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Abstract

We show that theMULTICUT, SPARSEST-CUT, and
M IN-2CNF≡ DELETION problems are NP-hard to approx-
imate within every constant factor, assuming the Unique
Games Conjecture of Khot [STOC, 2002]. A quantitatively
stronger version of the conjecture implies inapproximability
factor ofΩ(log log n).

1. Introduction

In the MULTICUT problem the input is an undirected
graphG = (V, E) on n = |V | vertices andk pairs of
vertices{si, ti}k

i=1, calleddemand pairs, and the goal is
to find a minimum-size subset of the edgesM ⊆ E whose
removal disconnects all the demand pairs, i.e., in the sub-
graph(V, E \ M) everysi is disconnected from its corre-
sponding vertexti. In the weighted version of this problem,
the input also specifies a positive costc(e) for each edge
e ∈ E and the goal is to find a multicutM whose total cost
c(M) =

∑
e∈M c(e) is minimal. This problem is known to

be APX-hard [12].
We prove that if a strong version of the Unique Games

Conjecture of Khot [19] is true, thenMULTICUT is NP-hard
to approximate to within a factor ofΩ(log log n). Under
the original version of this conjecture, our reduction shows
that for every constantL > 0, it is NP-hard to approximate
MULTICUT to within factorL.
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Our methods also yield similar bounds forSPARSEST-
CUT andM IN-2CNF≡ DELETION. The SPARSEST-CUT

problem has the same input asMULTICUT, but the goal
is to find a subset of the edgesM ⊆ E that minimizes
the ratio of|M | (in the weighted version, the total cost of
M ) to the number of demand pairs that are disconnected
in (V, E \ M).1SinceSPARSEST-CUT is not known to be
APX-hard, our result gives the first indication that this prob-
lem might be hard to approximate. In theM IN-2CNF≡
DELETION problem the input is a weighted set of clauses
on n variables, each clause of the form(x ≡ y), wherex
andy are literals, and the goal is to find a Boolean assign-
ment to the variables minimizing the total weight of unsatis-
fied clauses.2Our results also extend to theCORRELATION

CLUSTERING problem [7, 10, 13, 14] of minimizing dis-
agreements in a weighted graph, because the approxima-
bility of this problem is known to be equivalent to that of
MULTICUT in weighted graphs [10, 14].

1.1. Known results on MULTICUT, SPARSEST-CUT,
and M IN-2CNF≡ DELETION

MULTICUT andSPARSEST-CUT are fundamental com-
binatorial problems, with connections to multicommodity
flow, edge expansion, and metric embeddings. Both prob-
lems can be approximated to within anO(log k) factor
through linear programming relaxations [25, 16, 6, 26].
These bounds match the lower bounds on the integrality
gaps up to constant factors [25, 16]. M IN-2CNF≡ DELE-
TION can also be approximated to within anO(log n) fac-
tor, as implied by the results of Klein et al. [23], who
give an approximation-preserving reduction from this prob-
lem to MULTICUT. Recently, starting with the ground-
breaking O(

√
log n)-approximation for the uniform de-

mands case [4], improved approximation algorithms have

1In general, the demand pairs may have positive weights (demands), but
for our purpose of inapproximability results, it clearly suffices to consider
the more restricted definition above. Our hardness results forSPARSEST-
CUT do not apply to the special case of uniform-demand, in which every
pair of vertices forms a demand pair.

2Note that the constraints inM IN-2CNF≡ DELETION are restricted to
equality (and effectively non-equality) constraints.
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been developed for theSPARSEST-CUT problem using a
semidefinite programming relaxation [4, 11, 2]. The best
approximation factor currently known for general demands
is O(

√
log k log log k) [2]. The obvious modification of

the semidefinite program used forSPARSEST-CUT to solve
MULTICUT was recently shown to have an integrality ra-
tio of Ω(log k) [1], which matches, up to constant factors,
the approximation factor and integrality gap of previously
analyzed linear programming relaxations for this problem.

On the hardness side, it is known thatMULTICUT is
APX-hard [12], i.e., there exists a constantc > 1, such that
it is NP-hard to approximateMULTICUT to within a factor
smaller thanc. It should be noted that this hardness of ap-
proximation holds even fork = 3, and that the value ofc is
not specified therein, but it is certainly much smaller than2.
TheM IN-2CNF≡ DELETION problem is also known to be
APX-hard, as follows, e.g., from linear equations modulo2
[17].

Assuming the Unique Games Conjecture, Khot [19, The-
orem 3] essentially obtained an arbitrarily large constant-
factor hardness forM IN-2CNF≡ DELETION, and this im-
plies, using the aforementioned reduction of [23], a simi-
lar hardness factor forMULTICUT. These results are not
noted in [19], and are weaker than our results in several re-
spects. First, our quantitative bounds are better; thus if a
stronger, yet almost as plausible, version of this conjecture
is true, then our lower bound on the approximation factor
improves toL = Ω(log log n), compared with the roughly
Ω((log log n)1/4) hardness that can be inferred from [19];
this can be viewed as progress towards proving tight in-
approximability results forMULTICUT. Second, by qual-
itatively strengthening ourMULTICUT result to a bicriteria
version of the problem, we extend our hardness results to
the SPARSEST-CUT problem. It is unclear whether Khot’s
reduction similarly leads to a hardness result forSPARSEST-
CUT. Finally, our proof is simpler (both the reduction and
its analysis), and makes direct connections to cuts (in a hy-
percube), and thus may prove useful in further investigation
of such questions.

