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Abstract

We introduce a “Statistical Query Sampling” model, in whibk goal of an algorithm is to produce
an element in a hidden sét C {0, 1}" with reasonable probability. The algorithm gains inforinat
aboutS through oracle calls (statistical queries), where thertlym submits a query functiog(-) and
receives an approximation fr,cs[g(z) = 1]. We show how this model is related to NMR quantum
computing, in which only statistical properties of an enblrof quantum systems can be measured,
and in particular to the question of whether one can tramsi@ndard quantum algorithms to the NMR
setting without putting all of their classical post-prosiag into the quantum system. Using Fourier
analysis techniques developed in the related contestadistical query learningwe prove a number of
lower bounds (both information-theoretic and cryptogiajpbn the ability of algorithms to produces an
x € S, even when the sef is fairly simple. These lower bounds point out a difficultyefficiently
applying NMR quantum computing to algorithms such as Shamd Simon'’s algorithm that involve
significant classical post-processing. We also explicilate the notion of statistical query sampling to
that of statistical query learning.

1 Introduction

Recent years have witnessed the development of a numbecitihgxquantum algorithms: Simon’s algo-
rithm for the hidden XOR secret problein_[28], Shor’s alduntfor factoring and discrete logarithms 26,
2], Boneh and Lipton’s algorithm for the hidden subgrouphbem [4], and many generalizations and
extensions[[21, 11, 1P, 18,115,117]. Atthe same time, worlbleas ongoing on various proposals for physi-
cally realizing quantum computers. Currently, one of thestpoomising such proposals is based on Nuclear
Magnetic Resonance (NMR)I10, [7.113, 5]. The NMR approachke/twy manipulating a large ensemble
of quantum systems in solution. One property of the NMR mebthwehich is the focus of this paper, is
that unlike the “standard” quantum computing model, onenoadirectly measure any individual quantum
system in the ensemble. Instead, a measurement is limieditgle qubit, and when a measurement takes
place, the device returns (an approximation to) the exdea&ie of this measurement, over the quantum
systems in the ensemble. For this reason, the model for NMi®nsetimes called the “expected-value”
(EV) model [6]. In contrast, the measurement in the standaethtum model yields a random sample state
(which may consists of multiple bits) according to a claaksprobability distribution.

Given the distinction between the standard model and the Bdei the first question that arises is
whether it is possible to translate algorithms working ia ftandard model to work in the EV model. In
fact, the answer is yes. Consider any BQP algorithnh [24].aRéom the definition that a BQP algorithm
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solves a decision problem, and such an algorithm has a $pesget” qubit to indicate acceptance. For
a languagd. and an input, if z € L, then the measurement of the target qubit will produce a “Tthw
probability at leasB/4; if = ¢ L, the probability is at most /4 when measured. Such an algorithm
works naturally in the EV model, since one can simply measwdarget qubit, and even with significant
measurement error, use the rule that if the observed valuel/2, thenz € L, and otherwiser ¢ L.
For a search (as opposed to decision) problem, we can petf@mmsual reduction to a series of decision
problems, solving each one by one. In fact, many researd¢taes used this approadh [13] 24], which we
call an “all-inclusive” translation.

Unfortunately, the “all-inclusive” translation can grigancrease the amount of work that must be done
by the quantum system. Consider Shor’s algorithm, for m=sta(see Appendik]A). Shor’s algorithm (and
others like it) consists of a quantum sampling cir@ditwhose output is measured and fed into a classical
extraction circuitC'. For the all-inclusive translation, the classical exti@ctircuit C' needs to be “quan-
tumized”, i.e., realized by a quantum circuit and appendeth¢ quantum sampling circuip. This can
cause a significant increase in the size of the quantum tireun the case of Shor’s algorithm, the entire
circuitry for computing continued fractions needs to bdired in quantum — which is a rather undesirable
consequence. Even in the most optimistic scenarios, gueotunputers will be orders of magnitude more
difficult to manufacture and maintain than classical coramjtand thus we would like to put as little of the
complexity as possible in the quantum system. Even morewseproblems emerge when more than one
sample is needed by the classical extraction circuit. Famgte, in Simon’s algorithnt)(n) samples are
needed for Gaussian elimination (see Appeiidix A). Now theelusive translation needs to manufacture
multiple copies of the quantum sampling circuit and thennemt them together with the “quantumized”
classical extraction circuit. This can cause even more inboin the size of the quantum circuit in the EV
model.

In this paper, we consider the question of whether there ighmore efficient translations that apply
generally to algorithms consisting of a quantum samplingud Q followed by a classical extraction circuit
C, that workwithout having to put the classical part of the algorithm into therquan system. Our main
contributions are results that answer this question in dgative, for several natural notions of “general’.
We achieve these results through a connection to the nofiatatstical query learnind22] studied in
Computational Learning Theory, and in particular to a edlatotion that we introduce atatistical query
sampling Using techniques from Fourier analysis and cryptograplgyshow that even in cases where the
distribution implied by@ is quite simple, it can be hard to use the EV model to generaangle that
can be used by’. Note that our results do not preclude the possibility ofrapphes tailored to specific
guantum algorithms. For example, Colling [6] demonstratesodification to Grover’s algorithm that is
more efficient than the all-inclusive translation (see #fsodiscussion below). However, as pointed out by
the author, his approach does not generalize to algorittk@$hor’s.

1.1 Our model and results

We view the quantum sampling circéitas representing a hidden set- {0, 1}", and we view the classical
post-processing as a circuit such thatC'(z) = 1 for all z € S. The goal of the translation procedure is
to produce some € S. To find such an, the algorithm has the ability to perform a “statistical gieof

@ by proposing a query function (a predicate) {0,1}" — {0, 1} and asking folE,cs[g(x)] up to some
1/poly accuracy. For example, measuring tlie qubit corresponds to the quegyz) = z;. Taking the
XOR of the first three qubits and then measuring the resufesponds to the query(z) = 21 ® z2 O 3.
The algorithm may repeat this process multiple (polynolyradany) times, with different query functions
g, and in the end must (with noticeable probability) produce: & S.



