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Abstract

We introduce a “Statistical Query Sampling” model, in whichthe goal of an algorithm is to produce
an element in a hidden setS ⊆ {0, 1}n with reasonable probability. The algorithm gains information
aboutS through oracle calls (statistical queries), where the algorithm submits a query functiong(·) and
receives an approximation toPrx∈S [g(x) = 1]. We show how this model is related to NMR quantum
computing, in which only statistical properties of an ensemble of quantum systems can be measured,
and in particular to the question of whether one can translate standard quantum algorithms to the NMR
setting without putting all of their classical post-processing into the quantum system. Using Fourier
analysis techniques developed in the related context ofstatistical query learning, we prove a number of
lower bounds (both information-theoretic and cryptographic) on the ability of algorithms to produces an
x ∈ S, even when the setS is fairly simple. These lower bounds point out a difficulty inefficiently
applying NMR quantum computing to algorithms such as Shor’sand Simon’s algorithm that involve
significant classical post-processing. We also explicitlyrelate the notion of statistical query sampling to
that of statistical query learning.

1 Introduction

Recent years have witnessed the development of a number of exciting quantum algorithms: Simon’s algo-
rithm for the hidden XOR secret problem [28], Shor’s algorithm for factoring and discrete logarithms [26,
27], Boneh and Lipton’s algorithm for the hidden subgroup problem [4], and many generalizations and
extensions [21, 11, 12, 18, 15, 17]. At the same time, work hasbeen ongoing on various proposals for physi-
cally realizing quantum computers. Currently, one of the most promising such proposals is based on Nuclear
Magnetic Resonance (NMR) [10, 7, 13, 5]. The NMR approach works by manipulating a large ensemble
of quantum systems in solution. One property of the NMR method, which is the focus of this paper, is
that unlike the “standard” quantum computing model, one cannot directly measure any individual quantum
system in the ensemble. Instead, a measurement is limited toa single qubit, and when a measurement takes
place, the device returns (an approximation to) the expected value of this measurement, over the quantum
systems in the ensemble. For this reason, the model for NMR issometimes called the “expected-value”
(EV) model [6]. In contrast, the measurement in the standardquantum model yields a random sample state
(which may consists of multiple bits) according to a classical probability distribution.

Given the distinction between the standard model and the EV model, the first question that arises is
whether it is possible to translate algorithms working in the standard model to work in the EV model. In
fact, the answer is yes. Consider any BQP algorithm [24]. Recall from the definition that a BQP algorithm
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solves a decision problem, and such an algorithm has a special “target” qubit to indicate acceptance. For
a languageL and an inputx, if x ∈ L, then the measurement of the target qubit will produce a “1” with
probability at least3/4; if x 6∈ L, the probability is at most1/4 when measured. Such an algorithm
works naturally in the EV model, since one can simply measurethe target qubit, and even with significant
measurement error, use the rule that if the observed valuev ≥ 1/2, thenx ∈ L, and otherwisex 6∈ L.
For a search (as opposed to decision) problem, we can performthe usual reduction to a series of decision
problems, solving each one by one. In fact, many researchershave used this approach [13, 24], which we
call an “all-inclusive” translation.

Unfortunately, the “all-inclusive” translation can greatly increase the amount of work that must be done
by the quantum system. Consider Shor’s algorithm, for instance (see Appendix A). Shor’s algorithm (and
others like it) consists of a quantum sampling circuitQ, whose output is measured and fed into a classical
extraction circuitC. For the all-inclusive translation, the classical extraction circuit C needs to be “quan-
tumized”, i.e., realized by a quantum circuit and appended to the quantum sampling circuitQ. This can
cause a significant increase in the size of the quantum circuit — in the case of Shor’s algorithm, the entire
circuitry for computing continued fractions needs to be realized in quantum — which is a rather undesirable
consequence. Even in the most optimistic scenarios, quantum computers will be orders of magnitude more
difficult to manufacture and maintain than classical computers, and thus we would like to put as little of the
complexity as possible in the quantum system. Even more serious problems emerge when more than one
sample is needed by the classical extraction circuit. For example, in Simon’s algorithm,Ω(n) samples are
needed for Gaussian elimination (see Appendix A). Now the all-inclusive translation needs to manufacture
multiple copies of the quantum sampling circuit and then connect them together with the “quantumized”
classical extraction circuit. This can cause even more blowup in the size of the quantum circuit in the EV
model.

In this paper, we consider the question of whether there might be more efficient translations that apply
generally to algorithms consisting of a quantum sampling circuitQ followed by a classical extraction circuit
C, that workwithout having to put the classical part of the algorithm into the quantum system. Our main
contributions are results that answer this question in the negative, for several natural notions of “general”.
We achieve these results through a connection to the notion of statistical query learning[22] studied in
Computational Learning Theory, and in particular to a related notion that we introduce ofstatistical query
sampling. Using techniques from Fourier analysis and cryptography,we show that even in cases where the
distribution implied byQ is quite simple, it can be hard to use the EV model to generate asample that
can be used byC. Note that our results do not preclude the possibility of approaches tailored to specific
quantum algorithms. For example, Collins [6] demonstratesa modification to Grover’s algorithm that is
more efficient than the all-inclusive translation (see alsothe discussion below). However, as pointed out by
the author, his approach does not generalize to algorithms like Shor’s.

1.1 Our model and results

We view the quantum sampling circuitQ as representing a hidden setS ⊆ {0, 1}n, and we view the classical
post-processing as a circuitC such thatC(x) = 1 for all x ∈ S. The goal of the translation procedure is
to produce somex ∈ S. To find such anx, the algorithm has the ability to perform a “statistical query” of
Q by proposing a query function (a predicate)g : {0, 1}n 7→ {0, 1} and asking forEx∈S[g(x)] up to some
1/poly accuracy. For example, measuring theith qubit corresponds to the queryg(x) = xi. Taking the
XOR of the first three qubits and then measuring the result corresponds to the queryg(x) = x1 ⊕ x2 ⊕ x3.
The algorithm may repeat this process multiple (polynomially-many) times, with different query functions
g, and in the end must (with noticeable probability) produce an x ∈ S.
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Note that this task is easy to do ifS is very large (|S| ≥ 2n/poly(n)), since a randomx ∈ {0, 1}n
will do. It is also easy to do ifS is very small (|S| = poly(n)). In particular, if |S| = poly(n), then by
asking for an accuracy of1/(2|S|) one can distinguish the case thatEx∈S[g(x)] = 0 from the case that
Ex∈S[g(x)] > 0. This allows one to walk down the bits ofx, fixing bits from left to right, until a specific
x ∈ S is produced. This is the key idea of [6].