For SPARSEST-CUT, no hardness of approximation re-
sult was previously known. Independent of our work, Khot
and Vishnoi [22] have recently used a different construc-
tion to show an arbitrarily large constant factor hardness
for SPARSEST-CUT assuming the Unique Games Conjec-
ture; their hardness factor could, in principle, be pushed to
(log log n)c, for some constantc > 0, assuming a stronger
quantitative version of the conjecture. Additionally, they
prove an integrality ratio lower bound ofΩ((log log n)c),
for some fixedc > 0, for the semidefinite program re-
laxations used in the recent approximation algorithms for
SPARSEST-CUT.

1.2. The Unique Games Conjecture

Unique2-prover gameis the following problem. The in-
put is a bipartite graphGQ = (Q,EQ), where each side
p = 1, 2 containsn = |Q|/2 vertices denotedqp

1 , · · · , qp
n,

and representsn possible questions to proverp. In addi-
tion, the input contains for each edge(q1

i , q2
j ) ∈ EQ a non-

negative weightw(q1
i , q2

j ). These edges will be calledques-
tion edges, to distinguish them from edges in theMULTI -
CUT instance. Each question to a prover is associated with
a set ofd distinct answers, denoted by[d] = {1, . . . , d}.
The input also contains, for every edge(q1

i , q2
j ) ∈ EQ, a

bijectionbij : [d] → [d], which maps every answer of ques-
tion q1

i to a distinct answer forq2
j .

A solutionA to the2-prover game consists of an answer
Ap

i ∈ [d] for each questionqp
i (i.e., a sequence{Ap

i } over
all p ∈ [2] andi ∈ [n]). The solution is said to satisfy an
edge(q1

i , q2
j ) ∈ EQ if the answersA1

i andA2
j agree, i.e.,

A2
j = bij(A1

i ). We assume that the total weight of all the
edges inEQ is 1 (by normalization). Thevalue of a solution
is the total weight of all the edges satisfied by the solution.
Thevalue of the gameis the maximum value achievable by
any solution to the game.

Conjecture 1.1 (Unique Games [19]). For every fixed
η, δ > 0 there existsd = d(η, δ) such that it is NP-hard
to determine whether a unique2-prover game with answer
set sized has value at least(1− η) or at mostδ.

We will also consider stronger versions of the Unique
Games Conjecture in whichη, δ, andd are functions ofn.
Specifically, we will consider versions withmax{η, δ} ≤
1/(log n)Ω(1) andd = d(η, δ) ≤ O(log n). We denote the
size of an input instance byN . Notice thatN = (n2d)Θ(1),
and is thus polynomial inn as long asd ≤ O(log n), and in
particular for fixedd.

Plausibility of the conjecture and its stronger version.
The Unique Games Conjecture has been used to show opti-
mal inapproximability results forVERTEX COVER [21] and
MAX -CUT [20, 27]. Proving the conjecture using current
techniques appears quite hard. In particular, the asserted
NP-hardness is much stronger than what we can obtain via
standard constructions using the PCP theorem [5, 3] and the
parallel repetition theorem [28], two deep results in compu-
tational complexity.

Although the conjecture seems difficult to prove in gen-
eral, some special cases are well-understood. In particu-
lar, if at all the Unique Games Conjecture is true, then
necessarilyd ≥ max{1/η1/10, 1/δ}. This follows from
a semidefinite programming algorithm presented in [19].
Our Ω(log log n) hardness result (see Corollary1.4 be-
low) requires the existence of a constantc > 0, such that
max{η, δ} ≤ 1/(log n)c andd ≤ O(log n), which is not



excluded by the above. Feige and Reichman [15] recently
showed that for every constantL > 0 there exists a con-
stantδ > 0, such that it is NP-hard to distinguish whether a
unique 2-prover game (withd = d(L, δ)) has value at least
Lδ or at mostδ; this result falls short of the Unique Games
Conjecture in thatLδ is bounded away from1.

1.3. Our results

We prove the following hardness of approximation for
MULTICUT, SPARSEST-CUT, and M IN-2CNF≡ DELE-
TION based on the Unique Games Conjecture.

Theorem 1.2. Suppose that forη = η(n), δ = δ(n), and
d = d(η, δ) ≤ O(log n), it is NP-hard to determine whether
a unique2-prover game with|Q| = 2n vertices and answer
set sized has value at least1− η(n) or at mostδ(n). Then

there existsL(n) = Ω
(
log 1

η(nΩ(1))+δ(nΩ(1))

)
such that it is

NP-hard to approximateMULTICUT, SPARSEST-CUT, and
M IN-2CNF≡ DELETION to within factorL(n).

This theorem immediately implies the following two
specific hardness results.

Corollary 1.3. The Unique Games Conjecture implies that,
for every constantL > 0, it is NP-hard to approximate
MULTICUT, SPARSEST-CUT, and M IN-2CNF≡ DELE-
TION to within factorL.

Corollary 1.4. The stronger version of the Unique Games
Conjecture in whichmax{η, δ} ≤ 1/(log n)Ω(1), andd =
d(η, δ) ≤ O(log n), implies that for some fixedc > 0, it is
NP-hard to approximateMULTICUT, SPARSEST-CUT, and
M IN-2CNF≡ DELETION to within factorc log log n.

For SPARSEST-CUT our hardness results hold only for
the search version (in which the algorithm needs to produce
a cutset and not only its value), since our proof employs a
Cook reduction.

1.4. Preliminaries

Regular Unique Games. A unique 2-prover game is
calledregular if the total weight of question edges incident
at any single vertex is the same, i.e.,1/n, for every vertex in
Q. We now show that we can assume without loss of gen-
erality that the graph in the Unique Games Conjecture is
regular. For simplicity, we state this only for fixedη andδ.
A similar result holds when they depend onn, because we
increase the input size by no more than a polynomial factor,
and increaseη andδ by no more than a constant factor.