Note that this task is easy to doSfis very large (S| > 2"/poly(n)), since a randomx € {0,1}"
will do. It is also easy to do i is very small (S| = poly(n)). In particular, if|S| = poly(n), then by
asking for an accuracy df/(2|S|) one can distinguish the case tftcs[g(z)] = 0 from the case that
E.cs[g(x)] > 0. This allows one to walk down the bits of fixing bits from left to right, until a specific
x € S'is produced. This is the key idea 0f [6].

We show, however, that this task is hard in general. Speliyfiege give two types of hardness results.
First, we give an information-theoretic hardness resulhé query algorithm is not allowed to acceSs
That is, the translator is allowed to use the fact that thesétal extraction circui€' is polynomial in size
(so the set of accepting strings cannot be totally arbifrant it is not allowed to examin€ — it can
only gain information via the queries Second, we give a cryptographic hardness result if we asshen
translator is giverC' as input, but that otherwis€ is an arbitrary polynomial-size circuit. We still do not
know if efficient translation is possible for the specificcaitt C' used in Shor’s algorithm.

We also consider a more general setting, in whitimay be large (e.g),S| = 2"~!), so a random
string has reasonable chance of belonging tdut the goal of the translation is to produce a string
S with probability substantially greater than random guagsiWe call this more general setting “strong
SQ-sampling”, and refer to the former setting as the “weaks8@pling”. Strong SQ-sampling models
situations such as Simon’s algorithm, in which the quantincuit produces a random € {0, 1}" such
thaty - s = 0 for the hidden secret. In this case, a random string has probabiliti2 of belonging
to .S, but we need(n) correct samples in a row in order to perform Gaussian elitiina We give an
information-theoretic hardness result for this problehattholds for the specific sé&t used by Simon’s
algorithm (Theoreril23.

1.2 Technigues and relation to Statistical Query learning

Our results are based on a connection to the StatisticalyQ&€p) learning model, first introduced by
Kearns|[22] as a restricted version of the popular Probablgréximately Correct (PAC) model of Valiant [30].
In these learning models, the goal of an algorithm is to leamnapproximation to a hidden function
f :{0,1}™ — {0,1}. In the PAC model, the algorithm has access to an “exampleeiravhich pro-
duces a random labeled samiie f(x)) upon invocation. In the SQ model, however, the algorithmsdoe
not see explicit examples or their labels. Instead, theritlgo queries an “SQ-oracle” with predicates
g(x,y), and receives an approximation e, [g(z, f(x)) = 1]. For instance, the algorithm might ask for
the probability that a random example would both be posiivehave its first bit set to (z, y) = z1Ay).2
The SQ model has proven to be very useful because (a) it isanthg tolerant to classification noise (this is
the reason the model was developed), and (b) nearly all madbarning algorithms can be phrased as SQ
algorithms. What makes the SQ model especially interesitizat one can information-theoretically prove
lower bounds on the ability of SQ algorithms to learn certdasses of function$ [22] 3,120,131) 32].

The relationship between the standard model and the EV niadgliantum computation is quite similar
to that between the PAC model and the SQ model in machineitggrwhich motivates our definition of
the Statistical Query Sampling problem. In particular, 8@ sampling problem can be viewed as the
SQ learning problem with two key differences: first, the geahot to learn an approximation b but is

INote, for Simon’s algorithm, we no longer want to think ofiaexisting a known classical extraction circuit. If we wgieen
access to a circui’ such thatC'(z) = 1iff x € S (e.g., the circuit with the hidden secret built in) then thenpling goal would be
easy. See Theorelh 4 for further discussion.

2In both PAC and SQ learning models, the distribution avemeed not be the uniform distribution (or even known to the
learning algorithm). However, much work on SQ learning dfmesis on the uniform distribution, and that is the settingaxze
most interested in in this paper.



rather to produce a positive example, and second, the oi@ceQ sampling returns approximations to
Prig(z) = 1 | f(x) = 1] rather than taPr[g(z, f(x)) = 1] (a difference that matters when the set of
positive examples is quite small).

We use techniques from Fourier analysis to prove the fotigWiower bounds. First (Theorenh 1) we
show there exist simple function classes such that no #tgoriusing only a polynomial number of queries
of 1/poly accuracy, can produce a positive instance with eyemly probability. Second (Theorenh 2), for
the class of “negative parity” functions arising in Simoalgorithm, no algorithm using only a polynomial
number of queries of /poly accuracy, can produce a nontrivial positive instance wittbability more than
1/2 + 1/poly. (Note that random guessing works with probabilitf2). We also show that unlike the case
of SQ learning, the SQ sampling problem can be computatiohakd even iff is explicitly given to the
algorithm, based on cryptographic assumptions (see The8ye

Finally, we explicitly relate the notion of SQ sampling tatlof SQ learning by proving that if a function
class is “dense”, meaning that a random element has noigitglprobability of being positive, then strong
SQ-learnability implies strong SQ-samplability (Theori@n We also point out that there exists function
classes that are perfectly SQ-samplable, yet not even w&ajdlearnable.

2 Preliminaries and Definitions

We are interested ipredicateghat map elements fromagomainX (e.g.,{0,1}")to {0, 1}. For a predicate
f+ X — {0,1}, an inputx is apositive inputto f if f(z) = 1, else it is anegative input All the positive
inputs to f form thepositive sebf f, denoted byS;. A predicate classoften denoted by, is simply a
collection of predicates ovei0, 1}™. A predicate class familys an infinite sequence of predicate classes
C = (C1,Ca,...), such that,, is a predicate class ov¢6, 1}".

