principle
Countnr . Apparently the only lower bound for this principle that was known
for r > 2 prior to our work comes from lower bounds for much stronger model
of bounded-depth Frege proofs and has the form exp(Ω(nε)) (for constant r),
where ε is a rather small constant (see e.g. [15, Section 12]).

Finally, we show an exp(Ω(t/n3)) lower bound on the size of resolution proofs
of the principle ¬Circuitt(fn) asserting that the circuit size of the Boolean
function fn in n variables is greater than t. In particular, Resolution does not
possess efficient proofs of NP �⊆ P/poly. Previously this was known only
under the existence of one-way functions (easily follows from the efficient in-
terpolation theorem for Resolution), and when the circuits used for computing
fn may have unbounded fan-in [13].

Our proof method to a large extent follows the general pattern laid out in
[14,10]. That is, we define an appropriate notion of the pseudo-width and use
the “pigeon filter” lemma from [10] for reducing the pseudo-width of any small
resolution proof at the expense of introducing certain new axioms (Lemma
17). Lower bounds on pseudo-width (Lemma 18) make the real novelty of this
paper. For getting them we use a sort of indirect reduction to find in H a
structure that looks like a restricted version of the functional pigeonhole prin-
ciple. Then we show that the lower bound for the “pure” functional pigeonhole
principle from [10] applies to this case with minimal changes.

The paper is organized as follows. In Section 2 we give necessary definitions
and preliminaries and formulate our main results. In Section 3 we prove the
lower bound for ordinary graphs (Theorem 6): its proof is somewhat simpler
than the general bound for hypergraphs, while containing almost all essential
ideas. The next section 4 shows hardness of NP �⊆ P/poly for Resolution.
In Section 5 we show how to extend the bound from Section 3 to the case of
hypergraphs (Theorem 4). We conclude with several open problems in Section
6.

The paper is completely self-contained, although some familiarity with [14,10]
may turn out to be helpful for better understanding the proofs.

4



2 Preliminaries

2.1 Definitions

Let x be a Boolean variable, i.e. a variable that ranges over the set {0, 1}. A
literal of x is either x (denoted sometimes as x1) or x̄ (denoted sometimes as
x0). A clause is a disjunction of literals. The empty clause will be denoted by
0. A clause is positive if it contains only positive literals x1. For two clauses
C ′, C, let C ′ ≤ C mean that every literal appearing in C ′ also appears in C.
A CNF is a conjunction of clauses.

One of the simplest and the most widely studied propositional proof systems
is Resolution which operates with clauses and has one rule of inference called
resolution rule:

C0 ∨ x C1 ∨ x̄

C
(C0 ∨ C1 ≤ C). (1)

A resolution refutation of a CNF τ is a resolution proof of the empty clause 0
from the clauses appearing in τ . The size SR(P ) of a resolution proof P is the
overall number of clauses in it. For a CNF τ , SR(τ) is the minimal size of its
resolution refutation, and ∞ if no such refutation exists (i.e., τ is satisfiable).

For n, a non-negative integer let [n]
def
= {1, 2, . . . , n}, and for � ≤ n let [n]�

def
=

{I ⊆ [n] | |I| = �}.

A hypergraph H is a pair H = (V, E), where V is a finite set of vertices, and
E ⊆ P(V ) is the set of edges (thus, in hypergraphs we do allow empty edges
and loops but disallow multiple edges). The hypergraph is a graph if all its
edges have cardinality 2 (thus, in graphs we disallow both multiple edges and
loops). In the case of graphs we scale the notation one level down and denote
by E the set of all edges, whereas individual edges are denoted by small letters
e. A matching in a hypergraph H is any collection of pairwise disjoint edges.
The matching is perfect if every vertex is covered by (exactly) one edge from
the matching.

Definition 1 For a hypergraph H = (V, E), the Perfect Matching principle
PM(H) is the CNF in the variables {xE | E ∈ E } that is the conjunction of
the following clauses:

Qv
def
=
∨

E�v

xE (v ∈ V );

QE1,E2

def
= x̄E1 ∨ x̄E2 (E1 �= E2 ∈ E ; E1 ∩ E2 �= ∅).
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Clearly, PM(H) is satisfiable if and only if H contains a perfect matching.

Example 2 The (negation of the) functional onto pigeonhole principle is the
unsatisfiable CNF in the variables {xij | i ∈ [m], j ∈ [n]} denoted by ¬onto−
FPHP m

n that is the conjunction of the following clauses:

Qi
def
=

n∨
j=1

xij (i ∈ [m]);

Qi1,i2;j
def
= (x̄i1j ∨ x̄i2j) (i1 �= i2 ∈ [m], j ∈ [n]);

Qi;j1,j2
def
= (x̄ij1 ∨ x̄ij2) (i ∈ [m], j1 �= j2 ∈ [n]);

Qj
def
=

m∨
i=1

xij (j ∈ [n])

(the basic pigeonhole principle PHP m
n consists of the first two groups of ax-

ioms, and the functional pigeonhole principle FPHP m
n – of the first three

groups). Clearly, ¬onto − FPHP m
n is identical to PM(Km,n), where Km,n is

the complete bipartite graph. More generally, [6,7] proposed to consider the
principle G − PHP (G a bipartite graph on [m] × [n]) which is a naturally
defined restriction of PHP m

n onto G. Denoting its obvious analogue for the
functional onto version by onto−G−FPHP , we see that ¬onto−G−FPHP
is identical to PM(G).

Example 3 If H = ([n], [n]r) is the complete r-hypergraph on n vertices and
r � n then PM(H) coincides with the counting principle Countnr .

Given a hypergraph H = (V, E), let n(H)
def
= |V | is the number of its ver-

tices. The star of a vertex v is SH(v)
def
= {E ∈ E | v ∈ E }. The degree of

a vertex v is degH(v)
def
= |SH(v)|. The minimal degree of H is defined as

δ(H)
def
= minv∈V degH(v).

r-uniform hypergraphs are characterized as those in which all edges have car-
dinality r. From this concept we need only the upper bound on the size of an

edge so we let r(H)
def
= maxE∈E |E|.

Pairwise balanced designs with index λ are characterized as those (V, E) for
which |SH(v)∩SH(v′)| = λ for any two different vertices v, v′. From this defini-

tion we will also need only the upper bound, so we let λ(H)
def
= maxv �=v′∈V |SH(v)∩

SH(v′)|.
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2.2 Results

The main result of this paper is the following

Theorem 4 SR(PM(H)) ≥ exp
(
Ω
(

δ(H)
λ(H)r(H)(log n(H))(r(H)+log n(H))

))
.

This theorem will be fully proved only in Section 5.

If H = ([n], [n]r), then n(H) = n, δ(H) =
(

n−1
r−1

)
, r(H) = r and λ(H) =

(
n−2
r−2

)
,

and we immediately get

Corollary 5 SR(Countnr ) ≥ exp(Ω(n/(r2(log n)(r + log n)))).

Note that in this corollary r need not be a constant and may arbitrarily depend
on n.