Lemma 1.5. The Unique Games Conjecture implies that
for every fixedη, δ > 0, there existsd = d(η, δ) such that it
is NP-hard to decide if a regular unique2-prover game has
value at least1− η or at mostδ.

The proof is given in AppendixA, and is based on an
argument of Khot and Regev [21, Lemma 3.3]. The depen-
dence ofd onη andδ is important for our purposes. We thus
point out that this argument does not changed = d(η, δ),
and increases the size of the instance by at most a polyno-
mial factor inn. This is acceptable in the setting of The-
orem1.2, since the requirementd = d(η, δ) ≤ O(log n)
is maintained and only the unspecified constants therein are
affected.

Bicriteria MULTICUT. Our proof for the hardness of ap-
proximatingSPARSEST-CUT relies on a generalization of
MULTICUT, where the solutionM is required to cut only
a certain fraction of the demand pairs. For a given graph
G = (V,E), a subset of the edgesM ⊆ E will be called a
cutsetof the graph. A cutset whose removal disconnects all
the demand pairs is amulticut.

An algorithm is called an(α, β)-bicriteria approximation
for MULTICUT if, for every input instance, the algorithm
outputs a cutsetM that disconnects at leastα fraction of the
demands and has cost at mostβ times that of the optimum
multicut. In other words, ifM∗ is the least cost cutset that
disconnects all thek demand pairs, thenM disconnects at
leastαk demand pairs andc(M) ≤ β · c(M∗).

Hypercubes, dimension cuts, and antipodal vertices.
As usual, thed-dimensional hypercube(in short ad-cube) is
the graphC = (VC , EC) with the vertex setVC = {0, 1}d,
and an edge(u, v) ∈ EC for every two verticesu, v ∈
{0, 1}d that differ in exactly one dimension (coordinate).
An edge(u, v) is called adimension-a edge, for a ∈ [d], if
u andv differ in dimensiona, i.e.,u⊕ v = 1a where1a is a
unit vector along dimensiona. The set of all the dimension-
a edges in the hypercube is called thedimension-a cut in the
hypercube; adimension cutis a dimension-a cut for some
dimensiona. Theantipodeof a vertexu is the (unique) ver-
texu all of whose coordinates are different from those ofu,
i.e.,u = u ⊕ 1 where1 is the vector with1 in every coor-
dinate. Notice thatv is the antipode ofu if and only if u is
the antipode ofv; thus,〈u, u〉 form anantipodal pair. The
following simple fact will be key in our proof.

Fact 1.6. In any hypercube, a single dimension cut discon-
nects every antipodal pair.

Organization. In Section2 we prove the part of Theorem
1.2regarding theMULTICUT problem; our proof will actu-
ally hold for bicriteria approximation forMULTICUT. We
will then show in Section3 that this stronger result yields
a similar hardness of approximation forSPARSEST-CUT.
Finally, in Section4, we modify the reduction to obtain a
hardness of approximation forM IN-2CNF≡ DELETION.



2. Hardness of bicriteria approximation for
MULTICUT

In this section we prove the part of Theorem1.2 re-
garding theMULTICUT problem, namely, that the Unique
Games Conjecture implies that it is NP-hard to approxi-
mateMULTICUT within a certain factorL. Our proof will
actually show a stronger result—for everyα ≥ 7/8 it is
NP-hard to distinguish between whether there is a multi-
cut of cost less thann2d+1 (the YES instance) or whether
every cutset that disconnects at leastαk demand pairs has
cost at leastn2d+1L (the NO instance). This implies that it
is NP-hard to obtain an(α, L)-bicriteria approximation for
MULTICUT.

We start by describing a reduction from unique2-prover
game toMULTICUT (Section2.1), and then proceed to an-
alyze the YES instance (Section2.2) and the NO instance
(Sections2.3 and2.4). Finally, we discuss the gap that is
created for a bicriteria approximation ofMULTICUT (Sec-
tion 2.5).

2.1. The reduction

Given a unique2-prover game instanceGQ = (Q,EQ)
with n = |Q|/2 and the corresponding edge weightsw(e)
and bijectionsbij : [d] → [d], we construct aMULTICUT in-
stanceG = (V, E) with demand pairs, as follows. For every
vertex (i.e., question)qp

i ∈ Q, construct ad-dimensional
hypercubeCp

j ; the dimensions in this cube correspond to
answers for the questionqp

j .3 For each of the2n hyper-
cubes, we let the edges inside the hypercube have cost1,
and call themhypercube edges.

For each question edge(q1
i , q2

j ) ∈ EQ, we extendbij

(in the obvious way) to a bijection from the vertices ofC1
i

to the vertices ofC2
j , and denote the resulting bijection by

b′ij : {0, 1}d → {0, 1}d. Formally, for everyu ∈ {0, 1}d

(vertex in C1
i ) and everya ∈ [d], the a-th coordinate of

b′ij(u) is given by(b′ij(u))a = ub−1
ij (a). Then, we connect

every vertexu ∈ C1
i to the corresponding vertexb′ij(u) ∈

C2
j using an edge of costwijΛ, whereΛ = n/η is a scaling

factor. These edges are calledcross edges.
Denote the resulting graph byG = (V,E). Notice thatV

is simply the union of the vertex sets of the hypercubesCp
i ,

for all p ∈ [2] andi ∈ [n], and that the edge setE contains
two types of edges, hypercube edges and cross edges.