A parity function &,(x) is defined to beb,(z) = s - = mod 2. A negative parityfunction— &, (z) is
the negation of the parity functiob(z).

2.1 Statistical Query Sampling

Definition 1 (Statistical Query Sampling Oracle) A statistical query sampling orac{&QS-oracle) for a
predicatef is denoted bysQS/. On input(g, ¢), whereg : {0,1}" — {—1,+1} is thequery functionand
¢ € [0, 1] is thetolerancethe oracle returns a real numbgrsuch thatlly — E.cs,[g9(2)]| < €.

Definition 2 (SQ-Samplability) A predicate class familg is SQ-samplable at ratein time¢ and tolerance
&, if there exists a randomized oracle machi#iesuch that for every. > 0 and everyf € C,, Z with access
to any SQS-oracl6QS/, runs in at most(n) steps, asks queries with tolerance at legsand outputs an
x € Sy with probability at leasts(n). We sayC is strong SQ-samplabli¢ for everye, C is SQ-samplable
atrate1 — e in timet and tolerancet such thatt and ¢~ are polynomial inn and 1/e. We sayC is weak
SQ-samplablé there exists a polynomial, such thatC is SQ-samplable at raté/p(n) in time and inverse
tolerance polynomial im.

Definition 3 (Sampling Algorithms with Auxiliary Inputs) A predicate class familg is SQ-samplable
with auxiliary input ¢ if it is SQ-samplable by an algorithr® which takess(f) as the auxiliary input,
wheref is the predicate being sampled.



3 Lower Bounds Based on Fourier Analysis

We first prove two hardness results on SQ sampling, usingi€foanalysis techniques developed in the
context of SQ learning.

3.1 A Lower Bound on Weak SQ-Sampling

We prove that there exist very simple families of predica#sses that are not weak SQ-samplable, i.e., no
efficient algorithm can produce a positive input at any neghgible rate.

We introduce a bit more notation. We use boldface to denotectow and index the entries of an
dimensional vector frond to (n — 1). We usex/i] to denote the-th entry ofx. x[a..b] indicates the
sub-vector formed by the entries gfbetween thei-th and theb-th, inclusive. LetX,,, be the set of all
n-dimensional vectors ovef, (the Galois field modul@) whose last: — 1 entries are not all-zero, i.e.,

Xpp={x€Z!|x[l.n—1] #(0,0,...,0)}. 1)
Itis easy to see thak,, ,| = p” — p.

Definition 4 (Booleanized Linear Functions) A booleanized linear functionveanvp with parametera
is denoted by, and defined as

1 ifa-x=1 (modp)
Lalx) = { 0  otherwise @

We sayL, is normalizedif a[0] = 1. Thenormalized booleanized linear function cladsnoted by’,, ,,,
consists of all normalized booleanized linear functionsra¥,, ,,. In other words,

Lnp=1{La|acZ,, al0] =1} (3)

Theorem 1 If a sampling algorithm for the normalized booleanized &néunction classC,, , makes less
thanp™/* queries, each of tolerancb/p”/ 3. then the probability it produces a positive inpue X, plsat
mostl/p 4 1/p"/13.

Notice that the requirement € Xnm is simply to rule out the trivial positive input00. .. 0, and we
could have equivalently just modified the definition of a “l@mized linear function” so that this specific
example is made negative. Also, notice that if we chgo$e be much greater tham, say pickingp to
be ann-bit prime number, then /p + 1/p”/13 is exponentially small, while the size of the problem idl stil
polynomial inn. Furthermore, if a completely randornis picked, the probability it is a positive input is
1/p. Thus even exponentially many queries may only help the Bagipy an exponentially small margin.

Proof: Our proof strategy is similar to that used by Keains [22] ahgBet. al. [3] in the context of SQ
learning. We describe an “adversarial” SQS-or&l§ that does not commit to any particular predicate
at the beginning. Rather, the oracle maintains a “candigegdicate set’”, which initially includes all
predicates in the class, , (a totalp”~! of them). Each time the algorithi makes a quensQS replies
with an answer that yields very little information. Somedeates in the candidate st might not be
consistent with the answer and will be removed from BetAfter all the queries are finishe8QS then
commits to a random predicate remaining/f We shall prove that each query only removes a small



fraction of the predicates fron?. Thus if Z does not make enough number of queries, there would be
enough predicates left iR such that no element can be positive with high probability.

For a query functiory : Xnvp — {—1,+1}, we say that a subsétC {0,1}" is a¢-independent subset
for g, if |Epes(g(z)] — Emef(n,,, [g(x)]] <&, and we say a predicafeis ¢-independentrom g, if its positive
setSy is a¢-independent set fog. Intuitively, if a predicatef is {-independent frony, then the query
(g,€) reveals almost no information aboyit sinceSQS can reply WithExeXw[g(x)] instead, which is
completely independent frorh - o

We describe the behavior of our SQS-oraslEs in more detail. On query, SQS replies withE _ ¢ - ) [g(x)],
and removes all predicates that are fandependent frong from the candidate sdt. We assume that alll
queries have tolerande= p—"/3. We shall prove that for any query there are at mogt2"/3+2 predicates
notp—"/3-independent frong. This proof is by a Fourier analysis technique and is givelnemsmd® in Ap-
pendiXD. Thus, if less thapi*/* queries are made, the candidate set still contains ayleastl —p—"/12-3)
parity functions.