For an ordinary graph G, r(G) = 2 and λ(G) = 1. Thus, the following result
is a special case of Theorem 4:

Theorem 6 For an arbitrary graph G,

SR(PM(G)) ≥ exp

(
Ω

(
δ(G)

(log n(G))2

))
.

However, in the next section 3 we will give its independent proof which is a
little bit simpler than the proof of Theorem 4.

Applying Theorem 6 to the bipartite graph Km,n with m > n, we get

Corollary 7 For m > n, SR(¬onto − FPHP m
n ) ≥ exp

(
Ω
(

n
(log m)2

))
.

Corollary 8 For every m > n, SR(¬onto − FPHP m
n ) ≥ exp

(
Ω(n1/3)

)
.

Proof of Corollary 8 from Corollary 7. Let SR(¬onto − FPHP m
n ) = S,

and let P be a size S refutation of ¬onto − FPHP m
n . P can use at most S

axioms from {Q1, . . . , Qm}, and it must use at least (n+1) such axioms (oth-
erwise, all axioms occurring in P could have been simultaneously satisfied).
Apply to P the restriction that sends to 0 all those xij for which Qi �∈ P . This
will show SR(¬onto− FPHP m′

n ) ≤ S for some m′ with n < m′ ≤ S. Now the

required bound S ≥ exp
(
Ω(n1/3)

)
immediately follows from Corollary 7.

Remark 9 If we try to generalize Corollary 8 to arbitrary graphs G, then we
immediately face the difficulty that after restricting the graph G, its minimal
degree δ(G) may in general drop. One natural way of circumventing this is
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to relativize the whole argument to an arbitrary set of “active” vertices U .
Namely, for U ⊆ V (H) let M(U |H) be defined in the same way as PM(H),
with the exception that the axioms Qv are allowed only for v ∈ U . Respec-

tively, let δ(U |H)
def
= minv∈U degH(v). Then we can generalize our Theorem 4

to

SR(M(U |H)) ≥ exp

(
Ω

(
δ(U |H)

λ(H)r(H)(log |U |)(r(H) + log |U |)
))

and then

SR(M(U |G)) ≥ exp

(
Ω

(
δ(U |G)

|U |2
))

≥ exp

(
Ω

(
δ(U)

|U |2
))

.

Applying now the same reasoning as in the proof of Corollary 8, we get

Corollary 10 For an arbitrary graph G,

SR(PM(G)) ≥ exp(Ω(δ(G)1/3)).

As another application, for the principle G − FPHP we get the following:

Theorem 11 For every bipartite graph G on [m] × [n], SR(¬G − FPHP ) ≥
exp
(
Ω
(

mini∈[m] degG(i)

(log m)2

))
.

It is much easier, however, to prove this theorem by using the machinery
from [10] in more direct way. Since we are not aware of any other interest-
ing applications of the principle M(U |H) where potentially δ(U |H) � δ(H)
and/or |U | � V (H) (and, likewise, are not aware of interesting graphs for
which Corollary 10 can not be replaced by Theorem 6), we will concentrate
only on the absolute version PM(H), confining ourselves to a few remarks in
appropriate places as to this possibility of relativization.

2.3 Positive calculus

Like in virtually all previous work on the subject ([16,11,5,6,14,10]), it will
be convenient to get rid of negations once and for all by using the following
normal form for refutations of PM(H).

Fix a hypergraph H = (V, E). For E0 ⊆ E , let XE0

def
=
∨

E∈E0
xE ; these are

exactly all positive clauses in the variables {xE | E ∈ E }. For E0, E1 ⊆ E , let
E0 ⊥ E1 ≡ (E0 ∩E1 = ∅ ∧ (∀E0 ∈ E0)(∀E1 ∈ E1)(E0 ∩E1 �= ∅)) (intuitively, E0

and E1 are inconsistent).

Definition 12 The positive calculus operates with positive clauses in the vari-
ables {xE | E ∈ E } and has one inference rule which is the following positive
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rule:
C0 ∨ XE0 C1 ∨ XE1

C
(C0 ∨ C1 ≤ C; E0 ⊥ E1). (2)

A positive calculus refutation of a set of positive clauses A is a positive calculus
proof of 0 from A, and the size S(P ) of a positive calculus proof is the overall
number of clauses in it. Finally, let SP (PM(H)) be the minimal possible size
of a positive calculus refutation of the set of axioms {Qv | v ∈ V }.

Lemma 13 SP (PM(H)) ≤ SR(PM(H)) ≤ O(SP (PM(H)) · |E|2).

Proof. Suppose that we have a resolution refutation of PM(H). Apply to
every line in it the transformation θ that replaces every negated literal x̄E

by the positive clause X{E′| E′ �=E, E′∩E �=∅}. Clearly, θ(Qv) = Qv and θ(QE1,E2)
contains Qv for an arbitrary v ∈ E1 ∩E2. It is also easy to see that θ takes an
instance of the resolution rule (1) to an instance of the positive rule; therefore,
θ maps P to a positive calculus refutation of the same size.

In the opposite direction, it is straightforward to check that in the presence of
the axioms QE1,E2 the positive rule is simulated by an O(|E|2)-sized resolution
proof.

Remark 14 The relativized version of Lemma 13 is also true: if we de-
fine SP (M(U |H)) as the minimal possible size of a positive calculus refu-
tation of the set of axioms {Qv | v ∈ U }, then we still have SP (M(U |H)) ≤
SR(M(U |H)) ≤ O(SP (M(U |H)) · |E|2). We, however, should work a little bit
harder for establishing the first inequality in this case (cf. [16]). Namely, in-
stead of applying the mapping θ to the axioms QE1,E2, we look at the first
time they get resolved with another clause:

C ∨ xE1 QE1,E2

C ∨ x̄E2

,

and observe that θ(C∨xE1) ≤ θ(C∨x̄E2). Thus, these axioms can be eliminated
from θ(P ) directly.

2.4 Filter lemma

We will need the following general combinatorial statement proved in [10].

Proposition 15 ([10]) Suppose that we are given S integer vectors r1, r2, . . . , rS

of length m each: rν = (rν
1 , . . . , r

ν
m), and let w0 be an arbitrary integer param-

eter. Then there exists an integer vector (r1, . . . , rm) such that ri < �log2 m�
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for all i ∈ [m] and for every ν ∈ [S] at least one of the following two events
happens:

(1) | {i ∈ [m] | rν
i ≤ ri} | ≥ w0;

(2) | {i ∈ [m] | rν
i ≤ ri + 1} | ≤ O(w0 + log S).

For the sake of completeness, we include its complete proof.

Proof of Proposition 15. We use an easy probabilistic argument. For

r = (r1, . . . , rm), let W (r)
def
=
∑m

i=1 2−ri, and let C > 0 be a sufficiently large
constant. It suffices to prove the existence of a vector r such that for every
ν ∈ [S] we have:

W (rν) ≥ C(w0 + log2 S) =⇒ | {i ∈ [m] | ri ≥ rν
i } | ≥ w0; (3)

W (rν) ≤ C(w0 + log2 S) =⇒ | {i ∈ [m] | ri ≥ rν
i − 1} | ≤ O(w0 + log S).