We show, however, that this task is hard in general. Specifically, we give two types of hardness results.
First, we give an information-theoretic hardness result ifthe query algorithm is not allowed to accessC.
That is, the translator is allowed to use the fact that the classical extraction circuitC is polynomial in size
(so the set of accepting strings cannot be totally arbitrary) but it is not allowed to examineC — it can
only gain information via the queriesg. Second, we give a cryptographic hardness result if we assume the
translator is givenC as input, but that otherwiseC is an arbitrary polynomial-size circuit. We still do not
know if efficient translation is possible for the specific circuit C used in Shor’s algorithm.

We also consider a more general setting, in whichS may be large (e.g.,|S| = 2n−1), so a random
string has reasonable chance of belonging toS, but the goal of the translation is to produce a stringx ∈
S with probability substantially greater than random guessing. We call this more general setting “strong
SQ-sampling”, and refer to the former setting as the “weak SQ-sampling”. Strong SQ-sampling models
situations such as Simon’s algorithm, in which the quantum circuit produces a randomy ∈ {0, 1}n such
that y · s = 0 for the hidden secrets. In this case, a random string has probability1/2 of belonging
to S, but we needΩ(n) correct samples in a row in order to perform Gaussian elimination. We give an
information-theoretic hardness result for this problem, that holds for the specific setS used by Simon’s
algorithm (Theorem 2).1

1.2 Techniques and relation to Statistical Query learning

Our results are based on a connection to the Statistical Query (SQ) learning model, first introduced by
Kearns [22] as a restricted version of the popular Probably Approximately Correct (PAC) model of Valiant [30].
In these learning models, the goal of an algorithm is to learnan approximation to a hidden function
f : {0, 1}n 7→ {0, 1}. In the PAC model, the algorithm has access to an “example oracle”, which pro-
duces a random labeled sample〈x, f(x)〉 upon invocation. In the SQ model, however, the algorithm does
not see explicit examples or their labels. Instead, the algorithm queries an “SQ-oracle” with predicates
g(x, y), and receives an approximation toPrx[g(x, f(x)) = 1]. For instance, the algorithm might ask for
the probability that a random example would both be positiveand have its first bit set to 1 (g(x, y) = x1∧y).2

The SQ model has proven to be very useful because (a) it is inherently tolerant to classification noise (this is
the reason the model was developed), and (b) nearly all machine learning algorithms can be phrased as SQ
algorithms. What makes the SQ model especially interestingis that one can information-theoretically prove
lower bounds on the ability of SQ algorithms to learn certainclasses of functions [22, 3, 20, 31, 32].

The relationship between the standard model and the EV modelfor quantum computation is quite similar
to that between the PAC model and the SQ model in machine learning, which motivates our definition of
the Statistical Query Sampling problem. In particular, theSQ sampling problem can be viewed as the
SQ learning problem with two key differences: first, the goalis not to learn an approximation tof but is

1Note, for Simon’s algorithm, we no longer want to think of there existing a known classical extraction circuit. If we weregiven
access to a circuitC such thatC(x) = 1 iff x ∈ S (e.g., the circuit with the hidden secret built in) then the sampling goal would be
easy. See Theorem 4 for further discussion.

2In both PAC and SQ learning models, the distribution overx need not be the uniform distribution (or even known to the
learning algorithm). However, much work on SQ learning doesfocus on the uniform distribution, and that is the setting weare
most interested in in this paper.
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rather to produce a positive example, and second, the oraclefor SQ sampling returns approximations to
Pr[g(x) = 1 | f(x) = 1] rather than toPr[g(x, f(x)) = 1] (a difference that matters when the set of
positive examples is quite small).

We use techniques from Fourier analysis to prove the following lower bounds. First (Theorem 1) we
show there exist simple function classes such that no algorithm, using only a polynomial number of queries
of 1/poly accuracy, can produce a positive instance with even1/poly probability. Second (Theorem 2), for
the class of “negative parity” functions arising in Simon’salgorithm, no algorithm using only a polynomial
number of queries of1/poly accuracy, can produce a nontrivial positive instance with probability more than
1/2 + 1/poly. (Note that random guessing works with probability1/2). We also show that unlike the case
of SQ learning, the SQ sampling problem can be computationally hard even iff is explicitly given to the
algorithm, based on cryptographic assumptions (see Theorem 3).

Finally, we explicitly relate the notion of SQ sampling to that of SQ learning by proving that if a function
class is “dense”, meaning that a random element has non-negligible probability of being positive, then strong
SQ-learnability implies strong SQ-samplability (Theorem4). We also point out that there exists function
classes that are perfectly SQ-samplable, yet not even weakly SQ-learnable.

2 Preliminaries and Definitions

We are interested inpredicatesthat map elements from adomainX (e.g.,{0, 1}n) to {0, 1}. For a predicate
f : X 7→ {0, 1}, an inputx is apositive inputto f if f(x) = 1, else it is anegative input. All the positive
inputs tof form thepositive setof f , denoted bySf . A predicate class, often denoted byCn, is simply a
collection of predicates over{0, 1}n. A predicate class familyis an infinite sequence of predicate classes
C = (C1, C2, ...), such thatCn is a predicate class over{0, 1}n.

A parity function⊕s(x) is defined to be⊕s(x) = s · x mod 2. A negative parityfunction¬ ⊕s (x) is
the negation of the parity function⊕s(x).

2.1 Statistical Query Sampling

Definition 1 (Statistical Query Sampling Oracle) A statistical query sampling oracle(SQS-oracle) for a
predicatef is denoted bySQSf . On input(g, ξ), whereg : {0, 1}n 7→ {−1,+1} is thequery functionand
ξ ∈ [0, 1] is thetolerance, the oracle returns a real numbery such that|y −Ex∈Sf

[g(x)]| ≤ ξ.

Definition 2 (SQ-Samplability) A predicate class familyC is SQ-samplable at rates in timet and tolerance
ξ, if there exists a randomized oracle machineZ, such that for everyn > 0 and everyf ∈ Cn,Z with access
to any SQS-oracleSQSf , runs in at mostt(n) steps, asks queries with tolerance at leastξ, and outputs an
x ∈ Sf with probability at leasts(n). We sayC is strong SQ-samplableif for everyǫ, C is SQ-samplable
at rate1 − ǫ in time t and toleranceξ such thatt andξ−1 are polynomial inn and1/ǫ. We sayC is weak
SQ-samplableif there exists a polynomialp, such thatC is SQ-samplable at rate1/p(n) in time and inverse
tolerance polynomial inn.

Definition 3 (Sampling Algorithms with Auxiliary Inputs) A predicate class familyC is SQ-samplable
with auxiliary inputφ if it is SQ-samplable by an algorithmZ which takesφ(f) as the auxiliary input,
wheref is the predicate being sampled.
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3 Lower Bounds Based on Fourier Analysis

We first prove two hardness results on SQ sampling, using Fourier analysis techniques developed in the
context of SQ learning.

3.1 A Lower Bound on Weak SQ-Sampling

We prove that there exist very simple families of predicate classes that are not weak SQ-samplable, i.e., no
efficient algorithm can produce a positive input at any non-negligible rate.