Now consider the domairX,, ,,. It is not hard to see that eveny ¢ X, , is positive for onlyp” 2
predicates. So, if the oracle commits to a random predicateobthe set ofp”~1(1 — p~"/12-3) the
probability thatz is positive is at most /p + 1/p™/13. n

3.2 A Lower Bound on Sampling Negative Parity Predicates

We prove that a class of negative parity functions is not 8@gsable in polynomial time at any rate non-
negligibly higher thar /2.

Theorem 2 Let X,, = {0,1}"\{0"} andC,, be the class of negative parity functions ovgy. If a sampling
algorithm forC,, makes less tha?*/* queries, each of toleranc& "/, then the probability it produces a
positive input is at mos§ + 54—

Before proving the theorem, we point out how this resulttesdado the translation of Simon’s algorithm
to the NMR model. In Simon’s algorithm, the quantum samplirguit produces a random € {0,1}"
such thaty - s = 0, wheres is the “hidden” secret (see Append A). Thus the hidden setesponds
exactly to the negative parity functiond;. In the algorithm, the quantum sampling circuit is invokeh )
times and produce®(n) samples for Gaussian elimination. Notice tjat 0™ is useless. Therefore, a
translation of the quantum sampling circuit will produceS@-sampling algorithn® to be execute®(n)
times and to produc®(n) positive samples iX,, = {0,1}"\{0"}. However, Theorerl2 implies that it is
not possible to sample efficiently at any rate non-neghgibgher thanl /2 (notice that a random € X,
is positive with probability almost/2). This result suggests that it appears necessary to manrg&y(n)
copies of the qguantum sampling circuit and run these copigstiher in the NMR model.

Proof sketch: The proof strategy is similar to that of TheorEm 1. We assuraedach query has tolerance
¢ = 1/2"/*. We construct an SQS-oracle that on query functjomeplies WIthE, ¢ (0,13 [9(7)], and
remove all predicates that are rigtndependent frony from the candidate sa? (here the definition of
“¢-independent” naturally changes|i,¢cs[g(z)] — Ezefo,13719(2)]| < &). We shall prove in Lemnid 7 (in
AppendixD) that for any query, there are at mog*/2*2 predicates no2~"/*-independent frong. Thus,
if less thar2"/4 queries are made, the candidate set still contains at28as3"/4+2 — 1 parity functions.
Now consider the domaiX,, = {0,1}"\{0"}. It is not hard to see that everyc X,, is positive for
2"—1 negative parity functions. Now if a random parity functisrchosen from a set of si2& —237/4+2 1



the probability that: is positive is at most

on—1 1 1
on _ 93n/4+2 _ 1 — 5 + on/d—-2"

This is true for anyr € X,. Therefore, whateveg outputs, the probability that it is positive is at most
1 1

5 + on/4—2 |

2 on/4—2

4 A Cryptographic Lower Bound

We next prove a cryptographic lower bound. Assuming thatwag functions exist, we show that there
exist predicate class families that are not weak SQ-sarigplaken if the sampling algorithm is given the
complete description of the predicate as the auxiliary inphe technique we use here is somewhat similar
to that of Angluin and Kharitonov 1], who used signatureesuoles to prove that membership queries do not
help to learn DNF.

We briefly describe the ideas behind our proof. We will usegitali signature scheme secure against
adaptive chosen message atteck [14], which exists if onefurctions exist[[2b]. Let the predicate be
the signature verification functiover,,;(m, s), which returnsl if s is a valid signature to messagewith
respect to the verification keyk. The security of the signature scheme states that no “bre#kegiven
access to a signing oracle, can produce@valid signature it has not yet seen. We want to argue that this
implies no sampling algorithn®, given access to a SQ-sampling oracle, can pro@ngevalid signature.
We will show that if such an algorithn¥ exists, we can construct a “breakds”as follows. The breaker
will have access to a signing orad&Sign that signs any message given to it as input, and Eires a
subroutine. The only non-trivial part f@ is to simulate an SQS-oracle used Bywithout revealing toZ
any information about which signatures it has already seertatZ= is not biased towards producing an
already-seen signature). Upon a quégys) from Z, B will produce a number of random messages, ask
the signing oracle to sign them, and use these samples toegst, < 5, [9(x)]. Next, B “randomizes” this
estimate by adding an artificial noise to it. With properlysén parameters, this “randomized” estimate is
still a valid answer with very high probability, and yet alstdandependent from the messageproduces.
Finally, Z produces a positive input, which is a message/signaturgipajs’). The distribution of the this
pair (m’, s’) is also almost independent from the messadg@soduces, and i£ only makes polynomially
many queries, then only polynomially many messages willfoeyced by53. Therefore the probability that
m’ is one of the messages producedis very small, and sé breaks the digital signature scheme with
reasonably high probability.

Formally, asignature schem8IG is a triple(sig_gen, sig_sign, sig_verify) of algorithms, the first two
being probabilistic, and all running in polynomial timeig_gen takes as inpui™ and outputs a sign-
ing/verification key paif(sk, vk). sig_sign takes a message and a signing keyk as input and outputs
a signatures for m. WLOG we assume that bott ands aren-bits long. sig_verify takes a message,

a verification keyvk, and a candidate signatuséfor m as input and returns the kit= 1 if s’ is a valid
signature formn for the corresponding verification keyt, and otherwise returns the bit= 0. Naturally, if

s = sig_sign(sk, m), thensig_verify(vk, m, s) = 1. In an adaptive chosen message attack [14], an adver-
sary (“breaker”)s is givenvk, where(sk, vk) < sig_gen(1™), and tries to forge signatures with respect to
vk. The breakei3 is allowed to query a signing orac{eSign, ., which signs any message with respect to
vk, on messages of its choice. It succeeds in existential fpifafter this it can output a pairm, s), where
sig_verify(vk, m,s) = 1, butm was not one of the messages signed by the signature oraclign#tsre



schemeSIG is existentially unforgeable against adaptive chosen agesattacks if there is no forging algo-
rithm B that runs in time polynomial im and succeeds with probabiliy/ poly(n). Such schemes exist if
one-way functions exist[25].