To complete the reduction, it remains to define the de-
mand pairs. For a vertexu ∈ V , theantipodeof u in G, de-
notedu, is defined to be the antipodal vertex ofu in the hy-
percubeCp

i that containsu. The setD of demand pairs then

3This is a standard technique in PCP constructions for graph optimiza-
tion problems. A hypercube can be interpreted as a “long code” [8], and a
dimension cut is the encoding of an answer in the 2-prover game.

contains every pair of antipodal vertices inG, and hence
k = |D| = n2d−1. Note that every vertex ofG belong to
exactly one demand pair.

2.2. The YES instance

Lemma 2.1. If there is a solutionA for the unique2-prover
gameGQ such that the total weight of the satisfied questions
is at least1− η, then there exists a multicutM ⊆ E for the
MULTICUT instanceG such thatc(M) ≤ 2d+1n.

Proof. Let A be such a solution forGQ. ConstructM by
taking the following edges. For every questionqp

i ∈ Q
and the corresponding answerAp

i (of prover p), take the
dimension-Ap

i cut in cubeCp
i . In addition, for every edge

(q1
i , q2

j ) ∈ EQ that the solutionA does not satisfy, take all
the cross edges between the corresponding cubesC1

i and
C2

j .
We first claim that removingM from G disconnects all

the demand pairs. To see this, we define a Boolean function
f : V → {0, 1} on the graph vertices. For every cube
Cp

i , consider the dimension-Ap
i cut; it disconnects the cube

into two connected components, one containing the all zeros
vector0 and one containing the all ones vector1. For every
v ∈ Cp

i , let f(v) = 0 if v is in the same side as0, and
f(v) = 1 otherwise. This is exactly theAp

i -th bit in v, i.e.,
f(v) = vAp

i
. Now consider any demand pair(v, v), and

note thatf(v) = 1 − f(v). We will show below that every
edge(u, v) /∈ M satisfies the propertyf(u) = f(v). This
clearly proves the claim.

Consider first a hypercube edge(u, v) in Cp
i that is not a

dimension-Ap
i edge. Thenf(u) = uAp

i
= vAp

i
= f(v), by

the definition off . Next consider a cross edge(u, v) /∈ M .
Then this edge lies between cubesC1

i and C2
j , such that

the question edge(q1
i , q2

j ) satisfied by the unique2-prover
game solutionA. Therefore,bij(A1

i ) = A2
j . Then,f(u) =

uA1
i

= vbij(A1
i ) = vA2

j
= f(v).

Finally, we bound the cost of the solution. LetS be the
set of question edges not satisfied by the solutionA. The
total cost of the multicut solution is thusc(M) = 2n 2d−1+
2dΛ

∑
(Q1

i ,Q2
j )∈S wij ≤ 2dn + 2d n

η η = 2d+1n.

2.3. Hypercube cuts and influences

We will analyze the NO instance shortly, but first we
set up some notation and present a few technical lemmas
regarding cuts in hypercubes. In particular, we present
Lemma2.3, which will have a crucial role in that analysis.

Recall that the dimensions of the hypercubes in the mul-
ticut instance correspond to answers to the 2-prover game.
Therefore, we define the extent to which a dimension par-
ticipates in a cut on the cube as follows. LetC = (VC , EC)
be ad-dimensional hypercube. For a functionf : VC → R,



the influence of dimensiona ∈ [d] (a.k.a. the influence of
thea-th variable) on the function, denotedIf

a , is defined to
be the fraction of dimension-a edges(u, v) ∈ EC for which
f(u) 6= f(v). For a cutsetM ⊆ EC , the influence of di-
mensiona ∈ [d] on the cutset, denotedIM

a , is defined as the
fraction of dimension-a edges that belong toM . Observe
that|M | = 2d−1

∑
a∈[d] I

M
a .

Proposition 2.2. Let M ⊆ EC be a cutset in a hypercube
C = (VC , EC). Defineg : VC → Z by labeling the con-
nected components ofC\M by distinct integers, and letting
g(v) for v ∈ VC be the label of the connected component
containingv. ThenIM

a ≥ Ig
a .

Proof. Observe that the cutsetM must contain every edge
(u, v) ∈ EC for whichg(u) 6= g(v).

The lemma below shows that if a cutsetM has few edges
(i.e., small cost) but its removal disconnects a large fraction
of the antipodal pairs in the hypercubeC, then there must
be a dimensiona ∈ [d] with large influence.

Lemma 2.3. Let M be a cutset in ad-dimensional hyper-
cubeC, and suppose that removingM disconnects at least
β fraction of the antipodal pairs inC. Then for allx > 0,

∑

a∈[d]

IM
a ≤ βx ⇒ max

a∈[d]
IM
a ≥ 2−6x/27.

To prove this, we will make use of the following lemma,
due to Kahn, Kalai, and Linial [18] (see also [29, Section
1.5]).

Lemma 2.4 (Kahn, Kalai, and Linial [ 18]). Let f be a
Boolean function defined on a hypercube, and suppose the
fraction of inputsx for whichf(x) = 1 is p ≤ 1/2. Then
for all α > 0,

1
α

∑

i

If
i +

∑

i

(If
i )4/3 ≥ 2p

log α

α
.

We note that the proof of Lemma2.4is based on Fourier
analysis of Boolean functions, and that its statement above
follows from the proofs therein.