We introduce a bit more notation. We use boldface to denote a vector and index the entries of ann-
dimensional vector from0 to (n − 1). We usex[i] to denote thei-th entry ofx. x[a..b] indicates the
sub-vector formed by the entries ofx between thea-th and theb-th, inclusive. LetX̂n,p be the set of all
n-dimensional vectors overZp (the Galois field modulop) whose lastn− 1 entries are not all-zero, i.e.,

X̂n,p = {x ∈ Z
n
p | x[1..n − 1] 6= (0, 0, ..., 0)}. (1)

It is easy to see that|X̂n,p| = pn − p.

Definition 4 (Booleanized Linear Functions) A booleanized linear functionover X̂n,p with parametera
is denoted byLa and defined as

La(x) =

{
1 if a · x = 1 (mod p)
0 otherwise

(2)

We sayLa is normalizedif a[0] = 1. Thenormalized booleanized linear function class, denoted byLn,p,
consists of all normalized booleanized linear functions over X̂n,p. In other words,

Ln,p = {La | a ∈ Z
n
p , a[0] = 1} (3)

Theorem 1 If a sampling algorithm for the normalized booleanized linear function classLn,p makes less
thanpn/4 queries, each of tolerance1/pn/3, then the probability it produces a positive inputx ∈ X̂n,p is at
most1/p + 1/pn/13.

Notice that the requirementx ∈ X̂n,p is simply to rule out the trivial positive input100 . . . 0, and we
could have equivalently just modified the definition of a “booleanized linear function” so that this specific
example is made negative. Also, notice that if we choosep to be much greater thann, say pickingp to
be ann-bit prime number, then1/p + 1/pn/13 is exponentially small, while the size of the problem is still
polynomial inn. Furthermore, if a completely randomx is picked, the probability it is a positive input is
1/p. Thus even exponentially many queries may only help the sampling by an exponentially small margin.

Proof: Our proof strategy is similar to that used by Kearns [22] and Blum et. al. [3] in the context of SQ
learning. We describe an “adversarial” SQS-oraclẽSQS that does not commit to any particular predicate
at the beginning. Rather, the oracle maintains a “candidatepredicate set”P , which initially includes all
predicates in the classLn,p (a totalpn−1 of them). Each time the algorithmZ makes a query,̃SQS replies
with an answer that yields very little information. Some predicates in the candidate setP might not be
consistent with the answer and will be removed from setP . After all the queries are finished,̃SQS then
commits to a random predicate remaining inP . We shall prove that each query only removes a small
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fraction of the predicates fromP . Thus if Z does not make enough number of queries, there would be
enough predicates left inP such that no element can be positive with high probability.

For a query functiong : X̂n,p 7→ {−1,+1}, we say that a subsetS ⊆ {0, 1}n is aξ-independent subset
for g, if |Ex∈S [g(x)]−Ex∈X̂n,p

[g(x)]| ≤ ξ, and we say a predicatef is ξ-independentfrom g, if its positive
setSf is a ξ-independent set forg. Intuitively, if a predicatef is ξ-independent fromg, then the query

(g, ξ) reveals almost no information aboutf , sinceS̃QS can reply withEx∈X̂n,p
[g(x)] instead, which is

completely independent fromf .
We describe the behavior of our SQS-oraclẽSQS in more detail. On queryg, S̃QS replies withEx∈X̂n,p

[g(x)],
and removes all predicates that are notξ-independent fromg from the candidate setP . We assume that all
queries have toleranceξ = p−n/3. We shall prove that for any queryg, there are at mostp2n/3+2 predicates
notp−n/3-independent fromg. This proof is by a Fourier analysis technique and is given asLemma 5 in Ap-
pendix D. Thus, if less thanpn/4 queries are made, the candidate set still contains at leastpn−1(1−p−n/12−3)
parity functions.

Now consider the domain̂Xn,p. It is not hard to see that everyx ∈ X̂n,p is positive for onlypn−2

predicates. So, if the oracle commits to a random predicate out of the set ofpn−1(1 − p−n/12−3), the
probability thatx is positive is at most1/p + 1/pn/13.

3.2 A Lower Bound on Sampling Negative Parity Predicates

We prove that a class of negative parity functions is not SQ-samplable in polynomial time at any rate non-
negligibly higher than1/2.

Theorem 2 LetXn = {0, 1}n\{0n} andCn be the class of negative parity functions overXn. If a sampling
algorithm forCn makes less than2n/4 queries, each of tolerance2−n/4, then the probability it produces a
positive input is at most12 + 1

2n/4−2
.

Before proving the theorem, we point out how this result relates to the translation of Simon’s algorithm
to the NMR model. In Simon’s algorithm, the quantum samplingcircuit produces a randomy ∈ {0, 1}n
such thaty · s = 0, wheres is the “hidden” secret (see Appendix A). Thus the hidden set corresponds
exactly to the negative parity function¬⊕s. In the algorithm, the quantum sampling circuit is invokedΘ(n)
times and producesΘ(n) samples for Gaussian elimination. Notice thaty = 0n is useless. Therefore, a
translation of the quantum sampling circuit will produce anSQ-sampling algorithmZ to be executedΘ(n)
times and to produceΘ(n) positive samples inXn = {0, 1}n\{0n}. However, Theorem 2 implies that it is
not possible to sample efficiently at any rate non-negligibly higher than1/2 (notice that a randomx ∈ Xn

is positive with probability almost1/2). This result suggests that it appears necessary to manufactureΘ(n)
copies of the quantum sampling circuit and run these copies together in the NMR model.

Proof sketch: The proof strategy is similar to that of Theorem 1. We assume that each query has tolerance
ξ = 1/2n/4. We construct an SQS-oracle that on query functiong, replies withEx∈{0,1}n [g(x)], and
remove all predicates that are notξ-independent fromg from the candidate setP (here the definition of
“ξ-independent” naturally changes to|Ex∈S [g(x)]−Ex∈{0,1}n [g(x)]| ≤ ξ). We shall prove in Lemma 7 (in
Appendix D) that for any queryg, there are at most2n/2+2 predicates not2−n/4-independent fromg. Thus,
if less than2n/4 queries are made, the candidate set still contains at least2n − 23n/4+2 − 1 parity functions.

Now consider the domainXn = {0, 1}n\{0n}. It is not hard to see that everyx ∈ Xn is positive for
2n−1 negative parity functions. Now if a random parity function is chosen from a set of size2n−23n/4+2−1,
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the probability thatx is positive is at most

2n−1

2n − 23n/4+2 − 1
≤ 1

2
+

1

2n/4−2
.

This is true for anyx ∈ Xn. Therefore, whateverZ outputs, the probability that it is positive is at most
1
2 +

1
2n/4−2

.

4 A Cryptographic Lower Bound

We next prove a cryptographic lower bound. Assuming that one-way functions exist, we show that there
exist predicate class families that are not weak SQ-samplable, even if the sampling algorithm is given the
complete description of the predicate as the auxiliary input. The technique we use here is somewhat similar
to that of Angluin and Kharitonov [1], who used signature schemes to prove that membership queries do not
help to learn DNF.