Theorem 3 LetSIG = (sig-gen, sig_sign, sig_verify) be a digital signature scheme secure against adap-
tive chosen message attack. Then the predicate class f@mity {ver,;} is not weakly SQ-samplable,
even if the sampling algorithm is givert as the auxiliary input. Hereer,, is defined to beer, . (m, s) =
sig_verify(vk, m, s), where(sk, vk) < sig-gen(1™), andm, s € {0, 1}".

Proof: Assume to the contrary that there exists an algoritfirthat weak SQ-samples the function class
Cn = {ver,}. More precisely, we assume th&tproduces a positive input with probabilityby making

q queries, where botl/e andq are bounded by a polynomial in We shall construct a polynomial-time
algorithm B that breaks the signature scheBI& with probability e /2, causing a contradiction.

We now describe the behavior 5f B has access to a signing ora€Sign,, and interacts with the
sampling algorithmz as the SQS-oracle. Whefi makes a queryg, ¢), B does the following. Firstj3
computesty = f—(fq andM = %Oqfk) ThenB drawsM random messages;, ms,...,my € {0,1}",
and asks the signing oracle to sié)n all of them. Assume theasiges are, s, ..., spr. Next, B uses these
message/signature pairs to estimate the expected valueyafomputingr = ﬁ Eﬁ[z 1 9(my, si). ThenB
“randomizes”z by drawing ay uniformly randomly from the intervdl: — %, T+ %], and sending to Z as
the answer to the querly, ). B also maintains a “history set” séf of all the messages it has generated,
which is initially (). After a query fromZ is answered3 adds the messages, , mo, ..., mjs to setH.

After all the ¢ queries are madeZ produces a paitm/, s’). If ver,,(m/,s’) = 1 andm’ ¢ H, thenB
outputs(m’, s') and successfully forges a signature. Otherniissborts and announces failure.

It is clear thatB runs in polynomial time. Intuitively, we can show that aftee randomization, with
high probability the samplen’, s") produced byz is almost independent from the history &t Therefore,
with high probability,’ ¢ H, and soB will succeed. More precisely, we prove thawill succeed with
probabilit at least/2.

We useS,; to denote the positive set for predicata,,. In other words,S,, consists of valid mes-
sage/signature pairs with respect to the verificationidey

Claim 1 For a query functiory, if we definer = E(,, 5)es,, [9(m, 5)], then with probability at least —
€/5q, we havex — o| < & (all quantities are as defined in the proof sketch of Thedrfgm 3

Proof: This is due to a straightforward application of the HoefédiBound. Each sampleny, si) is an
independent random element frasp, and thusE,,, e, , [9(m, s) = 1] = 0. So the expected value of

is o. Now, the probability thafl/ independent samples yields an average belew is at moste—M¢3/2
(notice that the range aof is {—1,+1}). Also the probability that the average is abave- &, is at most
e~M&/2 Therefore with probability at leagt— 2¢=4/2 > 1 — ¢/5q, we havelz — o| < &. m

We fix a set consisting af/ message/signature pairs generatedby response to a query, £), and
denote this byU: U = {(my, sk) ;’szl. We call this set @ample setWe sayU is typical, if the average
g(my, si) is indeeds(-close too. By Claim[d, at most/5¢ fraction of the sample sets are not typical.

Notice that a typical sample set will yield an average thajjislose too. This is a much higher
accuracy than required by ti#& which has a tolerance §f However,5 needs this accuracy to perform the
randomization.

Claim 2 If U is a typical set, then the answer frafifor this query is valid.

8



Proof: Notice thatifU is typical, then the averageis £)-close to the true value. After the randomization,
itis (& + &/2)-close too. This is less thag. ]

We consider the distribution of the answer produced3lfpr a particular queryg, £). We denote this
distribution by Dy, whereU is the sample set used Iy

Claim 3 If both U and U; are typical sets, then the statistical distance betw®gn and Dy, is at most
€/5q.

Proof: We usery andz; to denote the averages obtained frbimandU, respectively. If boti/y andU;
are typical, we havéry — o| < & and|z; — o] < &. Thus we havéry — z1| < 2¢,. Notice thatDy, is
a uniform distribution over the interval of lengéhcentered at,, and Dy, a uniform distribution of same
length centered at;. The claim follows from LemmEl4. [

Notice the history sefl consists of; sample sets. We say a history &&is typical, if all its sample sets
are typical. Then at most/5 fraction of the history sets are not typical. We denote tisrithution of all
answers produced b using history seH by Ty.

Claim 4 If both Hy and H; are typical, then the statistical distance betwéépn and T}y, is at most /5.
Proof: This directly follow the sub-additivity of statistical dance (see AppendixIC). [

Now we fix an arbitrary typical sell and denote its corresponding distribution of the answerg by
Then we know the distribution from any typical set is at mg$taway fromT.

The only informationZ receives froni3 is represented by the distribution of the answers produgeg b
which is in turn determined by the history $etises. Thus, the distribution of the p&ir’, s’) is completely
determined by the history séf, and we denote this distribution 8y . We know that ifH is typical, then
Pr(y 5)c0y Veror(m, s) = 1] > . We fix the distributionO that corresponds to the history gét Then we
have

Pr [veryp(m,s) =1] > e. 4)
(m,s)€O
Furthermore, we know that for any typical history $&tits corresponding distribution @, is ¢/5-close
to O.

Consider a new experiment (a new execution of the brefgk#rat is identical to the original one, except

when Z outputs a paitm/, '), it does so according to the fixed distributiéh

Claim 5 Let M be the maximum size of the sample setd inThen the probability of the new experiment is
at leaste — M - ¢/2™.