Proof of Lemma2.3. We first convert the cutsetM into a
two-sided (binary) cut. Observe that each connected com-
ponent ofC \ M must have size at most2d − β2d−1 =
(1 − β/2)|VC |. If there is a component of size larger than
|VC |/2, we combine the rest of the components into a single
component. Otherwise, we split the set of components into
two parts such that the total size of the components in each
part is at most23 |VC |. Call the resulting cutsetM ′. Note that
M ′ ⊆ M and thus, for everya ∈ [d], the influence of every
dimension inM ′ is no larger than its counterpart inM , i.e.,
IM ′
a ≤ IM

a . Hence,
∑

a IM ′
a ≤ ∑

a IM
a ≤ βx. This two-

sided cut defines a Boolean functionf : VC → {0, 1} with

balancep ≤ 1/2 satisfyingp ≥ min{β/2, 1/3} ≥ β/3 and
IM ′

a = If
i . Using Lemma2.4with α = 22x, we have

βx

22x
+

∑

a∈[d]

(IM ′
a )4/3 ≥ 2

β

3
2x

22x

We thus obtain

∑
a

(IM ′
a )4/3 ≥ β

3
x

22x

Now sety = maxa∈[d] I
M ′
a . Then we get

∑
a

(IM ′
a )4/3 ≤ y1/3

∑
a

IM ′
a ≤ βxy1/3

Therefore, we havey1/3 ≥ 1
32−2x, or,y ≥ 2−6x/27.

The next lemma shows that if two functionsf, g : VC →
R agree on most of the inputsv ∈ VC , then their influences
are quite similar.

Lemma 2.5. LetC = (VC , EC) be a hypercube. If for two
functionsf, g : VC → R we havef(v) = g(v) for all but a
γ fraction of inputsv ∈ VC , then for every dimensiona we
have|If

a − Ig
a | ≤ 2γ.

Proof. Suppose thatC is a d-dimensional hypercube, and
consider a dimension-a edge(u, v) ∈ EC . By our as-
sumption, for all but at mostγ2d such edges, we must
havef(u) = g(u) and f(v) = g(v), and in particular
f(u)−f(v) = g(u)−g(v). Recalling that there are exactly
2d−1 dimension-a edges, and thatIf

a is the fraction of those
edges for whichf(u)− f(v) 6= 0 (and similarly forg), we
conclude thatf(u)−f(v) = g(u)−g(v) for at most2γ frac-
tion of the dimension-a edges, and thus|If

a −Ig
a | ≤ 2γ.

2.4. The NO instance

Lemma 2.6. There existsL = Ω(log 1/(η + δ)) such that
if the MULTICUT instanceG has a cutset of cost at most
2dnL whose removal disconnectsα ≥ 7/8 fraction of the
demand pairs, then there is a solutionA for the unique2-
prover gameGQ whose value is larger thanδ.

Proof. Let L = c log 1/(η + δ) wherec > 0 is a con-
stant to be determined later, and letM ⊆ E be a cutset of
costc(M) ≤ 2dnL whose removal disconnectsα ≥ 7/8
fraction of the demand pairs. UsingM , we will construct
for the unique2-prover gameGQ a randomized solutionA
whose expected value is larger thanδ, thereby proving the
existence of a solution of value larger thanδ. Without loss
of generality, we may assume thatM is minimal with re-
spect to containment, namely, for every subsetM ′ ⊆ M , if
M ′ 6= M then removingM ′ from G disconnects fewer de-
mand pairs than removingM would. Given such a minimal



cutsetM , for each cubeCp
i in G, consider the cutsetM in-

duces in this cube, and letIp,i
a be the influence of dimension

a ∈ [d] on this cutset. The randomized solutionA (i.e., a
strategy for the two provers) is defined as follows. For each
vertex (question)qp

i ∈ Q, we chooseAp
i to be the answer

(dimension)a′ ∈ [d] with probabilityIp,i
a′ /

∑
a∈[d] I

p,i
a .

We proceed to analyze the expected value of this ran-
domized solutionA. Recall that the value of a solution
corresponds to the probability that, for a question edge
(q1

i , q2
j ) chosen at random with probability proportional to

its weight, we havea2
j = bij(a1

i ). Notice that althoughq1
i

andq2
j are correlated, each one is uniformly distributed be-

causeQ is regular. Without loss of generality, we assume
removingM disconnects at least as many demand pairs
inside the cubes{C1

l }l∈[n] as inside the cubes{C2
l }l∈[n].

Now we claim that with a high probability over the choice
of a question edge, the cutM has a low cost over edges
incident on the corresponding hypercubes, and disconnects
many demand pairs in the hypercubes. In other words, the
quality of the cut locally is nearly as good as the quality of
the cut globally. In particular, we upper bound the proba-
bility of the following four “bad” events (for a choice of a
question edge(q1

i , q2
j )):

E1 = fewer than half the demand pairs inC1
i are discon-

nected inG \M .

E2 = M contains more than2d+2L hypercube edges inC1
i .

E3 = M contains more than2d+2L hypercube edges inC2
j .

E4 = M contains more than2d/296L+7 cross edges be-
tweenC1

i andC2
j .

First, by our assumption above, removingM disconnects at
leastα ≥ 7/8 fraction of the demand pairs inside the cubes
{C1

l }l∈[n], and thus by Markov’s inequality,Pr[E1] ≤ 1/4.
Next, the cutsetM contains at most2dnL hypercube edges,
thus the expected number of edges inC1

i ∪C2
j that are con-

tained inM is at most2dL, andPr[E2∪E3] ≤ 1/2. Finally,
if c > 0 is sufficiently small,Pr[E4] ≤ ηL296L+7 ≤ η1/2 ≤
1/8, as otherwise the total cost along the corresponding
question-edges(q1

i , q2
j ) (i.e., those for which the cutsetM

contains more than2d/296L+7 cross edges betweenC1
i and

C2
j ) is more than(ηL296L+7) · (2d/296L+7) · (n/η) =

n2dL ≥ c(M). Taking a union bound, we upper bound
the probability that any of the bad events occurs by

Pr[E1 ∪ E2 ∪ E3 ∪ E4] ≤ 7
8
.

