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Abstract: We define quantum expanders in a natural way. We give two constructions of
quantum expanders, both based on classical expander constructions. The first construction
is algebraic, and is based on the construction of Cayley Ramanujan graphs over the group
PGL(2,q) given by Lubotzky, Philips and Sarnak [29]. The second construction is combi-
natorial, and is based on a quantum variant of the Zig-Zag product introduced by Reingold,
Vadhan and Wigderson [37]. Both constructions are of constant degree, and the second one
is explicit.

Using another construction of quantum expanders by Ambainis and Smith [6], we char-
acterize the complexity of comparing and estimating quantum entropies. Specifically, we
consider the following task: given two mixed states, each given by a quantum circuit
generating it, decide which mixed state has more entropy. We show that this problem is
QSZK—complete (where QSZK is the class of languages having a zero-knowledge quan-
tum interactive protocol). This problem is very well motivated from a physical point of
view. Our proof follows the classical proof structure that the entropy difference problem is
SZK-complete, but crucially depends on the use of quantum expanders.
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1 Introduction

Expander graphs are graphs of low degree and high connectivity. There are several ways to measure
the quality of expansion in a graph. One such way measures set expansion: given a not-too-large subset
of the vertices S, it measures the size of the set I'(S) of neighbors of S, relative to |S|. Another way is
(Rényi) entropic expansion: given a distribution 7 on the vertices of the graph, it measures the amount
of (Rényi) entropy added in 7' = Gn. This is closely related to measuring the algebraic expansion given
by the spectral gap of the adjacency matrix of the graph. See [22] for an excellent survey on the subject.

Pinsker [35] was the first to observe that constant degree random graphs have almost-optimal set ex-
pansion. Finding explicitly such a graph turned out to be a major challenge. One line of research focused
on the algebraic measure of expansion, and this led to a series of explicit constructions based on alge-
braic structures, e. g., [30, 14, 23]. This line of research culminated by the works of Lubotzky, Philips
and Sarnak [29], Margulis [31] and Morgenstern [32] who explicitly constructed Ramanujan graphs,
i.e., D—-regular graphs achieving spectral gap of 1 — 2@. Friedman [13] showed that random graphs
are “almost Ramanujan” and Alon and Boppana (see [34]) showed Ramanujan graphs have almost the
best possible algebraic expansion. Several works [12, 3, 2, 24] showed intimate connections between
set expansion and algebraic expansion. We refer the reader, again, to the excellent survey paper [22].

The algebraic definition of expansion views a regular graph G = (V,E) as a linear operator on a
Hilbert space V of dimension |V|. In this view an element v € V is identified with a basis vector |v) €V,
and a distribution 7 on V corresponds to the vector |7) =Y, cy m(v)|v). The action of G on V is the
action of the normalized adjacency matrix A : V — V, where the normalization factor is the degree of G,
and therefore A maps probability distributions to probability distributions. Furthermore, this mapping
corresponds to taking a random walk on G. Specifically, say one takes a random walk on G starting at
time O with the distribution 7y on V. Then, the distribution on the vertices at time k is A*|7). Viewing
G as a linear operator allows one to consider the action of A on arbitrary vectors in V, not necessarily
corresponding to distributions over V. While these vectors have no combinatorial interpretation, they
are crucial for understanding the spectrum of A, e. g., because all of A’s non-trivial eigenvectors are such
vectors.

To summarize: a D-regular expander G = (V,E) is a linear transformation A : V — 'V that can be
implemented by a classical circuit and maps probability distributions to probability distributions. It is a
good expander if it has a large spectral gap and a small degree.

We now want to extend this definition to linear operators that map quantum states to quantum states.
A general quantum state is a density matrix, which is a trace 1, positive semidefinite operator, i. €., some
p =Y W)y, with0 < p, <1,Y p, =1 and {y, } being some orthonormal basis of V. Notice that
peL(V) o Hom(V,V). An admissible quantum transformation E : L(V) — L('V) is any transformation
that can be implemented by a quantum circuit (with unitary operators and measurements). As it turns out
admissible quantum operators map density matrices to density matrices (see, e. g., the books [33, 26]).