Proof: Notice that the output of is independent from the history st Moreover, the history set contains
at mostM - ¢ messages. So the probability that a particulais in H is at most)M - ¢/2™. This fact, along
with @), proves the claim. [ ]

Now putting things together, with probability at megt, the history sef! is not typical; if H is typical,
the difference between the probabilities of the two expenita is at most/5; the probability of success of
the new experiment is at least- M - q/2". Therefore the probability of success of the original expent
is at least (fom large enough} — M - ¢/2" — ¢/5 — ¢/5 > ¢/2.

This finishes the proof. [



5 SQ sampling and SQ learning

We now point out relationships between our SQ sampling madelthe SQ learning model of Kearisl[22].
We begin with definitions of SQ learning. (In these definiipwe assume learning is with respect to the
uniform distribution over examples.)

Definition 5 (Statistical Query Learning Oracle) A statistical query learning oracl&QL-oracle) for a
predicate f is denoted byyQL/. On an input(g, ¢), whereg : {0,1}" x {0,1} — {—1,+1} is thequery
functionand¢ € [0, 1] is thetolerancethe oracle returns a real numbgrsuch thaty —E o, 132 [9(z, f(2))]| <

¢.

Definition 6 (Strong SQ-Learnability) A predicate class familg is Strong SQ-learnablé there exists a
randomized oracle maching, such that for every. > 0, everyf € C, and for every > 0, § > 0, Z with
access to any SQL-oracBQL/ outputs a hypothesig such thatPr,c (o 1y [f(z) = f(2)] > 1 — € with
probability at leastl — §, and furthermore, both the running time Bfand the inverse of the tolerance of
each query made by it are bounded by a polynomial,iti/e and1/6. Heree is called theaccuracyand §
theconfidence

Definition 7 (Weak SQ-Learnability) A predicate class familg is weak SQ-learnabld there exists a
randomized oracle machines and a polynomiap(-), such that for every, and for everyf € C,,, Z with
access to any SQL-orackQL/, outputs a hypothesissuch thatr,c (o 13- [f(z) = f(z)] > 1/2+1/p(n),
and furthermore, both the running time Bfand the inverse of the tolerance of each query madg laye
bounded by a polynomial in.

The first observation to make is that a predicate class canrdwegyy SQ-learnable and yet not even
weakly SQ-samplable. In particular, any class with a séfitty low density of positive examples can be
trivially learned by producing the “all zero” hypothesid-ofmally, if we wish be correct even for values
of ¢ that are exponentially small, it suffices to have the derieig thanl /2"/2 so that if necessary we can
use the SQL oracle to identify all positive examples.) In dtiger direction, a class can be strongly SQ-
samplable and yet not even weakly SQ-learnable. Indeedathiéy of negative parity functions taken over
the domain{0, 1}" is trivially SQ-samplable (becaug&0™) = 1 for any suchf), but such functions are
not even weakly SQ-learnable[22]. It is interesting to canegthis to Theorer 2, since the predicate class
families in these two theorems are very similar (one carktbirthe difference either as removigg from
the domain, or simply as changing the values of the functairthis one point), yet they have completely
different characterization in terms of SQ-samplability.

However, we show there is a relationship between thesenwmtiden the set of positive examples is
sufficiently dense.

5.1 SQ-learnability sometimes implies SQ-samplability
We prove that under certain circumstances, SQ-learnabitiplies SQ-samplability.

Definition 8 (Density of Predicates) Thedensityof a predicatef : {0,1}" — {0, 1}, denoted by(f), is
the fraction of its inputs that are positive. In other wordéf) = Pr,c (o 1y [f(z) = 1].

Definition 9 (Dense Predicates)A predicate class familg is denseif there exists a polynomial(-) such
that for everyn and for everyf € C,, p(f) > 1/p(n).
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Theorem 4 If a dense predicate class family is strong SQ-learnablentt is also strong SQ-samplable
with the auxiliary inputp.

Proof: Let Z be the algorithm that strongly SQ-learns dense predicatelyfaC. We construct a new
algorithm A that strong SQ-samplesusing the density of the predicatef as auxiliary input. A runs a
copy of Z, whose accuracy and confidence are settebep - ¢ /4 ln(g) andd = € /4, and simulates the
SQL-oracle used bg. We shall prove thatl produces a positive input with probability at ledast ¢'.

We now describe the behavior df. A works in two phases. In this first phase, it simulates the SQL-

oracleSQL/. WhenZ submits a queryg, ¢) to A, A does the following.

1. SetM = % draw M independent samples, xo, ..., 23 from {0, 1}, and compute

2. Construct two query functiong(z) = g(x,0) andg;(x) = g(x,1). Submit querieggo,¢/3) and
(91,€/3) to the SQS-oracl6QS’ and receivey, andy; as answers.

3. Computey = s + (y1 — yo) - p and send, to Z as the answer to the quefy, &).

The algorithmA enters the second phase wh&mproduces a hypothesig Then A repeats the following
procedure. It draws a randome {0,1}", and check iff (z) = 1. If so it stops and output; otherwise
it continues. The procedure is repeatac(%) /p times and ifA still hasn’t stopped, it produces a random
x € {0,1}™ and outputs it.

It is clear thatA runs in polynomial time. Now, we prove that produces a positive sample with
probability at least — ¢'.

First, we prove that with probability at least— 4, all answers provided byl are valid in the first
phase. Consider an averageas an approximation oE,c 1y»[g(,0)]. We says is “bad”, if [s —
E,cq0137[9(z,0)]| > £/3. Then a simple application of the Hoeffding Bound (see Apjpel) proves
that the probability that is bad is at mosi/q.