We briefly describe the ideas behind our proof. We will use a digital signature scheme secure against
adaptive chosen message attack [14], which exists if one-way functions exist [25]. Let the predicate be
the signature verification functionvervk(m, s), which returns1 if s is a valid signature to messagem with
respect to the verification keyvk. The security of the signature scheme states that no “breaker” B, given
access to a signing oracle, can produce anewvalid signature it has not yet seen. We want to argue that this
implies no sampling algorithmZ, given access to a SQ-sampling oracle, can produceanyvalid signature.
We will show that if such an algorithmZ exists, we can construct a “breaker”B as follows. The breaker
will have access to a signing oracleOSign that signs any message given to it as input, and runsZ as a
subroutine. The only non-trivial part forB is to simulate an SQS-oracle used byZ without revealing toZ
any information about which signatures it has already seen (so thatZ is not biased towards producing an
already-seen signature). Upon a query(g, ξ) from Z, B will produce a number of random messages, ask
the signing oracle to sign them, and use these samples to estimateEx∈Sf

[g(x)]. Next,B “randomizes” this
estimate by adding an artificial noise to it. With properly chosen parameters, this “randomized” estimate is
still a valid answer with very high probability, and yet almost independent from the messagesB produces.
Finally,Z produces a positive input, which is a message/signature pair (m′, s′). The distribution of the this
pair (m′, s′) is also almost independent from the messagesB produces, and ifZ only makes polynomially
many queries, then only polynomially many messages will be produced byB. Therefore the probability that
m′ is one of the messages produced byB is very small, and soB breaks the digital signature scheme with
reasonably high probability.

Formally, asignature schemeSIG is a triple(sig gen, sig sign, sig verify) of algorithms, the first two
being probabilistic, and all running in polynomial time.sig gen takes as input1n and outputs a sign-
ing/verification key pair(sk, vk). sig sign takes a messagem and a signing keysk as input and outputs
a signatures for m. WLOG we assume that bothm ands aren-bits long. sig verify takes a messagem,
a verification keyvk, and a candidate signatures′ for m as input and returns the bitb = 1 if s′ is a valid
signature form for the corresponding verification keyvk, and otherwise returns the bitb = 0. Naturally, if
s = sig sign(sk,m), thensig verify(vk,m, s) = 1. In an adaptive chosen message attack [14], an adver-
sary (“breaker”)B is givenvk, where(sk, vk)← sig gen(1n), and tries to forge signatures with respect to
vk. The breakerB is allowed to query a signing oracleOSignvk, which signs any message with respect to
vk, on messages of its choice. It succeeds in existential forgery if after this it can output a pair(m, s), where
sig verify(vk,m, s) = 1, butm was not one of the messages signed by the signature oracle. A signature
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schemeSIG is existentially unforgeable against adaptive chosen message attacks if there is no forging algo-
rithm B that runs in time polynomial inn and succeeds with probability1/poly(n). Such schemes exist if
one-way functions exist [25].

Theorem 3 Let SIG = (sig gen, sig sign, sig verify) be a digital signature scheme secure against adap-
tive chosen message attack. Then the predicate class familyCn = {vervk} is not weakly SQ-samplable,
even if the sampling algorithm is givenvk as the auxiliary input. Herevervk is defined to bevervk(m, s) =
sig verify(vk,m, s), where(sk, vk)← sig gen(1n), andm, s ∈ {0, 1}n.

Proof: Assume to the contrary that there exists an algorithmZ that weak SQ-samples the function class
Cn = {vervk}. More precisely, we assume thatZ produces a positive input with probabilityǫ by making
q queries, where both1/ǫ andq are bounded by a polynomial inn. We shall construct a polynomial-time
algorithmB that breaks the signature schemeSIG with probability ǫ/2, causing a contradiction.

We now describe the behavior ofB. B has access to a signing oracleOSignvk and interacts with the
sampling algorithmZ as the SQS-oracle. WhenZ makes a query(g, ξ), B does the following. First,B
computesξ0 = ξ·ǫ

10q andM = 2 ln(10q/ǫ)
ξ2
0

. ThenB drawsM random messagesm1,m2, ...,mM ∈ {0, 1}n,

and asks the signing oracle to sign all of them. Assume the signatures ares1, s2, ..., sM . Next,B uses these
message/signature pairs to estimate the expected value ofg by computingx = 1

M

∑M
k=1 g(mk, sk). ThenB

“randomizes”x by drawing ay uniformly randomly from the interval[x− ξ
2 , x+ ξ

2 ], and sendingy toZ as
the answer to the query(g, ξ). B also maintains a “history set” setH of all the messages it has generated,
which is initially ∅. After a query fromZ is answered,B adds the messagesm1,m2, ...,mM to setH.

After all theq queries are made,Z produces a pair(m′, s′). If vervk(m′, s′) = 1 andm′ 6∈ H, thenB
outputs(m′, s′) and successfully forges a signature. OtherwiseB aborts and announces failure.

It is clear thatB runs in polynomial time. Intuitively, we can show that afterthe randomization, with
high probability the sample(m′, s′) produced byZ is almost independent from the history setH. Therefore,
with high probability,m′ 6∈ H, and soB will succeed. More precisely, we prove thatB will succeed with
probabilit at leastǫ/2.

We useSvk to denote the positive set for predicatevervk. In other words,Svk consists of valid mes-
sage/signature pairs with respect to the verification keyvk.

Claim 1 For a query functiong, if we defineσ = E(m,s)∈Svk
[g(m, s)], then with probability at least1 −

ǫ/5q, we have|x− σ| ≤ ξ0 (all quantities are as defined in the proof sketch of Theorem 3).

Proof: This is due to a straightforward application of the Hoeffding Bound. Each sample(mk, sk) is an
independent random element fromSvk and thusE(m,s)∈Svk

[g(m, s) = 1] = σ. So the expected value ofx

is σ. Now, the probability thatM independent samples yields an average belowσ − ξ0 is at moste−Mξ2
0
/2

(notice that the range ofg is {−1,+1}). Also the probability that the average is aboveσ + ξ0 is at most
e−Mξ2

0
/2. Therefore with probability at least1− 2e−Mξ2

0
/2 ≥ 1− ǫ/5q, we have|x− σ| ≤ ξ0.

We fix a set consisting ofM message/signature pairs generated byB in response to a query(g, ξ), and
denote this byU : U = {(mk, sk)}Mk=1. We call this set asample set. We sayU is typical, if the average
g(mk, sk) is indeedξ0-close toσ. By Claim 1, at mostǫ/5q fraction of the sample sets are not typical.

Notice that a typical sample set will yield an average that isξ0-close toσ. This is a much higher
accuracy than required by theZ, which has a tolerance ofξ. However,B needs this accuracy to perform the
randomization.