(4)

Let t
def
= �log2 m� − 1 and R be the distribution on [t] given by pr

def
= 2−r (1 ≤

r ≤ t−1), pt
def
= 21−t. Pick independent random variables r1, . . . , rm according

to this distribution. Let us check that for any individual ν ∈ [S] the related
condition (3), (4) is satisfied with high probability.

Case 1. W (rν) ≥ C(w0 + log2 S).
Note that

∑
rν
i >t

2−rν
i ≤ m · 2−t−1 ≤ 2, therefore

∑
rν
i ≤t

2−rν
i ≥ C(w0 + log2 S) − 2.

On the other hand, for every i with rν
i ≤ t we have P[ri ≥ rν

i ] ≥ 2−rν
i ,

hence E[| {i ∈ [m] | rν
i ≤ t ∧ ri ≥ rν

i } |] ≥ C(w0 + log2 S)− 2. Since the events
ri ≥ rν

i are independent, we may apply Chernoff’s bound and conclude
that P[| {i ∈ [m] | rν

i ≤ t ∧ ri ≥ rν
i } | < w0] ≤ S−2 if the constant C is large

enough.

Case 2. W (rν) ≤ C(w0 + log2 S).
In this case P[ri ≥ rν

i − 1] ≤ 22−rν
i and, therefore,

E[| {i ∈ [m] | ri ≥ rν
i − 1} |] ≤ 4W (rν) ≤ 4C(w0 + log2 S).

Applying once more Chernoff’s bound, we conclude that

P[| {i ∈ [m] | ri ≥ rν
i − 1} | ≥ C ′(w0 + log S)] ≤ S−2

for any sufficiently large constant C ′ � C.

So, for every individual ν ∈ [S] the probability that the related property (3),
(4) fails is at most S−2. Therefore, for at least one choice of r1, . . . , rm they
will be satisfied for all ν ∈ [S]. This completes the proof of Proposition 15.
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3 Proof of the main result for ordinary graphs

In this section we prove Theorem 6. Fix a graph G = (V, E). Given Lemma 13,
we may assume that we have a positive calculus refutation P of {Qv | v ∈ V },
and we should lower bound its size S(P ). Let NG(v) be the set of all vertices
adjacent to v in G. For a positive clause C in the variables {xe | e ∈ E }, let

NC(v)
def
=
{
w ∈ NG(v)

∣∣∣ x(v,w) ∈ C
}

and

degC(v)
def
= |NC(v)|.

For analyzing the refutation P we are going to allow certain positive clauses
as new axioms. Our allowance criterium will be determined by a fixed integer
vector d = (dv | v ∈ V ) (“filter”), and a positive clause C will be allowed as a
new axiom if and only if sufficiently many vertices v satisfy degC(v) ≥ dv (“get
stuck” at the filter d). In this way we will be able to simplify the refutation P
by “filtering out” of it all clauses C with this property and declaring them as
new axioms.

Our first task (Section 3.1) will be to show that if the thresholds dv are chosen
properly, then in every clause C passing the filter d, almost all vertices pass
it safely, i.e. degC(v) is well below dv. This part almost immediately follows
from Proposition 15 and is practically identical to [10, Lemma 3.3].

The pseudo-width of a clause C will be defined as the number of vertices that
narrowly pass the filter d. Our second task (Section 3.2) will be to get lower
bounds on the pseudo-width of any small positive calculus refutation in the
presence of the new axioms described above. It will be performed in two steps.
During the first step we use a simple probabilistic argument to identify within
G a structure that “looks like” G′−FPHP (where G′ is a bipartite subgraph
of G) and behaves well with respect to any positive clause in the prospective
refutation (Claim 19). Then we complete the proof by sorting out the edges
of G according to this structure and evaluating the result in a linear matroid;
this part being a relatively easy adaption of the argument in [10, Lemma 3.4]
for the “pure” FPHP m

n .

Now we begin the formal proof.
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3.1 Pseudo-width and its reduction

Suppose that we are given an integer vector d = (dv | v ∈ V ) indexed by
vertices of the graph G. For a positive clause C let

Vd(C)
def
= {v ∈ V | degC(v) ≥ dv } .

Fix for the rest of Section 3 the parameters δv as follows 2 :

δv
def
=

degG(v)

2 log |V | , (5)

and let
V �

d (C)
def
= {v ∈ V | degC(v) ≥ dv − δv } .

Define the pseudo-width of the clause C as

wd(C)
def
= |V �

d (C)|.

The pseudo-width of a positive calculus proof P is naturally defined as

wd(P )
def
= max {wd(C) | C ∈ P } .

A (w0, d)-axiom is a positive clause C such that |Vd(C)| ≥ w0.

Remark 16 For the relativized version M(U |G) (that is, when we only have
the axioms {Qv | v ∈ U } for some U ⊂ V ), the vectors dv, δv are defined only
for v ∈ U . (5) will have log |U | in the denominator, Vd(C), V �

d (C) will be
subsets of U etc.

Lemma 17 Suppose that there exists a positive calculus refutation P of {Qv | v ∈ V },
and let w0 ≤ δ(G)

4
be an arbitrary integer parameter. Then there exists an in-

teger vector d = (dv | v ∈ V ) with δv < dv ≤ degG(v) for all v ∈ V , a set
of (w0, d)-axioms A and a positive calculus refutation P ′ of {Qv | v ∈ V } ∪A
such that S(P ′) ≤ S(P ) and

wd(P
′) ≤ O(w0 + log S(P )). (6)

Proof. As we already mentioned above, this lemma is very similar to [10,
Lemma 3.3], and for this reason we will be rather concise here. Fix a positive

calculus refutation P of {Qv | v ∈ V }, and let S
def
= S(P ). For C ∈ P define

rv(C)
def
= �degG(v) − degC(v)

δv

� + 1.

2 All logarithms in this paper are base 2
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Let m
def
= |V | and r(C)

def
= (rv(C) | v ∈ V ) be the integer vector of length m.

We apply Proposition 15 to the vectors {r(C) | C ∈ P }, and let (rv | v ∈ V )
satisfy the conclusion of that proposition.

Set dv
def
= �degG(v) − δvrv� + 1 (so that dv is the minimal integer with the

property �degG(v)−dv

δv
� + 1 ≤ rv). Note that since rv < �log2 m�, w0 ≤ δ(G)

4
and

also δv ≤ δ(G)
2 log |V | (by (5)), we have dv > δ(G)

2
≥ δv + w0.

Consider now an arbitrary C ∈ P . If for the vector r(C) the first case in

Proposition 15 takes place, then �degG(v)−degC(v)
δv

� + 1 ≤ rv for at least w0

different vertices v ∈ V ; therefore every such C is an (w0, d)-axiom. Choose
arbitrarily w0 vertices in Vd(C), and remove from C all those xe for which e
is not incident to at least one of the chosen vertices. The resulting clause C ′

will still be an (w0, d)-axiom and degC′(v) ≤ w0 for every vertex v that has
not been chosen. Hence, due to the inequality dv > δv + w0, no such vertex
may belong to V �

d (C ′) which implies wd(C
′) = w0. Replace C by C ′, and put

the latter into A.