Next, notice that

g(z, f(2)) = g(x,0) +[9(z,1) — g(z,0)] - f(x).

Therefore we have

E.cronnl9(z, f(2))] = Eueqonynlo(z,0)] +
Ecqo1yn[(9(z,1) — g(z,0)) - f(2)]
= Egcqoynl9(7,0)] +
(E:ceSf [9(x,1)] — Ezes; [9(, 0)]) P

Therefore, ifs is not bad, then thg computed byA is a valid reply to queryg, £). SinceZ makes a
total of ¢ queries, with probability at leagt— ¢, all the replies byA are valid andZ should perform well.

Next, consider the second phasetdfWith probability at least — §, Z should produce a hypothegfs
that agrees withf with probability at least — . Let us assume t& does produce suchja Now since &
fraction of the inputs are positive, the probability tlatloesn’t draw a positive input iim (%) /p rounds is
at mosts. The probability thaf makes a mistake in any of the rounds is at mogt.) - ¢/p. If f doesn't
make any mistakes and at least one positive input is drawn,4fwill correctly output it.

Putting everything together, we know that with probabitityieastl — 35 —1In (3) -¢/p = 1 — ¢/, A will
output a positive input. [

11



We remark that it appears necessary for the SQ-samplingithigoto have the density as an auxiliary
input. One difference between SQ-sampling and the SQitegiga theresolution In the reply of an SQS-
oracle, the underline distribution is uniform over the ‘thésh set”S; for an SQL-oracle, the distirbution is
uniform over the entire set0, 1}". Therefore, a sampling algorithm needs to know the siz&,ah order
to perform the simulation (more precisely, in step 3 of th&t fphase).

It is interesting to compare this result to Theofdm 3, whiubvegs a predicate class family that is perfectly
SQ-learnable, but not even weakly SQ-samplable. Nevebkethere is no contradiction since the predicate
class family in Theorerl 3 is not dense.
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A.1 Shor’s Algorithm for Factoring

Standard number theory reduces factori¥igo finding the order of a random elemenmodulo N, i.e.,

r > 0 such thata” = 1 (modN) buta® £ 1 (modN) for any0 < s < r. Suppos™~! < N < 27
Shor’s algorithm use&n qubits, separated into twe-qubit registers. Initially the state is initialized to

| #o) = |0™)|0™). By applying the Fourier transformation followed by moduéxponentiation, this state

is converted td ¢1) = # Y. lz)|a® modN). Then one measures the second register and discard fit,
leading to a statepo) = ), |t - r + c) for some randoma € [r], wheret ranges frond to | (2" —1—¢)/r|

(we ignore the scalar factor). Finally, one applies therswd-ourier transform to the first register followed
by a measurement. The distribution of the measurementtiespproximately uniform ovef[t - 2" /r] :
0<t<|(2"—1—c¢)/r|}. One can then solvefrom one instance df - 2" /r] using continued fraction.

A.2 Simon’s Problem and Algorithm

A function f : {0,1}" — {0,1}" is given as an oracle, with the promise that there exists an{0,1}"
(known as the “hidden secret”) such th&tr) = f(y) iff @ y = s. Notice that ifs = 07, thenf is a
permutation, and otherwisgis a 2-to-1 function. The problem is to tellif= 0".

Simon’s algorithm works as follows. One starts with qubits, separated into twa-qubit regis-
ters. Originally one initializes the state tf@,) = |0")|0"). Next, one applies the Hadamard operator
to the first register and then the oracle operdtor|y) — |z)| f(z) ® y). The state becomds;) =
Qn% Y. lz)| f(x)). Next, the second register is measured and discarded=10", then the measurement
resultis| ¢2) = | ) for arandome € {0, 1}". If s # 0™, then the measurement]ig),) = %(| x)+|x®s))
for a randomz. Next, a Hadamard operator is applied to the first registethé cases = 0", the result is
| ¢3) = | y) for a randomy; in the cases # 07, the result i ¢4) = |y) for a randomy such thaty - s = 0.
Finally one measures the first register and obtginRepeating the experimefit(n) times, one can solve
for s by using Gaussian elimination and distinguish the gase0” from the case # 0.

B The Hoeffding Bound
We state the Hoeffding Bound, a classical result in estimgatail probabilities.

Lemma 1 (Hoeffding Bound [19]) Letk = (p — €)n, wheree is a real number betweehand1/2, andp
is a real number between 0 and 1. We have

k

> (?)ﬁ(l —p)mI < e (5)

J=0

C Statistical Distance

We define the statistical distance and state some of its giegpeThe definitions and the results are standard.
A good reference to the statistical distance is Vadhan'sisHg9].
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Definition 10 (Statistical Distance) Thestatistical distancbetween two probability distributiond and B,
denoted a$D(A, B), is defined to be

B) =3 3 IAw) - B@)| ©

where the summation is taken over the suppor @ind B. If SD(A, B) < ¢, we sayA is e-closeto B.

This definition can be easily extended to the continuous eattethe summation being replaced by
integral and the distributions replaced by density fumio

Lemma 2 LetT'(z) be a probabilistic event witlr as input. Letd and B be two distributions. We have

Pr[T(2)] = PriT(z)]) < SD(4, B) 7

]

Lemma 3 (Sub-additivity) Let A, As, By, By be distributions, then we have
SD(A1B1, A2Bs) < SD(A1, As) + SD(By, Be) (8)
where A B denotes théensor producof the distributionsA and B, i.e., AB(a, b) = A(a) - B(b). ]

Lemma 4 LetD; be a uniform distribution over an intervét, a + (] and D, a uniform distributions over
[b,b+1]. ThenSD(Dy, Dy) is at mosta — b|/I.