In order to lower bound the expected value of the ran-
domized solutionA, we would like to show that if none of
the above bad events happens, then there exists a dimension
a∗ ∈ [d], such that in cubeC1

i this dimensiona∗ has large
influence,I1,i

a∗ , and in cubeC2
j dimensionbij(a∗) has large

influence,I2,j
bij(a∗)

. For the cubeC1
i , if the eventE2 does not

occur, then
∑

a∈[d] I
1,i
a ≤ 8L. If neitherE1 nor E2 occurs,

then we can use Lemma2.3 (with β = 1/2, x = 16L) and
conclude that there exists a dimensiona∗ ∈ [d] such that

I1,i
a∗ ≥ 2−96L/27.

For the sake of analysis, label the connected components
of G \M with distinct integer values. Definef : C1

i → Z
by letting f(v) for u ∈ C1

i be the label of the connected
component ofu, and defineg : C2

j → Z similarly. For
every u ∈ C1

i , if f(u) 6= g(b′ij(u)) then the cross edge
(u, b′ij(u)) must be contained in the cutsetM , and because
we assumed the eventE4 happens, this occurs for at most
2d/296L+7 verticesu ∈ C1

i . Furthermore, by the definition
of f andg, we haveI1,i

a = If
a andI2,j

a = Ig
a . Applying

Lemma2.5to the functionsf andg ◦ b′ij , we conclude that

|If
a−I

g◦b′ij
a | ≤ 2−96L−6 for all dimensionsa ∈ [d]. Finally,

sincebij is just a permutation of the coordinates, for all we

havea ∈ [d], I
g◦b′ij
a = Ig

bij(a). Altogether, we obtain

I2,j
bij(a∗)

≥ I1,i
a∗ − 2−96L−6 ≥ 2−96L/54,

and thus

Pr[A2
j = bij(A1

i )] ≥ Pr[A1
i = a∗, A2

j = bij(a∗)]

≥ 1
8
· I1,i

a∗∑
a∈[d] I

1,i
a

· I2,j
a∗∑

a∈[d] I
2,j
bij(a)

≥ Ω(L−22−96L)

We conclude that the expected value of the randomized
solutionA is

∑

(i,j)∈EQ

w(q1
i , q2

j ) Pr[A2
j = bij(A1

i )] ≥ Ω(L−22−96L) > δ,

where the last inequality holds ifc > 0 is sufficiently small,
and this completes the proof of Lemma2.6.

2.5. Putting it all together

The above reduction from unique2-prover game to
MULTICUT produces a gap ofL(n) = Ω(log 1/(η(n) +
δ(n))). We assumedd(η, δ) ≤ O(log n), and thus the re-
sulting MULTICUT instanceG has sizeN = (n2d)O(1) =
nΘ(1). It follows that in terms of the instance sizeN , the
gap isL(N) = Ω(log 1/(η(NΘ(1)) + δ(NΘ(1)))).

This completes the proof of the part of Theorem1.2 re-
garding theMULTICUT problem, namely, that the Unique
Games Conjecture implies that it is NP-hard to approximate
MULTICUT within the above factorL(N). In fact, the above
proof shows that it is even NP-hard to obtain a(7/8, L(N))-
bicriteria approximation.



Note that the number of demand pairs isk = n2d−1 =
nΘ(1), and thus the hardness of approximation factor is
similar when expressed in terms ofk as well. Note also
that all edge weights in theMULTICUT instance constructed
above are bounded by a polynomial in the size of the graph.
Therefore, via a standard reduction, a similar hardness re-
sult holds for the unweightedMULTICUT problem as well.

3. Hardness of approximatingSPARSEST-CUT

In this section we prove the part of Theorem1.2regard-
ing the Sparsest-Cut problem. The proof follows immedi-
ately from the next lemma in conjunction with the hardness
of bicriteria approximation ofMULTICUT (from the previ-
ous section).

Lemma 3.1. Let 0 < α < 1 be a constant. If there ex-
ists a polynomial-time algorithm forSPARSEST-CUT that
produces a cut whose value is within factorρ ≥ 1 of the
minimum, then there is a polynomial time algorithm that
computes an(α, 2ρ

1−α )-bicriteria approximation forMUL-
TICUT.

Proof. Fix 0 < α < 1, and supposeA is a polynomial-time
algorithm for SPARSEST-CUT that produces a cut whose
value is within factorρ ≥ 1 of the minimum. Now sup-
pose we are given an input graphG = (V,E) andk demand
pairs{si, ti}k

i=1. We may assume without loss of generality
that everysi is connected (inG) to its correspondingti. Let
cmin andcmax be the smallest and largest edge costs inG,
and letn = |V |.