In analogy to classical regular expanders, we work with admissible quantum operators E : L(V) —
L(V) for which [ = ﬁ is an eigenvector with eigenvalue 1, i.e., E(I) = I. We say E has a 1 — A spectral

gap if all the other singular values of E are smaller than A. This is analogous to the way regular, directed
expanders are defined, where the regularity implies that the largest eigenvalue is 1, and furthermore this
eigenvalue is obtained with the normalized all-ones vector (that corresponds to the uniform distribution).
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The spectral gap requires that all other singular values are bounded by A. We therefore define,

Definition 1.1. An admissible superoperator E : L(V) — L(V) is A-expanding if:

e E(I) =T and the eigenspace of eigenvalue 1 has dimension 1.

e For any B € L(V) orthogonal to [ it holds that || E(B) ||, <4 || B| .

The orthogonality in the above definition is with respect to the Hilbert-Schmidt inner product, i.e.,
Tr(B'T) = 0. The norm is the one induced by this inner product, i.e., || B||, = Tr(BB).

A crucial property of classical expanders is that they achieve a large spectral gap using only a small
degree. The notion of degree is natural when considering graphs, but may seem unnatural for algebraic
entities such as linear operators. Here we propose the following notion of degree:

Definition 1.2. An admissible superoperator E : L(V) — L(V) is D-regular if E = Y9 | E;, where
for each d € [D], E4(X) = UyX U, for some unitary transformation Uy over V.

This definition generalizes the classical one. Any D-regular graph can be thought of as a sum of
D permutations, and each permutation corresponds to a unitary transformation. In fact many classical
expander constructions explicitly use this property, e. g., [37, 9].

However, the definition is intuitive in a more basic sense. Unitary transformations (or classically,
permutations) are those transformations that do not change the entropy of a state at all. An operator has
small degree if it can never add much entropy to the state it acts upon. Specifically, a degree D operator
can never add more than log(D) entropy. Such a view is almost explicit in the work of Capalbo et al. [9],
where they view expanders as entropy conductors.

We thus define:

Definition 1.3. An admissible superoperator E : L(V) — L(V) is a (dim(V),D, 1) quantum expander if
E is D-regular and A—expanding. A quantum expander is explicit if E can be implemented by a quantum
circuit of size polynomial in log(dim('V)).

We sometimes omit the dimension and say that E is a (D, A) quantum expander.

This definition implies that D-regular quantum expanders can never add more than log(D) entropy
to the state they act on, but always add entropy to states that are far away from the completely-mixed
state. This definition can be generalized to superoperators that can be expressed as the sum of D Kraus
operators, but for simplicity we work with Definition 1.3. A similar definition was independently given
by Hastings [19].

1.1 Quantum expander constructions

In this paper we give two quantum expander constructions. We give a brief review of all the currently
known constructions in the order in which the appeared. All of the constructions are essentially based
on classical expanders, with a twist allowing them to work in the quantum setting as well.

The first construction was already implicit in the work of Ambainis and Smith [6] on state random-
ization:
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Theorem 1.4 ([6]). For every A > 0, there exists an explicit (N,0 < ) ,I) quantum expander.

Their quantum expander is based on a Cayley expander over the Abelian group Z5. The main draw-
back of Cayley graphs over Abelian groups is that [27, 4] showed that such an approach cannot yield
constant degree expanders. Indeed, this is reflected in the log> N term in Theorem 1.4. There are con-
stant degree, Ramanujan Cayley graphs, i.e., Cayley graphs that achieve the best possible relationship
between the degree and the spectral gap, and in fact the construction in [29] is such, but they are built
over non-Abelian groups.

In order to work with general groups, we describe (in Section 3.2) a natural way to lift a Cayley
graph G = (V,E) into a corresponding quantum superoperator 7. However, the analysis shows that
the spectral gap of T is 0, and more specifically, T has |V| eigenspaces each of dimension |V|, with
eigenvalues = (M =1,...,A4y)), where A is the spectrum of the Cayley graph.