Claim 2 If U is a typical set, then the answer fromB for this query is valid.

8



Proof: Notice that ifU is typical, then the averagex is ξ0-close to the true valueσ. After the randomization,
it is (ξ0 + ξ/2)-close toσ. This is less thanξ.

We consider the distribution of the answer produced byB for a particular query(g, ξ). We denote this
distribution byDU , whereU is the sample set used byB.

Claim 3 If both U0 andU1 are typical sets, then the statistical distance betweenDU0
andDU1

is at most
ǫ/5q.

Proof: We usex0 andx1 to denote the averages obtained fromU0 andU1, respectively. If bothU0 andU1

are typical, we have|x0 − σ| ≤ ξ0 and|x1 − σ| ≤ ξ0. Thus we have|x0 − x1| ≤ 2ξ0. Notice thatDU0
is

a uniform distribution over the interval of lengthξ centered atx0, andDU1
a uniform distribution of same

length centered atx1. The claim follows from Lemma 4.

Notice the history setH consists ofq sample sets. We say a history setH is typical, if all its sample sets
are typical. Then at mostǫ/5 fraction of the history sets are not typical. We denote the distribution of all
answers produced byB using history setH by TH .

Claim 4 If bothH0 andH1 are typical, then the statistical distance betweenTH0
andTH1

is at mostǫ/5.

Proof: This directly follow the sub-additivity of statistical distance (see Appendix C).

Now we fix an arbitrary typical set̃H and denote its corresponding distribution of the answers byT̃ .
Then we know the distribution from any typical set is at mostǫ/5 away fromT̃ .

The only informationZ receives fromB is represented by the distribution of the answers produced by B,
which is in turn determined by the history setB uses. Thus, the distribution of the pair(m′, s′) is completely
determined by the history setH, and we denote this distribution byOH . We know that ifH is typical, then
Pr(m,s)∈OH

[vervk(m, s) = 1] ≥ ǫ. We fix the distributionÕ that corresponds to the history setH̃. Then we
have

Pr
(m,s)∈Õ

[vervk(m, s) = 1] ≥ ǫ. (4)

Furthermore, we know that for any typical history setH, its corresponding distribution ofOH is ǫ/5-close
to Õ.

Consider a new experiment (a new execution of the breakerB) that is identical to the original one, except
whenZ outputs a pair(m′, s′), it does so according to the fixed distributioñO.

Claim 5 LetM̂ be the maximum size of the sample sets inH̃. Then the probability of the new experiment is
at leastǫ− M̂ · q/2n.

Proof: Notice that the output ofZ is independent from the history setH. Moreover, the history set contains
at mostM̂ · q messages. So the probability that a particularm is inH is at mostM̂ · q/2n. This fact, along
with (4), proves the claim.

Now putting things together, with probability at mostǫ/5, the history setH is not typical; ifH is typical,
the difference between the probabilities of the two experiments is at mostǫ/5; the probability of success of
the new experiment is at leastǫ− M̂ · q/2n. Therefore the probability of success of the original experiment
is at least (forn large enough)ǫ− M̂ · q/2n − ǫ/5− ǫ/5 > ǫ/2.

This finishes the proof.
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5 SQ sampling and SQ learning

We now point out relationships between our SQ sampling modeland the SQ learning model of Kearns [22].
We begin with definitions of SQ learning. (In these definitions, we assume learning is with respect to the
uniform distribution over examples.)

Definition 5 (Statistical Query Learning Oracle) A statistical query learning oracle(SQL-oracle) for a
predicatef is denoted bySQLf . On an input(g, ξ), whereg : {0, 1}n × {0, 1} 7→ {−1,+1} is thequery
functionandξ ∈ [0, 1] is thetolerance, the oracle returns a real numbery such that|y−Ex∈{0,1}n [g(x, f(x))]| ≤
ξ.

Definition 6 (Strong SQ-Learnability) A predicate class familyC is Strong SQ-learnableif there exists a
randomized oracle machineZ, such that for everyn > 0, everyf ∈ Cn and for everyǫ > 0, δ > 0, Z with
access to any SQL-oracleSQLf outputs a hypothesiŝf such thatPrx∈{0,1}n [f̂(x) = f(x)] ≥ 1 − ǫ with
probability at least1 − δ, and furthermore, both the running time ofZ and the inverse of the tolerance of
each query made by it are bounded by a polynomial inn, 1/ǫ and1/δ. Hereǫ is called theaccuracyandδ
theconfidence.

Definition 7 (Weak SQ-Learnability) A predicate class familyC is weak SQ-learnableif there exists a
randomized oracle machinesZ and a polynomialp(·), such that for everyn and for everyf ∈ Cn, Z with
access to any SQL-oracleSQLf , outputs a hypothesiŝf such thatPrx∈{0,1}n [f̂(x) = f(x)] ≥ 1/2+1/p(n),
and furthermore, both the running time ofZ and the inverse of the tolerance of each query made byZ are
bounded by a polynomial inn.

The first observation to make is that a predicate class can be strongly SQ-learnable and yet not even
weakly SQ-samplable. In particular, any class with a sufficiently low density of positive examples can be
trivially learned by producing the “all zero” hypothesis. (Formally, if we wish be correct even for values
of ǫ that are exponentially small, it suffices to have the densityless than1/2n/2 so that if necessary we can
use the SQL oracle to identify all positive examples.) In theother direction, a class can be strongly SQ-
samplable and yet not even weakly SQ-learnable. Indeed, thefamily of negative parity functions taken over
the domain{0, 1}n is trivially SQ-samplable (becausef(0n) = 1 for any suchf ), but such functions are
not even weakly SQ-learnable [22]. It is interesting to compare this to Theorem 2, since the predicate class
families in these two theorems are very similar (one can think of the difference either as removing0n from
the domain, or simply as changing the values of the functionsat this one point), yet they have completely
different characterization in terms of SQ-samplability.

However, we show there is a relationship between these notions when the set of positive examples is
sufficiently dense.

5.1 SQ-learnability sometimes implies SQ-samplability

We prove that under certain circumstances, SQ-learnability implies SQ-samplability.

Definition 8 (Density of Predicates)Thedensityof a predicatef : {0, 1}n 7→ {0, 1}, denoted byρ(f), is
the fraction of its inputs that are positive. In other words,ρ(f) = Prx∈{0,1}n [f(x) = 1].

Definition 9 (Dense Predicates)A predicate class familyC is denseif there exists a polynomialp(·) such
that for everyn and for everyf ∈ Cn, ρ(f) ≥ 1/p(n).
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Theorem 4 If a dense predicate class family is strong SQ-learnable, then it is also strong SQ-samplable
with the auxiliary inputρ.