We now describe the bicriteria approximation algorithm
for MULTICUT. For every valueC ∈ [cmin, n2cmax] that
is a power of2, execute a procedure that we will describe
momentarily to compute a cutsetMC ⊆ E, and report,
from all these cutsetsMC whose removal disconnects at
leastαk demand pairs, the one of least cost. For a given
valueC > 0, the procedure starts withMC = ∅, and then
iteratively “augments”MC as follows: Take a connected
componentS of G \ MC , apply algorithmA to G[S] (the
subgraph induced onS and all the demand pairs that lie in-
sideS), and if the resulting cutsetES has value (inG[S])
at most ρ

1−α · C
k , then add the edgesES to MC . Here,

the value (ratio of cost to demands cut) ofES is defined as
bS = c(ES)/|DS |, whereDS is the collection of demand
pairs that lie inG[S] and get disconnected (inG[S]) when
ES is removed. Proceed with the iterations until for every
connected componentS in G \MC we havebS > ρ

1−α
C
k ,

at which point the procedure returns the cutsetMC .
This algorithm clearly runs in polynomial time. To ana-

lyze its performance, we first claim that for every valueC,
the cutsetMC returned by the above procedure has sparsest-
cut value (ratio of cost to demand disconnected, inG) at

most ρ
1−α

C
k . Indeed, suppose the procedure performst aug-

mentation iterations. Denote bySi the connected compo-
nentS that is cut at iterationi ∈ [t], byESi the correspond-
ing cutset output byA, and byDSi

the corresponding set
of demand pairs that get disconnected. Clearly,MC is the
disjoint unionE1 ∪ · · · ∪Et, and it is easy to verify that the
collectionDC of demand pairs cut by the cutsetMC is the
disjoint unionDS1 ∪ · · · ∪DSt

. Thus,

c(MC) =
t∑

i=1

c(ESi
) ≤ ρ

1− α
· C

k

t∑

i=1

|DSi
|

=
ρ

1− α
· C

k
|DC |,

which proves the claim.
For the sake of analysis, fix an optimal multicutM∗ ⊆

E, i.e., a cutset ofG whose removal disconnects all the de-
mand pairs and has the least cost. The sparsest-cut value
of M∗ is b∗ = c(M∗)/k. We will show that if C ∈
[c(M∗), 2c(M∗)], then the above procedure produces a cut-
setMC whose removal disconnects a collectionDC con-
taining |DC | ≥ αk demand pairs; this will complete the
proof of the lemma, because it immediately follows that

c(MC) ≤ ρ

1− α
· C

k
|DC | ≤ ρ

1− α
· 2c(M∗),

and clearlyc(M∗) ∈ [cmin,
(
n
2

) · cmax]. So suppose now
C ∈ [c(M∗), 2c(M∗)] and assume for contradiction that
|DC | < αk. Denote byV1, . . . , Vp ⊆ V the connected
components ofG \ MC , and letDj contain the demand
pairs that lie insideVj . It is easy to see that

∑p
j=1 |Dj | =

k − |DC | > (1 − α)k. Similarly, let M∗
j be the collec-

tion of edges inM∗ that lie insideVj . Then c(M∗) ≥∑p
j=1 c(M∗

j ). Notice that, in every induced graphG[Vj ],
the edges ofM∗

j form a cutset (ofG[Vj ]) that cuts all the
demand pairs inDj . Using the stopping condition of the
procedure, and sinceA provides an approximation within
factor ρ, we havec(M∗

j ) ≥ 1
1−α

C
k |Dj | (the inequality is

not strict becauseDj might be empty). We thus derive the
contradiction

c(M∗) ≥
p∑

j=1

c(M∗
j ) ≥ 1

1− α
· C

k

p∑

j=1

|Dj | > c(M∗).

This shows that whenC ∈ [c(M∗), 2c(M∗)], the procedure
stops with a cutsetMC whose removal disconnects|DC | ≥
αk demand pairs, and concludes the proof of the lemma.

4. Hardness of approximating M IN-2CNF≡
DELETION

In this section, we modify the reduction in Section2.1
to obtain a hardness of approximation forM IN-2CNF≡



DELETION. In particular, we reduce theMULTICUT in-
stance obtained in Section2.1to M IN-2CNF≡ DELETION,
such that a solution to the latter gives aMULTICUT of the
same cost in the former.

The M IN-2CNF≡ DELETION instance contains2d−1n
variables, one for each demand pair(u, u). In particular,
for every demand pair(u, u) ∈ D, we associate the literal
xu with u and the literalxu = ¬xu with u. For every edge
e = (u, v) in the graphG there is a clause(xu ≡ xv) whose
weight is equal to the edge-weightwe.

The following lemma is immediate from the construc-
tion and implies an analog of Lemma2.6for M IN-2CNF≡
DELETION.

Lemma 4.1. Given an assignmentS of costW to the above
instance ofM IN-2CNF≡ DELETION, we can construct a
solution of costW to theMULTICUT instanceG.

Proof. Let M be the set of edges(u, v) for whichS(xu) 6=
S(xv). ThenM corresponds to the clauses that are not sat-
isfied byS and has weightW . The lemma follows from
observing thatM is indeed a multicut—S is constant over
connected components inG \M , and for any demand pair
(u, u), S(xu) 6= S(xu).

We now give an analog of Lemma2.1.

Lemma 4.2. If there is a solutionA for the unique2-prover
gameGQ such that the total weight of the satisfied questions
is at least1 − η, then there exists an assignmentS for the
aboveM IN-2CNF≡ DELETION instance such thatc(S) ≤
2d+1n.

Proof. Given the solutionA for GQ, we construct an as-
signmentS as follows. For every questionqp

i and for every
vertexu in the corresponding hypercubeCp

i , defineS(xu)
to be theAp

i -th bit of u, i.e.,S(xu) = uAp
i
. Note that this is

a valid assignment, i.e.,S(xu) = 1− S(xu) for all vertices
u, asuAp

i
= 1− uAp

i
.

We bound the cost of the solution by first analyz-
ing the clauses corresponding to hypercube edges in the
correspondingMULTICUT instance. Consider unsatisfied
clauses containing both variables in the same hypercubeCp

i ,
and note that the hypercube edges corresponding to these
clauses form a dimension-Ap

i cut in the cubeCp
i . Therefore,

the total weight of these clauses is at most(2d−1)(2n) =
2dn.