In the second case,
∣∣∣{v ∈ V

∣∣∣ �degG(v)−degC(v)
δv

� ≤ rv

}∣∣∣ ≤ O(w0 + log S). Since

v ∈ V �
d (C) implies the inequality �degG(v)−degC(v)

δv
� ≤ rv, for all such C we have

wd(C) ≤ O(w0 + log S).

This completes the proof of Lemma 17.

3.2 Lower bounds on pseudo-width

Given Lemma 17, we must now show that for every choice of the vector
d, there is no small size small pseudo-width positive calculus refutation of
{Qv | v ∈ V } ∪ A, where A is any set of (w0, d)-axioms. Before we begin the
formal proof, let us try to convey some intuition toward it.

As we already mentioned above, our overall strategy will be to find inside G
a “well-behaving” (with respect to the refutation) structure which sufficiently
resembles G′ − FPHP for some bipartite subgraph G′. For this purpose we
randomly divide the vertices V into pigeon vertices VP and hole vertices VH .
If our prospective refutation P is small enough, then we may expect that this
partition will look random to every clause C ∈ P .

The partition (VP , VH) induces a classification of all edges into pigeon-pigeon
edges, pigeon-hole edges and hole-hole edges. Pigeon-pigeon edges are of no
importance and are removed immediately.

Pigeon-hole edges are the most crucial, they form the subgraph G′ and they

13



are used to simulate G′ − FPHP . The fact that our partition is random
enough with respect to every C ∈ P implies that there are sufficiently many
pigeon-hole edges, and that when everything is restricted to them, degrees are
scaled down by almost exactly a factor of two, the sets Vd(C) and V �

d (C) also
behave in an expected manner etc. This ensures us that we can easily adopt
the algebraic argument for the functional pigeonhole principle [10, Lemma
3.4].

One remaining problem is that in its original form this argument seems to be
inherently incapable of taking care of the axioms {Qv} with v a hole vertex
(missing in the functional version of PHP m

n ), and this is exactly what the hole-
hole edges are used for. More specifically, our algebraic invariant is preserved
under adding or deleting such edges, and when we need to “force” an axiom
Qv with v ∈ VH (see the proof of Claim 21), we do it simply by appending
any legitimate hole-hole edge (v, w) to the current matching b.

Let us now proceed to the rigorous proof. Recall that δv are given by (5). At
this point let us also define

S0
def
= exp

(
ε2δ(G)

(log |V |)2

)
(7)

and

w0
def
= exp

(
εδ(G)

(log |V |)
)

, (8)

where ε < 0 is a sufficiently small constant. For technical reasons we also need
to assume

|V | ≤ S0 (9)

(or, in other words, δ(G) ≥ 1
ε2
·(log |V |)3); at the end of Section 3 we will show

how to get rid of this restriction.

Our lower bound on the pseudo-width looks like this:

Lemma 18 Let d = (dv | v ∈ V ) be an integer vector such that δv < dv ≤
degG(v) for all v ∈ V , and P be a positive calculus refutation of {Qv | v ∈ V }∪
A, where A is an arbitrary set of (w0, d)-axioms, such that S(P ) ≤ S0. Then

wd(P ) ≥ δ(G)
200 log |V | .

Proof. Fix d = (dv | v ∈ V ) , A and P satisfying these assumptions. We need
the following easy claim (the analogue of this claim for hypergraphs, however,
will be by far less transparent).

Claim 19 There exists a vertex partition V = VP

.∪ VH such that the following
two properties are satisfied:

14



(1) for every A ∈ A, |Vd(A) ∩ VP | ≥ w0/3;
(2) for every C ∈ P ∪ {XE} and every v ∈ V ,∣∣∣∣|NC(v) ∩ VH | − 1

2
degC(v)

∣∣∣∣ ≤ δv

10

(recall that XE =
∨

e∈E xe).

Proof. Uniformly pick a random partition V = VP

.∪ VH. For estimating the
probabilities that it satisfies the required properties, it will be convenient to
use the following special case of Bernstein’s inequality (see e.g. [17, page 205])
that, in a convenient way, generalizes both Chernoff’s and variance bounds for
the sum of independent Poisson trials.

Proposition 20 Let S be the sum of independent 0-1 variables (not neces-
sarily equidistributed), and let E be its expectation. Then P[|S − E| ≥ δ] ≤
exp
(
−Ω
(

δ2

δ+E

))
.

In particular, for the property 1 we have that for every individual A ∈ A,
P[|Vd(A) ∩ VP | ≤ w0/3] ≤ exp(−Ω(w0)) ≤ S−2

0 . For property 2, given any
individual positive clause C and v ∈ V ,

P

[∣∣∣∣|NC(v) ∩ VH| − 1

2
degC(v)

∣∣∣∣ ≥ δv

10

]

≤ exp

(
−Ω

(
δ2
v

δv + degC(v)

))
≤ exp

(
−Ω

(
δ2
v

degG(v)

))

≤ exp

(
−Ω

(
degG(v)

(log |V |)2

))
≤ exp

(
−Ω

(
δ(G)

(log |V |)2

))
≤ S−3

0

provided the constant ε in (7) is small enough. Given our assumption (9),
Claim 19 now follows by the union bound.

We return to the proof of Lemma 18. Fix an arbitrary partition V = VP

.∪ VH

satisfying properties 1, 2 of Claim 19. Let D be the set of all (partial) match-
ings in G. We will sometimes identify matchings a ∈ D with their characteris-
tic functions, i.e., with Boolean assignments to the variables {xe | e ∈ E }. Let
dom(a) be the set of all vertices in V incident to an edge in a.

For a positive clause C, let

Z(C)
def
=
{
a ∈ D

∣∣∣ dom(a) ⊇ V �
d (C) ∧ C(a) = 0

}
.

Intuitively, Z(C) is the set of all matchings “forcing” C to 0. We are going
to keep track of a certain algebraic invariant defined in terms of Z(C) as the
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refutation P is making progress, and for that purpose we construct a mapping
φ from D to the set of linear subspaces of a linear space L. A very natural and
interesting question (raised in particular by one of the referees) is whether the
use of linear algebra is really essential and can not be replaced by a purely
combinatorial argument. We will comment on this after we are done with the
proof of Lemma 18.

Let EH consist of those edges e ∈ E that have at most one endpoint in VP ,

and let DH
def
= {a ∈ D | a ⊆ EH }. If a �∈ DH , we immediately set φ(a)

def
= 0.

Now we show how to define φ on DH . Our construction essentially uses tensor
products of linear spaces; we refer to any good textbook in algebra (e.g. [18])
for their definitions and basic properties. In particular (this is what we actually
need for our proof), if L = L1 ⊗ · · · ⊗ Ln, then for any linear subspaces
L′

1, . . . , L
′
n in L1, . . . , Ln respectively we can form an uniquely defined subspace

in L isomorphic to their tensor product and (for this reason) denoted by
L′

1 ⊗ · · · ⊗ L′
n with the following two properties.