Proof: Let Z be the algorithm that strongly SQ-learns dense predicate family C. We construct a new
algorithmA that strong SQ-samplesC using the densityρ of the predicatef as auxiliary input.A runs a
copy ofZ, whose accuracy and confidence are set to beǫ = ρ · ǫ′/4 ln( 4

ǫ′ ) andδ = ǫ′/4, and simulates the
SQL-oracle used byZ. We shall prove thatA produces a positive input with probability at least1− ǫ′.

We now describe the behavior ofA. A works in two phases. In this first phase, it simulates the SQL-
oracleSQLf . WhenZ submits a query(g, ξ) to A, A does the following.

1. SetM = 9 ln(2q/δ)
2ξ2 , drawM independent samplesx1, x2, ..., xM from {0, 1}n, and compute

s =
1

M

M∑

i=1

g(xi, 0).

2. Construct two query functionsg0(x) = g(x, 0) andg1(x) = g(x, 1). Submit queries(g0, ξ/3) and
(g1, ξ/3) to the SQS-oracleSQSf and receivey0 andy1 as answers.

3. Computey = s+ (y1 − y0) · ρ and sendy toZ as the answer to the query(g, ξ).

The algorithmA enters the second phase whenZ produces a hypothesiŝf . ThenA repeats the following
procedure. It draws a randomx ∈ {0, 1}n, and check iff̂(x) = 1. If so it stops and outputx; otherwise
it continues. The procedure is repeatedln

(
1
δ

)
/ρ times and ifA still hasn’t stopped, it produces a random

x ∈ {0, 1}n and outputs it.
It is clear thatA runs in polynomial time. Now, we prove thatA produces a positive sample with

probability at least1− ǫ′.
First, we prove that with probability at least1 − δ, all answers provided byA are valid in the first

phase. Consider an averages as an approximation ofEx∈{0,1}n [g(x, 0)]. We says is “bad”, if |s −
Ex∈{0,1}n [g(x, 0)]| > ξ/3. Then a simple application of the Hoeffding Bound (see Appendix B) proves
that the probability thats is bad is at mostδ/q.

Next, notice that
g(x, f(x)) = g(x, 0) + [g(x, 1) − g(x, 0)] · f(x).

Therefore we have

Ex∈{0,1}n [g(x, f(x))] = Ex∈{0,1}n [g(x, 0)] +

Ex∈{0,1}n [(g(x, 1) − g(x, 0)) · f(x)]
= Ex∈{0,1}n [g(x, 0)] +(

Ex∈Sf
[g(x, 1)] −Ex∈Sf

[g(x, 0)]
)
· ρ

Therefore, ifs is not bad, then they computed byA is a valid reply to query(g, ξ). SinceZ makes a
total of q queries, with probability at least1− δ, all the replies byA are valid andZ should perform well.

Next, consider the second phase ofA. With probability at least1− δ, Z should produce a hypothesiŝf
that agrees withf with probability at least1− ǫ. Let us assume thZ does produce such âf . Now since aρ
fraction of the inputs are positive, the probability thatA doesn’t draw a positive input inln

(
1
δ

)
/ρ rounds is

at mostδ. The probability thatf̂ makes a mistake in any of the rounds is at mostln
(
1
δ

)
· ǫ/ρ. If f̂ doesn’t

make any mistakes and at least one positive input is drawn, thenA will correctly output it.
Putting everything together, we know that with probabilityat least1− 3δ− ln

(
1
δ

)
· ǫ/ρ = 1− ǫ′, A will

output a positive input.
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We remark that it appears necessary for the SQ-sampling algorithm to have the densityρ as an auxiliary
input. One difference between SQ-sampling and the SQ-learning is theresolution. In the reply of an SQS-
oracle, the underline distribution is uniform over the “hidden set”Sf ; for an SQL-oracle, the distirbution is
uniform over the entire set{0, 1}n. Therefore, a sampling algorithm needs to know the size ofSf in order
to perform the simulation (more precisely, in step 3 of the first phase).

It is interesting to compare this result to Theorem 3, which shows a predicate class family that is perfectly
SQ-learnable, but not even weakly SQ-samplable. Nevertheless, there is no contradiction since the predicate
class family in Theorem 3 is not dense.

Acknowledgements

We would like to thank David Collins for bringing this problem to our attention, and Bob Griffiths and David
Collins for helpful discussions.

References

[1] D. Angluin and M. Kharitonov. When won’t membership queries help? InSTOC 1991, pp. 444–454, 1991.

[2] E. Bernstein and U. Vazirani. Quantum complexity theory. In SIAM J. Comp., 26(5);1411–1473, also available
at LANL e-printquant-ph/9701019.

[3] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF and characterizing
statistical query learning using Fourier analysis. InSTOC 1994, pp. 253–262, 1994.

[4] D. Boneh and R. Lipton. Quantum cryptanalysis of hidden linear forms. InCrypto ’95, LNCS 963, pp. 424–437,
1995.

[5] I. Chuang, L. Vandersypen, X. Zhou, D. Leung, and S. Lloyd. Experimental realization of a quantum algorithm.
In Nature, 393:143–146, 1998.

[6] D. Collins. Modified Grover’s algorithm for an expectation-value quantum computer. InPhys. Rev. A., 65,
052321, 2002.

[7] D. G. Cory, A. F. Fahmy, and T. F. Havel. Ensemble quantum computing by nuclear magnetic resonance spec-
troscopy. InProc. Natl. Acad. Sci.94:1634–1639, 1997.

[8] D. Deutsch. Quantum theory, the Church-Turing Principle and the universal quantum computer. InProc. R. Soc.
Lond. A, 400:97–117, 1985.

[9] D. Deutsch. Quantum computational networks. InProc. R. Soc. Lond. A, 425:73, 1989.

[10] D. P. DiVincenzo. Two-bit gates are universal for quantum computation. InPhys. Rev. A, 51(2):1015–1022,
1995.

[11] M. Ettinger and P. Høyer. On quantum algorithms for noncommutative hidden subgroups. InSTACS’99, also
available atLANL e-printquant-ph/9807029.

[12] M. Ettinger, P. Høyer, and E. Knill. Hidden subgroup states are almost orthogonal. InLANL e-print
quant-ph/9901034, 1999.

[13] N. Gershenfeld and I. L. Chuang. Bulk spin resonance quantum computation. InScience, 275:350, 1997.

12



[14] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. InSIAM J. Comput., 17:281–308, 1988.

[15] M. Grigni, L. J. Schulman, M. Vazirani, U. V. Vazirani. Quantum mechanical algorithms for the nonabelian
hidden subgroup problem. InSTOC 2001, pp. 68–74, 2001.

[16] L. Hales, S. Hallgren. Quantum Fourier sampling simplified. InSTOC 1999, pp. 330–338, 1999.

[17] S. Hallgren. Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. InSTOC
2002, pp.653–658, 2002.

[18] S. Hallgren, A. Russell, A. Ta-Shma. Normal subgroup reconstruction and quantum computation using group
representations. InSTOC 2000, pp. 627–635, 2000.