Proof: Notice that bothD; and D, are uniform distributions of same length, and thus theirsdgriunc-
tions have valué /I over their supports and 0 elsewhere. Consider the absdfteeedce between the two
density functions|D; (z) — Dy(x)|. The size of its support is at madtu—b|. ThusSD (D1, D3) < |a—b|/I.

[ ]

D Proofs

Lemmab Let an be the domain defined |El(1) ant}, , be the class of normalized booleanized linear
functions overX,, ,,. For any query functior : X, , — {0 1}, there are at mogt*™/3+2 predicates inc,, ,
that are notl /p"/*-independent frorg.

For the proof we will need:

Lemma 6 ([31]) LetQ) = {f;} be a set of function of rangg-1, +1} andd be its cardinality. If(f;, ;) =
Aforall i # j, then the sef f;} forms an orthonormal basis for the linear space spanne€pyhere

- 1 1 1
fi(z) = mfi(x) A (\/1 = \/1 — ) ny 9)
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Proof of Lemma[d: We first slightly modify the clasg,, , so that its range becomégs-1, +1}. We define
La(x) = 2- La(x) — 1. Itis not hard to see that each of the~! normalized booleanized linear functions
maps al /p fraction of the elements ume to +1, and a straightforward but tedious analysis (seé [31] for
a detailed account) shows that any two normalized booledrimear functions agree at exactly’ — 2p +
2)p" 2 — p places inX,, ,. We define an inner product between functions o¥gr, as

Z fla (10)

SCEXn N

(fr9) =

With this inner product, any query function has norm 1, angl @air of distinct functionsL, andL;, have
the same inner product. This will allow us to “extract” anhamormal basis from the clas, , using
Lemmd®.

Now we fix a query functiory and relate predicates that are geindependent frony to the Fourier
coefficients ofg. Consider a booleanized linear functidy, and we denote its positive set By We have
that|S| = p"~! — 1. Supposey mapsa elements inf(nm to +1, andb elements inS to +1. Then if L, is
not (-independent frong, we have

20 —p"+p 2b—pt 41
pr—p prt—1

‘ s (11)

or [a — bp| > E-2¢. We writeb = a/p + §, and we haves| > 2- - S
Next we compute the inner product @&and L,. Stralghtforward computation shows that

<g’1~;a> _ 9. <2b—a+(p—1)(pn—1_1)> .

pt—p
2 2 46
- () ()
pr—p D pr—p

On the other hand, the inner productgolvith anaverageover booleanized linear functions is

pnl—l Z <Q,Eb> - Z Z

n— 1 _
b[0]=1 Pt —p) b[0]=1zeX, ,
1
- pn—l(pn_p) Z Z fb
2 2
()
pr—p P
Now we apply Lemm&l6, setting = p"~! and\ = %. We will obtain an orthonormal

basis, which we denote byi.1, }.
Putting things together, we can compute that Fourier coeffiof g over the component,.




N \/11——A'[(1_§>'<1_p”2ip>+p”4fp]_
<\/11——)\_ 1+(1d—1)A>'<1_12_7>'<1_p"2ip>
o 2
1w
VI=X pt—p

_ 1 1 2a
e R\ T, +
26 C1-1pt
VPPt =1) 1—4/p
20 B 1
\/I_?(p"_l _ 1) p(n—l)/2

>

Now we substitute if = 1/p"/3, and we have

) ¢ 1 1
(g, La)l = Vb pnDP2 = nfae

(12)

Thusg can have at mos™/3+2 such Fourier coefficients, and so there can be at pf8$t+2 predicates
that are noll/p"/3—independent frong. [

Lemma 7 LetX, = {0,1}"\{0™} andC, be the class of negative parity functions ovgr. For any query
functiong : {0,1}" — {—1,+1}, there are at mos?"/>+2 predicates irC, that are not2~"/*-independent
fromg.

Proof: We fix a negative parity functiofi. Leta denote the number af € {0, 1}" such thay(x) = 1, and
let b denote the number aof € Sy such thaiy(xz) = 1. Notice that since all parity functions are balanced,
we have|Sy| = 2n=1 1 (sincef(0") = 1 butO™ ¢ Sy). Then if f is not¢-independent frong, we have

>¢ (13)

2p—2n"l4 1 2¢—2"
m—1_1 —  on

or
a—2b a 1

2n—1 -1 f 2n—1(2n—1 _ 1) f 2n—1 -1

Next we perform Fourier analysis. We first define an inner pebdf real functions ovef0, 1}":

(14)

o) =g O o). 1)

z€{0,1}"

We define a set of “modified parity functions” as(z) = (—1)%%, which map elements if0, 1}" to
{—1,+1}. ltis clear that the set of all parity functio§s>;(x)}s form an orthonormal basis, are(z) =
1 —2- @, (z). If a parity function— @, (x) is not{-independent frony, then [I38) holds (by setting
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[ = —®s). Lett = g(0™). Within the subset where,(x) = —1, which includes)™ and the positive set of
—®,, g mapsb + t inputs to+1. Outside this subse#, mapsa — b — ¢ inputs to+1, and2" ! —a + b+t
input to—1. Thus, we can compute the Fourier coefficieny ain &,.

é& = 1-2 P és =
(®s,9) me{oﬂ}n[ (z) = g(z)]
a—b—t 2l _aq+4+b+t
= 1-2-
()
_ 2a—4b—4t
= —

Substituting in[[I¥), we have
[(Ss,9)] > & —6/2". (16)
However, notice that the query functigiiz) has norm 1 and thus it can have at mb&tt — 6/2")? Fourier
coefficients such thaf{ll6) holds. Now pluggingtin= 2=™/*, we havel /(¢ — 6/2™)% < 27/2+2 and the
Lemma is proved.
|
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