(1) Denote by Span(L1, . . . , Ln) the linear space spanned by linear subspaces
L1, . . . , Ln of the same common space L. Then ⊗ and Span obey the fol-
lowing distributive law: for any subspaces L′

1, . . . , L
′
i−1, L

1
i , . . . , L

h
i , L

′
i+1, . . . , L

′
n

in the respective L1, . . . , Ln we have

L′
1 ⊗ · · · ⊗ L′

i−1 ⊗ Span(L1
i , . . . , L

h
i ) ⊗ L′

i+1 · · · ⊗ L′
n

= Span(L′
1 ⊗ · · · ⊗ L1

i ⊗ · · · ⊗ L′
n, . . . , L′

1 ⊗ · · · ⊗ Lh
i ⊗ · · · ⊗ L′

n).

(2) dim(L′
1 ⊗ · · · ⊗ L′

n) =
∏n

i=1 dim(L′
i).

For ease of notation, one-dimensional subspaces L′
i in the expression L′

1⊗· · ·⊗
L′

n will be represented by their generating elements.

Fix an arbitrary infinite field k, and for v ∈ VP let Lv be an hv-dimensional
linear space over k, where

hv
def
=

(
degG(v) − dv

2
+

δv

4

)
.

Let L
def
=
⊗

v∈VP
Lv. Denote further NG(v) ∩ VH by NH(v), and for every

v ∈ VP fix an arbitrary generic embedding φv : NH(v) −→ Lv (so that for
every W ⊆ NH(v) with |W | = hv the elements {φv(w) | w ∈ W } form a linear
basis of Lv).

Next, for a ∈ DH we let

φ(a)
def
=

⊗
v∈VP \dom(a)

Lv ⊗
⊗

v∈VP ∩dom(a)

φv(av),
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where av is the uniquely defined vertex in NH(v) such that (v, av) ∈ a. It is
important to note that φ(a) depends only on the set of edges having exactly
one endpoint in VP (“pigeon-hole” edges) present in a. Finally, for a positive
clause C we let

φ(C)
def
= Span(φ(a)|a ∈ Z(C)).

Claim 21 Suppose that C is obtained from C0, C1 via a single application of
the positive rule in the refutation P , and assume that wd(C0), wd(C1) do not

exceed δ(G)
200 log |V | . Then φ(C) ⊆ Span(φ(C0), φ(C1)).

Proof. Fix an arbitrary a ∈ Z(C); we only need to show that φ(a) ⊆
Span(φ(C0), φ(C1)). Let V ′ def

= V �
d (C0) ∪ V �

d (C1), and remove from a all edges
that are not incident to at least one vertex in V ′. Denote the resulting match-
ing by a′. Since the mapping φ is anti-monotone w.r.t. inclusion, it is sufficient
to show that

φ(a′) ⊆ Span(φ(C0), φ(C1)). (10)

Note that since C is positive, C(a′) = 0. Let b ∈ DH be an extension of a′ such
that still C(b) = 0, and still every e ∈ b is incident to at least one vertex in V ′.
Note for the record that the second property implies |b| ≤ wd(C0) + wd(C1) ≤

δ(G)
100 log |V | .

Denote π(b)
def
= |V ′ \ dom(b)|. We are going to show by induction on π(b) =

0, 1, . . . , π(a′) that
φ(b) ⊆ Span(φ(C0), φ(C1)). (11)

Base π(b) = 0. Since the positive rule is sound on D, C(b) = 0 implies
Cε(b) = 0 for some ε ∈ {0, 1}. Then b ∈ Z(Cε), and (11) follows.

Inductive step. Let π(b) > 0, and pick an arbitrary v ∈ V ′\dom(b). Property
2 of Claim 19 (applied to C = XE) implies that |NH(v)| ≥ 1

2
degG(v) − δv

10
.

Therefore, b has at least

|NH(v)| − 2|b| ≥ 1

2
degG(v) − δv

10
− δ(G)

50 log |V | ≥
1

2
degG(v) − 7δv

50

different extensions b̂ = b ∪ {(v, w)} ∈ DH with w ∈ H .

We claim that v �∈ V �
d (C). Indeed, v �∈ dom(a′) since v �∈ dom(b) and a′ ⊆ b.

Also, v �∈ dom(a \ a′) since v ∈ V ′ and, therefore, an edge incident to v would
not have been removed from a. Hence, v �∈ dom(a) which implies v �∈ V �

d (C)
by the definition of Z(C).

This means degC(v) < dv−δv. Applying property 2 of Claim 19 once more, we
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obtain |NC(v)∩VH | ≤ 1
2
(dv−δv)+ δv

10
= 1

2
dv− 2δv

5
, and this is the upper bound

on the number of extensions b̂ of the above form that violate the condition
C(b̂) = 0. Altogether, we have at least(

1

2
degG(v) − 7δv

50

)
−
(

1

2
dv − 2δv

5

)
=

1

2
(degG(v) − dv) +

13δv

50
(12)

different extensions b̂ = b∪{(v, w)} ∈ DH with w ∈ H and such that C(b̂) = 0.
To every one of these extensions we can apply the inductive hypothesis and
conclude that φ(b̂) ⊆ Span(φ(C0), φ(C1)).

Now, if v ∈ VH then we simply have φ(b) = φ(b̂) for any such b̂ (since b and
b̂ differ only in one edge (v, w) that is “hole-hole”). If v ∈ VP then (12) is
greater than hv; therefore, if b ∪ {(v, w1)}, . . . , b ∪ {(v, wt)} is their complete
list then φv(w1), . . . , φv(wt) generate Lv. Hence, in this case we also have
φ(b) ⊆ Span(φv(w1), . . . , φv(wt)), and the inductive step follows.

We have completely proved (11). Applying it to b = a′, we get (10) which
completes the proof of Claim 21.

Now we complete the proof of Lemma 18 by a simple counting argument.
Assume for the sake of contradiction that wd(P ) < δ(G)

200 log |V | . Note that for

every v ∈ V we have v ∈ Vd(Qv) ⊆ V �
d (Qv) (since dv ≤ degG(v)) and therefore

Z(Qv) = 0 (since no partial matching covering v can set Qv to zero). This
implies φ(Qv) = 0. Also, V �

d (0) = ∅ (since dv > δv), the empty matching ∅
belongs to Z(0) and φ(∅) = L. By iterating Claim 21, we get Span(φ(A)|A ∈
A) = L. Consider an individual A ∈ A.

Let V0
def
= Vd(A) ∩ VP . Then, clearly,

φ(A) ⊆ ⊗
v∈VP \V0

Lv ⊗
⊗
v∈V0

Span(φv(w)|w ∈ NH(v) \ NA(v)).

By property 1 of Claim 19, |V0| ≥ w0/3. By the definition of Vd(A), degA(v) ≥
dv for every v ∈ V0, hence, by property 2 of Claim 19, |NH(v) ∩ NA(v)| ≥
1
2
dv − δv

10
. Also (by the same claim) |NH(v)| ≤ 1

2
degG(v) + δv

10
. Therefore,

|NH(v) \ NA(v)| ≤ 1
2
(degG(v) − dv) + δv

5
= hv − δv

20
. Putting things together,

we get

dim(φ(A))

dim(L)
≤ ∏

v∈V0

hv − δv/20

hv
≤ exp (−Ω(w0/(log |V |))) < S−1

0

if the constant ε in (7), (8) is small enough. Since |A| ≤ S0, {φ(A) | A ∈ A}
can not generate L, and this contradiction completes the proof of Lemma 18.
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Remark 22 The algebraic argument used in the proof of Lemma 18 looks
rather ad hoc, and it also hinders further potential applications of our method.
It would be extremely interesting to replace this with some purely combinato-
rial reasoning; in particular, the author believes that the yet unknown combi-
natorial machinery for this purpose would very likely suffice to solve a couple
of open problems from Section 6. Unfortunately, so far we have not been able
to do anything along these lines.