[19] W. Hoeffding. Probability inequalities for sums of bounded random variables. InJournal of the American Sta-
tistical Association, 58:13–30, 1963.

[20] J. Jackson. On the efficiency of noise-tolerant PAC algorithms derived from statistical queries. InCOLT 2000,
2000.

[21] R. Jozsa. Quantum algorithms and the Fourier transform. In LANL e-printquant-ph/9707033, 1997.

[22] M. Kearns. Efficient noise-tolerant learning from statistical queries. InSTOC 1993, pp. 392–401, 1993.

[23] M. Kearns and U. V. Vazirani. An introduction to computational learning theory. MIT Press, 1994.

[24] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.Cambridge University Press, 2000.

[25] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In22nd ACM Symposium on
the Theory of Computing, pp. 387–394, 1990.

[26] P. Shor. Algorithms for quantum computation: discretelogarithms and factorization. InFOCS ’94, pp.124–134,
1994.

[27] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In
SIAM J. Comput.26(5): 1484-1509, 1997.

[28] D. Simon. On the power of quantum computation. InFOCS’94, pp. 116–123, 1994. Journal version available at
SIAM J. Comp., 26(5):1474–1483, 1997.

[29] S.Vadhan. A study of statistical zero-knowledge proofs.Ph.D. thesis, MIT, 2000.

[30] L. Valiant. A theory of the learnable. InCommunications of the ACM, 27(11): 1134–1142, 1984.

[31] K. Yang. On learning correlated functions using statistical query. InALT’01, LNAI 2225, pp. 59–76, 2001. Full
version available atECCCTR01-098.

[32] K. Yang. New lower bounds for statistical query learning. In COLT 2002, LNAI 2375, pp. 229–243, 2002. Full
version available atECCCTR02-060.

[33] A. Yao. Quantum Circuit Complexity. InFOCS’93, pp. 351–361, 1993.

A Shor’s Algorithm and Simon’s Algorithm

We briefly summarize Shor’s algorithm for factoring and Simon’s algorithm for the hidden XOR-secret
problem.
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A.1 Shor’s Algorithm for Factoring

Standard number theory reduces factoringN to finding the order of a random elementa moduloN , i.e.,
r > 0 such thatar ≡ 1 (modN) but as 6≡ 1 (modN) for any0 < s < r. Suppose2n−1 < N ≤ 2n.
Shor’s algorithm uses2n qubits, separated into twon-qubit registers. Initially the state is initialized to
|φ0〉 = | 0n〉| 0n〉. By applying the Fourier transformation followed by modular exponentiation, this state
is converted to|φ1〉 = 1

2n/2

∑
x |x〉| ax modN〉. Then one measures the second register and discard it,

leading to a state|φ2〉 =
∑

t | t · r+ c〉 for some randomc ∈ [r], wheret ranges from0 to ⌊(2n − 1− c)/r⌋
(we ignore the scalar factor). Finally, one applies the inverse Fourier transform to the first register followed
by a measurement. The distribution of the measurement result is approximately uniform over{[t · 2n/r] :
0 ≤ t ≤ ⌊(2n − 1− c)/r⌋}. One can then solver from one instance of[t · 2n/r] using continued fraction.

A.2 Simon’s Problem and Algorithm

A function f : {0, 1}n 7→ {0, 1}n is given as an oracle, with the promise that there exists ans ∈ {0, 1}n
(known as the “hidden secret”) such thatf(x) = f(y) iff x ⊕ y = s. Notice that ifs = 0n, thenf is a
permutation, and otherwisef is a 2-to-1 function. The problem is to tell ifs = 0n.

Simon’s algorithm works as follows. One starts with2n qubits, separated into twon-qubit regis-
ters. Originally one initializes the state to|φ0〉 = | 0n〉| 0n〉. Next, one applies the Hadamard operator
to the first register and then the oracle operator|x〉| y〉 7→ |x〉| f(x) ⊕ y〉. The state becomes|φ1〉 =
1

2n/2

∑
x |x〉| f(x)〉. Next, the second register is measured and discarded. Ifs = 0n, then the measurement

result is|φ2〉 = |x〉 for a randomx ∈ {0, 1}n. If s 6= 0n, then the measurement is|φ′
2〉 = 1√

2
(|x〉+|x⊕s〉)

for a randomx. Next, a Hadamard operator is applied to the first register. In the cases = 0n, the result is
|φ3〉 = | y〉 for a randomy; in the cases 6= 0n, the result is|φ′

3〉 = | y〉 for a randomy such thaty · s = 0.
Finally one measures the first register and obtainsy. Repeating the experimentO(n) times, one can solve
for s by using Gaussian elimination and distinguish the cases = 0n from the cases 6= 0n.

B The Hoeffding Bound

We state the Hoeffding Bound, a classical result in estimating tail probabilities.

Lemma 1 (Hoeffding Bound [19]) Let k = (p − ǫ)n, whereǫ is a real number between0 and1/2, andp
is a real number between 0 and 1. We have

k∑

j=0

(
n

j

)
pj(1− p)m−j ≤ e−2nǫ2 (5)

C Statistical Distance

We define the statistical distance and state some of its properties. The definitions and the results are standard.
A good reference to the statistical distance is Vadhan’s thesis [29].
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Definition 10 (Statistical Distance) Thestatistical distancebetween two probability distributionsA andB,
denoted asSD(A,B), is defined to be

SD(A,B) =
1

2

∑

x

|A(x) −B(x)| (6)

where the summation is taken over the support ofA andB. If SD(A,B) ≤ ǫ, we sayA is ǫ-closeto B.

This definition can be easily extended to the continuous casewith the summation being replaced by
integral and the distributions replaced by density functions.

Lemma 2 LetT (x) be a probabilistic event withx as input. LetA andB be two distributions. We have
∣∣∣∣ Prx∈A

[T (x)]− Pr
x∈B

[T (x)]

∣∣∣∣ ≤ SD(A,B) (7)

Lemma 3 (Sub-additivity) LetA1, A2, B1, B2 be distributions, then we have

SD(A1B1, A2B2) ≤ SD(A1, A2) + SD(B1, B2) (8)

whereAB denotes thetensor productof the distributionsA andB, i.e.,AB(a, b) = A(a) ·B(b).

Lemma 4 LetD1 be a uniform distribution over an interval[a, a+ l] andD2 a uniform distributions over
[b, b+ l]. ThenSD(D1,D2) is at most|a− b|/l.

Proof: Notice that bothD1 andD2 are uniform distributions of same length, and thus their density func-
tions have value1/l over their supports and 0 elsewhere. Consider the absolute difference between the two
density functions,|D1(x)−D2(x)|. The size of its support is at most2|a−b|. ThusSD(D1,D2) ≤ |a−b|/l.

D Proofs

Lemma 5 Let X̂n,p be the domain defined in (1) andLn,p be the class of normalized booleanized linear
functions overX̂n,p. For any query functiong : X̂n,p 7→ {0, 1}, there are at mostp2n/3+2 predicates inLn,p
that are not1/pn/3-independent fromg.