Finally, consider an unsatisfied clause(xu ≡ xv) cor-
responding to vertices in different hypercubesC1

i andC2
j .

ThenS(xu) 6= S(xv) implies thatuA1
i

= vbij(A1
i ) 6= vA2

j
,

or, bij(A1
i ) 6= A2

j . There are at most2d such clauses for
each question pair not satisfied by the solutionA. There-
fore, the total weight of such clauses is at most2d n

η η =
2dn.

The lemma follows from adding the two costs.

Lemmas4.1 and4.2 along with Lemma2.6 imply the
part of Theorem1.2regardingM IN-2CNF≡ DELETION.

5. Concluding remarks

Several important questions are left open. First, one
would like to eliminate the dependence on the Unique
Games Conjecture, and obtain a “standard” hardness of ap-
proximation result. Yet another challenge is to improve the
hardness factor. ForMULTICUT, the Ω(log n) integrality
ratio lower bound of [1] suggests that the inapproximability
bound may be improved. In particular,(log n)c hardness
for a constantc > 1/2 will separate the approximability
of MULTICUT from that ofSPARSEST-CUT (in light of the
recent approximation due to [2]).

The main bottleneck to improving the hardness factor
lies in Lemma2.3, which in turn crucially depends on
Lemma2.4, due to [18]. These bounds are tight in gen-
eral, as shown by the tribes function [9]. However, in our
context, in the reduction to the (non-bicriteria)MULTICUT

problem, one may additionally assume thatf is odd, that
is, f(u) 6= f(u) for all inputsu (because a multicut should
separate all the antipodal demand pairs). Even with this
additional assumption, ourΩ(log log n) bound cannot be
improved substantially, as demonstrated by the following
variant of the tribes function [24]: Partition the variables
u1, . . . , ud into subsets of sizelog d − 2 log log d each; the
output is the value of the first unanimous subset (under
an arbitrary ordering), oru1 if no unanimous tribe exists.
This function is clearly odd, yet all variables have influ-
ence at mostO( log2 d

d ) and the total influence isO(log d).
For Lemma2.3, this function leads to a cutsetM with
β = 1, such that forx =

∑
a IM

a = O(log d) we have
maxa IM

a ≤ 2−Ω(x).
A third challenge is to obtain hardness of approximation

results for the uniform-demand case of theSPARSEST-CUT

problem or for theBALANCED-CUT problem. Our results
do not apply to this special but important case; in particular,
if a 2-prover system has a low-cost balanced cut, then the
corresponding graph on hypercubes would have a low-cost
balanced cut regardless of the value of the2-prover game.
Alternatively, of course, one might improve the approxima-
tion algorithms for any of these problems.
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mations to sparsest cut. InProceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 102–
111, 2005.

[12] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Sey-
mour, and M. Yannakakis. The complexity of multiterminal
cuts.SIAM Journal on Computing, 23(4):864–894, 1994.

[13] E. Demaine and N. Immorlica. Correlation clustering with
partial information. InProceedings of the 6th International
Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), pages 1–13, 2003.

[14] D. Emanuel and A. Fiat. Correlation clustering—
minimizing disagreements on arbitrary weighted graphs. In
Proceedings of 11th Annual European Symposium on Algo-
rithms, pages 208–220, 2003.

[15] U. Feige and D. Reichman. On systems of linear equa-
tions with two variables per equation. InProceedings
of the 7th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (AP-
PROX), pages 117–127, 2004.

[16] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate
max-flow min-(multi)cut theorems and their applications.
SIAM Journal on Computing, 25(2):235–251, 1996.
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A. Regularity of the Unique Games instance

Proof of Lemma1.5. Given a unique 2-prover gameQ, we
describe how to convert it to a regular game while preserv-
ing its completeness and soundness. First we claim that
we can assume that the ratio between the maximum weight
maxe we and the minimum weightmine we is bounded by
n3. This is because we can remove all edges with weight
less than 1

n3 maxe we from the graph, changing the sound-
ness and completeness parameters by at most1

n . By a sim-
ilar argument, we can assume that all weights in the graph
are integral multiples oft = 1

n2 mine we.
Now we convertQ to a regular graphQ′ as follows. For

each proverp ∈ {1, 2} and questionqp
i , form W (p, i)/t



verticesqp
i (1), · · · , qp

i (W (p, i)/t), whereW (p, i) is the to-
tal weight of all the edges incident onqp

i . For every pair of
vertices(q1

i , q2
j ), connected by an edgee in Q, we form an

edge betweenq1
i (x) andq2

j (y), for all possible values ofx
andy, with weightwe

t
W (1,i)

t
W (2,j) .

Note that the total weight of all the edges remains the
same as before. Each new vertexq1

i (x) has total weight∑
e we

t
W (1,i)

t
W (2,j)

W (2,j)
t = t, where the sum is over all

edgese incident onq1
i . Therefore, the graph is regular. Fur-

thermore, the number of vertices increases by a factor of at
mostn5.

It only remains to show that the soundness and complete-
ness parameters are preserved. To see this, note that any
solution on the original graphQ can be transformed to a
solution of the same value onQ′, by picking the same an-
swer for every vertexqp

i (x) in Q′ as the answer picked for
qp
i in Q. Likewise, consider a solution inQ′. Note that the

answers for the questionsqp
i (x) with different values ofx

must all be the same, because all these questions are con-
nected to identical sets of vertices, with the same weights.
Therefore, the solution inQ that picks the same answer for
qp
i as the answer forqp

i (x) in Q′ has the same weight as the
given solution inQ′.

Thus for every solution inQ, there is a solution of the
same weight inQ′ and vice versa. This proves that the two
games have exactly the same soundness and completeness
parameters.