Proof of Theorem 6. Let G be a graph, and define the parameters δv, S0, w0

by (5), (7), (8). Assume first that (9) is true, and assume, for the sake of
contradiction, that SR(PM(G)) ≤ S0. Applying Lemma 13, we get a positive
calculus refutation of {Qv | v ∈ V } that has the same size bound S0. Applying
Lemma 3.1, we get some vector d and another positive calculus refutation
with the same size bound S0 that additionally allows (w0, d)-axioms, but at
the same time obeys the bound (6) on pseudo-width. This bound, however,
is in a direct contradiction with Lemma 18, as long as the constant ε in (8)
is small enough. This contradiction shows that SR(PM(G)) ≥ S0 and proves
Theorem 6 in the case S0 ≥ |V |.

In order to take care of the “degenerate” case S0 ≤ |V |, let P be the minimum
size resolution refutation of PM(G). If S(P ) ≥ S0, we are done so let us

assume S(P ) ≤ S0. Let Vactive
def
= {v ∈ V | Qv ∈ P }, then |Vactive| ≤ S(P ) ≤ S0

and SR(M(Vactive|G)) = S(P ). However, when we relativize the argument in
this section (see Remarks 9, 14, 16), the relativized version of (9) will become
S0 ≥ |Vactive|, and that much we already know (note that the value of S0 can
only increase under the relativization!)

Theorem 6 is completely proved.

We conclude this section with one technical observation that will make things

cleaner in Section 4. Let SP (¬onto − FPHP m
n )

def
= SP (PM(Km,n)) be the

positive calculus complexity of the functional onto version of the pigeonhole
principle. Since Theorem 6, by the nature of its proof, readily applies to the
positive calculus, we also have

Lemma 23 For m > n, SP (¬onto − FPHP m
n ) ≥ exp

(
Ω
(

n
(log m)2

))

(a straightforward application of Lemma 13 would have resulted in an annoy-
ing (mn)2 factor).
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4 Unprovability of circuit lower bounds by small resolution proofs

The material of this section is a minor adaptation of [19, Section 5], so we
will be rather concise (and, in particular, skip all motivations). Also, it is not
used anywhere in Section 5, so the reader interested to see the conclusion of
the proof of Theorem 4 may proceed directly to that section.

Let fn be a Boolean function in n variables, and let t ≤ 2n. Denote by
Circuitt(fn) the following 5-CNF of size 2O(n) encoding the description of
a size-t Boolean circuit for computing fn.

First, we list all variables of Circuitt(fn) (some of them have peculiar long
names like InputType′ν(v)), along with their intended meaning:

yav (a ∈ {0, 1}n, v ∈ [t])− the Boolean value computed at

the node v on the input string a;

yaνv (a ∈ {0, 1}n, ν ∈ {1, 2}, v ∈ [t])− the value brought to v by ν’s

wire on a;

Fanin(v)− this is 0 if v is NOT-gate and 1 if

v is AND-gate or OR-gate;

Type(v)−when Fanin(v) = 1, this is 0 if v

is AND-gate and 1 if v is OR-gate;

InputTypeν(v)− this is 0 if ν’s input to v is a

constant or a variable and 1 if it

is one of the previous gates;

InputType′ν(v)−when InputTypeν(v) = 0, this is 0

if ν’s input to v is a constant,

and 1 if it is a variable;

InputType′′ν(v)−when InputTypeν(v) =

InputType′ν = 0, this equals the

ν’s input to v;

InputV arν(v, i) (i ∈ [n])−when InputTypeν(v) = 0,

InputType′ν(v) = 1, this is 1 iff

ν’s input to v is xi;

INPUTV ARν(v, i)− equals
∨

i′≤i InputV ar(v, i′),
introduced to keep bottom fan-in

bounded;

InputNodeν(v, v′) (v′ < v)−when InputTypeν(v) = 1, this is 1

iff ν’s input to v is the previous
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gate v′;
INPUTNODEν(v, v′)− analogously to INPUTV ARν(v, i).

Circuitt(fn) is the conjunction of (conjunctive normal forms equivalent to)
the following axioms:

¬InputTypeν(v) ∧ ¬InputType′ν(v) −→ (yaνv ≡ InputType′′ν(v));

¬InputTypeν(v) ∧ InputType′ν(v) −→ ¬(InputV arν(v, i) ∧
InputV arν(v, i′)) (i �= i′);
¬InputTypeν(v) ∧ InputType′ν(v) −→ (INPUTV ARν(v, i) ≡
(INPUTV ARν(v, i − 1) ∨ InputV arν(v, i)))

(INPUTV ARν(v, 0)
def
= 0);

¬InputTypeν(v) ∧ InputType′ν(v) −→ INPUTV ARν(v, n);

¬InputTypeν(v) ∧ InputType′ν(v) ∧ InputV arν(v, i) −→ (yaνv ≡ ai);

the analogous group of axioms for InputNode;

¬Fanin(v) −→ (yav ≡ ¬ya1v);

Fanin(v) ∧ ¬Type(v) −→ (yav ≡ (ya1v ∧ ya2v));

Fanin(v) ∧ Type(v) −→ (yav ≡ (ya1v ∨ ya2v));

yat ≡ f(a).

In this section we prove

Theorem 24 SR(Circuitt(fn)) ≥ exp(Ω(t/n3)).

Proof. [19, Section 5] constructed a reduction from ¬FPHP m
t to Circuitt(fn)

which works in the context of the Polynomial Calculus. A closer inspection
reveals that it will also work for Resolution, but only if we weaken FPHP m

t to
onto−FPHP m

t (cf. [13]), and our proof will essentially consist in conducting
this inspection.

Definition 25 PDNFt(fn) is the following 3-CNF of size 2O(n) encoding the
description of a size-t perfect DNF K1 ∨ . . .∨Kt (Kj elementary conjunctions
of maximal length n) for computing fn. The variables of PDNFt(fn), along
with their intended meaning, are:

yajk (a ∈ {0, 1}n, j ∈ [t], k ∈ [n])− a is consistent with the first k

literals in Kj ;

yaj (a ∈ {0, 1}n, j ∈ [t])−K1(a) ∨ . . . ∨ Kj(a) = 1;

zjk (j ∈ [t], k ∈ [n])− the sign with which xk occurs in Kj .

The axioms of PDNFt(fn) are (the 3-CNF resulting from expanding):
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yajk ≡
(
yaj,k−1 ∧ zak

jk

)
(with yaj0

def
= 1);

yaj ≡ (ya,j−1 ∨ yajn) (with ya0
def
= 0);

yat ≡ f(a).