For the proof we will need:

Lemma 6 ([31]) LetΩ = {fi} be a set of function of range{−1,+1} andd be its cardinality. If〈fi, fj〉 =
λ for all i 6= j, then the set{f̃i} forms an orthonormal basis for the linear space spanned byΩ, where

f̃i(x) =
1√
1− λ

fi(x)−
1

d
·
(

1√
1− λ

− 1√
1 + (d− 1)λ

)
·

d∑

j=1

fj(x) (9)
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Proof of Lemma 5: We first slightly modify the classLn,p so that its range becomes{−1,+1}. We define
L̃a(x) = 2 · La(x) − 1. It is not hard to see that each of thepn−1 normalized booleanized linear functions
maps a1/p fraction of the elements in̂Xn,p to +1, and a straightforward but tedious analysis (see [31] for
a detailed account) shows that any two normalized booleanized linear functions agree at exactly(p2 − 2p+
2)pn−2 − p places inX̂n,p. We define an inner product between functions overX̂n,p as

〈f, g〉 = 1

pn − p

∑

x∈X̂n,p

f(x)g(x), (10)

With this inner product, any query function has norm 1, and any pair of distinct functions̃La andL̃b have
the same inner product. This will allow us to “extract” an orthonormal basis from the classLn,p using
Lemma 6.

Now we fix a query functiong and relate predicates that are notξ-independent fromg to the Fourier
coefficients ofg. Consider a booleanized linear functionLa, and we denote its positive set byS. We have
that |S| = pn−1 − 1. Supposeg mapsa elements inX̂n,p to +1, andb elements inS to +1. Then ifLa is
not ξ-independent fromg, we have

∣∣∣∣
2a− pn + p

pn − p
− 2b− pn−1 + 1

pn−1 − 1

∣∣∣∣ > ξ, (11)

or |a− bp| > pn−p
2 ξ. We writeb = a/p+ δ, and we have|δ| ≥ pn−1−1

2 ξ.
Next we compute the inner product ofg andL̃a. Straightforward computation shows that

〈g, L̃a〉 = 2 ·
(
2b− a+ (p− 1)(pn−1 − 1)

pn − p

)
− 1

=

(
1− 2a

pn − p

)(
1− 2

p

)
+

4δ

pn − p

On the other hand, the inner product ofg with anaverageover booleanized linear functions is

1

pn−1

∑

b[0]=1

〈g, L̃b〉 =
1

pn−1(pn − p)

∑

b[0]=1

∑

x∈X̂n,p

g(x)f̃b(x)

=
1

pn−1(pn − p)

∑

x∈X̂n,p

g(x)
∑

b[0]=1

f̃b(x)

=

(
1− 2a

pn − p

)(
1− 2

p

)

Now we apply Lemma 6, settingd = pn−1 andλ = (p2−4p+4)pn−2−p
pn−p . We will obtain an orthonormal

basis, which we denote by{L̂b}.
Putting things together, we can compute that Fourier coefficient ofg over the component̂La.

〈g, L̂a〉 =
1√
1− λ

〈g, L̃a〉 −
(

1√
1− λ

− 1√
1 + (d− 1)λ

)
· 1
d

∑

b[0]=1

〈g, L̃b〉
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=
1√
1− λ

·
[(

1− 2

p

)
·
(
1− 2a

pn − p

)
+

4δ

pn − p

]
−

(
1√
1− λ

− 1√
1 + (d− 1)λ

)
·
(
1− 2

p

)
·
(
1− 2a

pn − p

)

=
1√

1 + (d− 1)λ

(
1− 2

p

)
·
(
1− 2a

pn − p

)
+

1√
1− λ

· 4δ

pn − p

=
1

p(n−1)/2

(
1− 2a

pn − p

)
+

2δ√
p(pn−1 − 1)

·
√

1− 1/pn−1

1− 4/p

≥ 2δ√
p(pn−1 − 1)

− 1

p(n−1)/2

Now we substitute inξ = 1/pn/3, and we have

|〈g, L̂a〉| ≥
ξ√
p
− 1

p(n−1)/2
≥ 1

pn/3+1
(12)

Thusg can have at mostp2n/3+2 such Fourier coefficients, and so there can be at mostp2n/3+2 predicates
that are not1/pn/3-independent fromg.

Lemma 7 LetXn = {0, 1}n\{0n} andCn be the class of negative parity functions overXn. For any query
functiong : {0, 1}n 7→ {−1,+1}, there are at most2n/2+2 predicates inCn that are not2−n/4-independent
from g.

Proof: We fix a negative parity functionf . Leta denote the number ofx ∈ {0, 1}n such thatg(x) = 1, and
let b denote the number ofx ∈ Sf such thatg(x) = 1. Notice that since all parity functions are balanced,
we have|Sf | = 2n−1 − 1 (sincef(0n) = 1 but0n 6∈ Sf ). Then iff is notξ-independent fromg, we have

∣∣∣∣
2b− 2n−1 + 1

2n−1 − 1
− 2a− 2n

2n

∣∣∣∣ > ξ (13)

or ∣∣∣∣
a− 2b

2n−1 − 1

∣∣∣∣ > ξ − a

2n−1(2n−1 − 1)
> ξ − 1

2n−1 − 1
(14)

Next we perform Fourier analysis. We first define an inner product of real functions over{0, 1}n:

〈f, g〉 = 1

2n

∑

x∈{0,1}n
f(x)g(x). (15)

We define a set of “modified parity functions” as̃⊕s(x) = (−1)s·x, which map elements in{0, 1}n to
{−1,+1}. It is clear that the set of all parity functions{⊕̃s(x)}s form an orthonormal basis, and̃⊕s(x) =
1 − 2¬ ⊕s (x). If a parity function¬ ⊕s (x) is not ξ-independent fromg, then (13) holds (by setting
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f = ¬⊕s). Let t = g(0n). Within the subset wherẽ⊕s(x) = −1, which includes0n and the positive set of
¬⊕s, g mapsb+ t inputs to+1. Outside this subset,g mapsa− b− t inputs to+1, and2n−1 − a+ b+ t
input to−1. Thus, we can compute the Fourier coefficient ofg on ⊕̃s.

〈⊕̃s, g〉 = 1− 2 · Pr
x∈{0,1}n

[⊕̃s(x) = g(x)]

= 1− 2 ·
(
a− b− t

2n
+

2n−1 − a+ b+ t

2n

)

=
2a− 4b− 4t

2n

Substituting in (14), we have
|〈⊕̃s, g〉| > ξ − 6/2n. (16)

However, notice that the query functiong(x) has norm 1 and thus it can have at most1/(ξ− 6/2n)2 Fourier
coefficients such that (16) holds. Now plugging inξ = 2−n/4, we have1/(ξ − 6/2n)2 ≤ 2n/2+2, and the
Lemma is proved.
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