Proposition 26 SR(Circuitt(fn)) ≥ SR(PDNF
t/2n�(fn))

Proof. [19, proof of Corollary 5.2] noticed the existence of a variable substi-
tution that takes Circuitt(fn) to PDNF
t/2n�(fn), and variable substitutions
work for any reasonable proof system including Resolution.

Lemma 27 There exists m with t + 1 ≤ m ≤ 2n such that

SR(PDNFt(fn)) ≥ SP (¬onto − FPHP m
n ).

Proof. (cf. [19, proof of Theorem 5.1]) Let m
def
= |f−1(1)|; we may assume that

m ≥ t + 1 since otherwise PDNFt(fn) is satisfiable. Identify pigeons i ∈ [m]
with Boolean assignments a ∈ f−1(1); thus, pigeonhole variables will look like
xaj where f(a) = 1. Construct the following mapping that takes every literal
of a variable of PDNFt(fn) to a positive clause in the pigeonhole variables:

yajk �→
∨ {xbj | f(b) = 1 ∧ b1 = a1 ∧ . . . ∧ bk = ak } (a ∈ {0, 1}n);

ȳajk �→
∨ {xbj | f(b) = 1 ∧ ¬(b1 = a1 ∧ . . . ∧ bk = ak)} (a ∈ {0, 1}n);

yε
aj �→ ε̄ (f(a) = 0);

yaj �→
∨

j′≤j

xaj′ (f(a) = 1);

ȳaj �→
∨

j′>j

xaj′ (f(a) = 1);

zε
jk �→

∨ {xaj | f(a) = 1 ∧ ak = ε} .

An easy inspection shows that this mapping takes every resolution refutation
of PDNFt(fn) into a positive calculus refutation of ¬onto−FPHP m

n . Lemma
27 follows.

Theorem 24 is now immediately implied by Proposition 26, Lemma 27 and
Lemma 23.
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5 Proof of the main result: general case

In this section we show how to adapt the proof from Section 3 to the case of
arbitrary hypergraphs and prove Theorem 4. Before we begin, let us pinpoint
the main difficulties with the naive generalization (all of them are in one or
another way related to Claim 19).

Recall the discussion at the beginning of Section 3.2. Given a partition (VP , VH),
we still must classify every edge with at least two pigeons in it as useless (see
the definition of DH in the proof of Claim 21). As long as r(H) is large, this
will result in the unpleasant fact that there are only a few useful (that is,
pigeon-hole) edges, and the argument breaks down. We circumvent this by
biasing our distribution (VP , VH) in favour of holes (notice the striking dif-
ference with the ordinary PHP m

n ), and we have to pay for this an extra r(H)
factor in the final bound.

The most serious problem, however, is structural rather than numerical: we
no longer have a workable definition of the vertex neighbourhood set NH(v),
and we must work with stars SH(v) instead. This in particular implies that, as
long as λ(H) > 1, the edges in this star are no longer classified independently
of each other, and we are facing difficulties with estimating the probability of
large deviation in proving property 2 of Claim 19. We circumvent this by an
ad hoc trick, and we will have to pay at least an extra λ(H) factor in the final
bound for this trick.

Finally, as long as H is not uniform, the probability that E ∈ SH(v) will be
classified as (say) pigeon-hole edge also depends on |E|. This makes even the
expectation in the proof of property 2 of Claim 19 unpredictable in terms of
degC(v). The remedy for this, however, is very easy (and comes free of charge):
we assign to edges appropriate weights according to their size.

Let us now turn to the formal argument. Fix a hypergraph H = (V, E). For
E ∈ E , we define its weight as

μ(E)
def
=

(
1 − 1

r(H)

)|E|−1

(the reason for this choice of the weight function will become clear in the proof
of Claim 29). We adjust all degree-depending notions according to this weight
function:
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d̃egH(v)
def
=

∑
E∈SH(v)

μ(E),

δ̃(H)
def
= min

v∈V
d̃egH(v),

and for a positive clause C in the variables {xE | E ∈ E },

d̃egC(v)
def
=

∑
E∈SC(v)

μ(E),

where naturally

SC(v)
def
= {E ∈ SH(v) | xE ∈ C } .

Note for the record that e−1 ≤ μ(E) ≤ 1, hence d̃egH(v), δ̃(H), d̃egC(v) differ
from their unweighted analogs by at most a constant factor. Also, for ease of
comparison with Section 3, note that μ(E) = 1/2 for ordinary graphs G and

we have d̃egG(v) = 1
2
degG(v), δ̃(G) = 1

2
δ(G) and d̃egC(v) = 1

2
degC(v).

We now adapt the next series of definitions as follows. We let

δv
def
=

d̃egH(v)

2 log |V | .

For a vector d = (dv | v ∈ V ), let

Vd(C)
def
=
{
v ∈ V

∣∣∣ d̃egC(v) ≥ dv

}
and

V �
d (C)

def
=
{
v ∈ V

∣∣∣ d̃egC(v) ≥ dv − δv

}
.

wd(C), wd(P ) and the notion of an (w0, d)-axiom are defined on the base of
these new Vd(C), V �

d (C) exactly as before. The adjustment of Lemma 17 is
fairly straightforward:

Lemma 28 Suppose that there exists a positive calculus refutation P of {Qv | v ∈ V },
and let w0 ≤ δ̃(H)

4λ(H)
be an arbitrary integer parameter. Then there exists an in-

teger vector d = (dv | v ∈ V ) with δv < dv ≤ d̃egH(v) for all v ∈ V , a set
of (w0, d)-axioms A and a positive calculus refutation P ′ of {Qv | v ∈ V } ∪A
such that S(P ′) ≤ S(P ) and wd(P

′) ≤ O(w0 + log S(P )).

The only remark which should be made in connection with its proof is this:
if |V0| = w0 and E ∩ V0 �= ∅ for every xE ∈ C ′, then d̃egC′(v) ≤ degC′(v) ≤
w0λ(G) for every v ∈ V0 (this guarantees that after cleaning up any (w0, d)-
axiom its pseudo-width will get reduced to w0).

Fix the parameters S0, w0 as
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S0
def
= exp

(
ε2δ̃(H)

λ(H)r(H)(log |V |)(r(H) + log |V |)
)

; (13)

w0
def
=

εδ̃(H)

λ(H)r(H)(log |V |) . (14)

Instead of (9), we will need the stronger inequality

S0 ≥ max {|V |, |E|}. (15)

Under the assumptions of Lemma 18, we will be proving the lower bound

wd(P ) ≥ δ̃(H)

50λ(H)r(H)(log |V |) . (16)

Fix d = (dv | v ∈ V ) , A and P satisfying those assumptions.

Claim 29 There exist a partition V = VP

.∪ VH such that the following two
properties are satisfied:

(1) for every A ∈ A, |Vd(A) ∩ VP | ≥ w0/(2r(H));
(2) for every C ∈ P ∪ {XE} and every v ∈ V ,

∣∣∣|{E ∈ SC(v) | E − {v} ⊆ VH }| − d̃egC(v)
∣∣∣ ≤ δv

5
.

Remark 30 Note that in 2 we have the real cardinality of the set {E ∈ SC(v) | E − {v} ⊆ VH },
not its weighted version.

Since this claim is most seriously affected by the transition from graphs to
hypergraphs, we give its complete proof from scratch.

Proof of Claim 29. Let (VP ∪ VH) be a random partition of V in which
for every v ∈ V , P[v ∈ VP ] = 1

r(H)
, and these events are independent for

different v. Applying Proposition 20 to every individual A ∈ A, we get
P[|Vd(A) ∩ VP | ≤ w0/(2r(H))] ≤ exp(−Ω(w0/r(H))) ≤ S−2

0 , as long as the
constant ε in (13), (14) is small enough.

Fix now an individual positive clause C and v ∈ V . Recall that a set system
S1, . . . , St is called a sunflower if all pairwise intersections Si ∩ Sj (1 ≤ i <
j ≤ t) are equal to the same set called the center of the sunflower.

Claim 31 There exists a partition SC(v) = S1
C(v)

.∪ . . .
.∪ St

C(v), where for
every ν ∈ [t], Sν

C(v) is a sunflower with the center {v} and t ≤ r(H)λ(H).

Proof of Claim 31. Let us construct an auxiliary (ordinary) graph on SC(v)
by connecting E and E ′ if and only if E∩E ′ �= {v}. The degree of every vertex
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E in this auxiliary graph is bounded by (r(H) − 1)(λ(H) − 1): there are at
most r(H)− 1 choices of v′ �= v in E, and for every such v′ at most λ(H) − 1
edges E ′ �= E containing both v and v′. Hence, the chromatic number of this
auxiliary graph does not exceed (r(H)−1)(λ(H)−1)+1 ≤ r(H)λ(H). It only
remains to note that independent sets in this graph are exactly {v}-centered
sunflowers in H.

Now we are ready to analyze the probability of large deviation for |{E ∈ SC(v) | E − v ⊆ VH }|.
Note first that

E[|{E ∈ SC(v) | E − {v} ⊆ VH}|] =
∑

E∈SC(v)

P[E − v ⊆ VH]

=
∑

E∈SC(v)

(
1 − 1

r(H)

)|E|−1

= d̃egC(v).

Next, fix the partition SC(v) = S1
C(v)

.∪ . . .
.∪ St

C(v) guaranteed by Claim

31. Note that Sν
def
= {E ∈ Sν

C(v) | E − {v} ⊆ VH } is a sum of independent

0-1 variables; denote its expectation by Eν . We have
∑t

ν=1 Eν = d̃egC(v).
Applying Proposition 20, we get

P
[
|S1 + · · ·+ St − d̃egC(v)| ≥ δv/5

]
≤

t∑
v=1

P

⎡⎣|Sν − Eν | ≥ δv

10

⎛⎝1

t
+

√√√√ Eν

t · d̃egC(v)

⎞⎠⎤⎦
≤ t · exp

(
−Ω

(
δ2
v

t · d̃egH(v)

))
≤ S−3

0

as long as the constant ε in (13) is small enough (for the last inequality we
also need to observe that t ≤ r(H)λ(H) ≤ |V | · |E| ≤ S2

0 by (15)). Claim 29
now follows by the union bound.

The definitions of D and Z(C) do not change. Let

EH
def
= {E ∈ E | |E ∩ VP | ≤ 1}

and, as before, DH
def
= {a ∈ D | a ⊆ EH }. As before, the mapping φ vanishes

outside of DH .

For v ∈ VP let

hv
def
= (d̃egH(v) − dv) + δv/2,

and let
SH(v)

def
= {E ∈ SH(v) | E − {v} ⊆ VH } .
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We construct generic embeddings φv : SH(v) −→ Lv, their tensor product φ
and its action on DH just in the same way as before. There are no structural
changes to the proof of Claim 21, but we need to adjust calculations. Recall
that we assume the upper bound (16) on wd(C0), wd(C1). Then we have |b| ≤

δ̃(H)
25λ(H)r(H)(log |V |) for every matching b considered in that proof. In particular,

any such b covers at most δ̃(H)
25λ(H)(log |V |) vertices.

In the inductive step, the lower bound on the number of extensions b̂ = b ∪
{E} ∈ DH with E ∈ SH(v) becomes |SH(v)| − r(H)λ(H)|b| ≥ d̃egH(v) −
δv

5
− δ̃(H)

25(log |V |) ≥ d̃egH(v) − 7δv

25
, and the upper bound on the number of these

extensions violating C(b̂) = 0 becomes |SC(v) ∩ SH(v)| ≤ (dv − δv) + δv

5
=

dv − 4δv

5
. Altogether we have at least d̃egH(v) − dv + 13δv

25
good extensions

which is greater than hv if v ∈ VP .

The rest of the proof of Theorem 4 (under the assumption (15)) closely fol-
lows the pattern in Section 3 (note that the factor of r(H) lost in part 1 of
Proposition 29 is accounted for in (13)).

Finally, we show how to get rid of (15). Once more, let P be the minimal size

refutation of PM(H) such that S(P ) ≤ S0 and Vactive
def
= {v ∈ V | Qv ∈ P }.

Let also Eactive
def
=
⋃

v∈Vactive
SH(v). By relativizing the whole argument to Vactive,

the assumption (15) can be relaxed to S0 ≥ max{|Vactive|, |Eactive|}. It only
remains to note that we also have S(P ) ≥ |Eactive|. The reason is that every
xE with E ∈ Eactive must be resolved somewhere in the refutation P since
otherwise for every v ∈ E∩Vactive, there could not be any path from Qv to the
empty clause and, contrary to the minimality of P , we could have removed
Qv from it.

6 Open problems

Currently there are two different techniques for proving lower bounds on
SR(PM(H)). The first method [7] is based on the width-size relation and is
applicable only when the minimal degree δ(H) tends to be small. Our method,
on the contrary, can be only applied when δ(H) is large. Can we find their
common generalization that would uniformly cover both cases? For example,
is it true that SR(G − PHP ) ≥ exp

(
nΩ(1)

)
for any bipartite G on [m] × [n]

that has a constant expansion rate, without any assumptions about m and
the degrees degG(i)? This is true if the number of edges is ≤ n2−Ω(1) [7] or
mini degG(i) ≥ nΩ(1) (Theorem 11).

Can the methods developed in [14,10] and in this paper be applied to the tau-
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tologies τ(A,�g), τ⊕(A, b) introduced in [8] and expressing the hardness of the
Nisan-Wigderson generator in the context of propositional proof complexity?

The best known upper bound on SR(¬PHP m
n ) is exp(O(n logn)1/2) [16], and

we have shown the lower bound SR(¬onto − FPHP m
n ) ≥ exp(Ω(n1/3)). It

would be interesting to further narrow this gap. Specifically, what is the value
of lim supn→∞

log2 log2 SR(¬PHP∞
n )

log2 n
?

It appears as if one could hope to get slightly better lower bounds for the
counting principle Countnr by using ordinary restrictions instead of our ma-
chinery. Is it for example true that SR(¬Countnr ) ≥ exp(Ω(n)) for any constant
r?
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