Our first construction starts with the constant degree Ramanujan expander presented in [29]. This
expander is a Cayley graph over the non-Abelian group PGL(2,q). We build from it a quantum expander
as follows: we take two steps on the classical expander graph (by applying the superoperator 7" twice),
with a basis change between the two steps. The basis change is a carefully chosen refinement of the
Fourier transform that maps the standard basis |g) to the basis of the irreducible, invariant subspaces
of PGL(2,q). Intuitively, in the Abelian case this basis change corresponds to dealing with both the
bit and the phase degrees of freedom, and is similar to the construction of quantum error correcting
codes by first applying a classical code in the standard basis and then in the Fourier basis. However, this
intuition is not as clear in the non-Abelian case. Furthermore, in the non-Abelian case not every Fourier
transform ensures that the construction works. In this work we single out a natural algebraic property we
need from the underlying group that is sufficient for the existence of a good basis change, and we prove
that PGL(2, g) has this property. This results in a construction of a (D = O(T%),I) quantum expander.

We describe this construction in detail in Section 3.

This construction is not explicit in the sense that it uses the Fourier transform over PGL(2,¢), which
is not known to have an efficient implementation (see [28] for a non-trivial, but still not fast enough,
algorithm). We mention that there are also explicit, constant degree (non-Ramanujan) Cayley expanders
over the symmetric group S, and the alternating group A, [25]. Also, there is an efficient implementation
of the Fourier transform over S, [7]. We do not know, however, whether S, (or A,)) respect our additional
property.

Following the publication of this construction (given in [8]), Hastings [20] showed, using elegant
techniques, that quantum expanders cannot be better than Ramanujan, i.e., cannot have spectral gap

better than 1 —2 \/L?. Hastings also showed that taking D random unitaries gives an almost-Ramanujan
expander. This settles the parameters that can be achieved with a non-explicit construction. However,
Hastings’ work does not give an explicit construction, because a random unitary is a highly non-explicit
object.

The second construction presented in the paper adapts the classical Zig-Zag construction [37] to the
quantum world. The construction is iterative, starts with a good quantum expander of constant size (that
is found with a brute force search), and then builds quantum expanders for larger spaces by repeatedly
applying tensoring (which makes the space larger at the expense of the spectral gap), squaring (that

improves the spectral gap at the expense of the degree) and a Zig-Zag operation that reduces the degree
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back to that of the constant-size expander. We again work by lifting the classical operators working
over V to quantum operators working over L(V), and we similarly adapt the analysis. The main issue
is generalizing and analyzing the Zig-Zag product. Remarkably, this translation works smoothly and
gives the desired quantum expanders with almost the same proof applied over L(V) rather than V. The
construction gives explicit, constant degree quantum expanders with constant gap. We describe this
construction in detail in Section 4.

Two other explicit constructions [18] and [16] were published shortly after our work. In [16] it is
shown how to twist the expander of Margulis [30] to the quantum setting. In [18] it is shown how to
convert any classical Cayley expander to a quantum expander, provided the underlying group has an
efficient quantum Fourier transform and a large irreducible representation. Applying this recipe to the
Cayley expanders over S, of [25] results in another construction of explicit, constant degree quantum
expanders. One advantage of our explicit construction is that it achieves a much better relation between
the spectral gap and the degree compared to that of the other explicit constructions [30, 18].

The Zig-Zag construction we describe in this paper gives a natural, iterative quantum expander with
parameters that are as good as our first construction. However, the Zig-Zag construction is explicit
whereas the first construction is not yet explicit (because we do not have an efficient implementation
for the Fourier transform of PGL(2,q)). We nevertheless decided to include the first construction in
the paper. First, we believe it describes a natural approach, and this can be seen from the various other
quantum expander constructions that are based on Cayley graphs. Also, the first construction is appeal-
ing in that it has only two stages, and each stage naturally corresponds to a well-known Cayley graph.
Finally, and more importantly, in the classical setting there are algebraic constructions of Ramanujan
expanders (as opposed to combinatorial constructions). Therefore, we believe our first construction has
the potential of being improved to a construction of a quantum Ramanujan expander.

1.2 Applications of quantum expanders

Classical expanders have become well-known and fundamental objects in mathematics and computer
science. This is due to the many applications these objects have found and to the intimate relations
they have with other central notions in computational complexity. We refer the reader (again) to the
survey paper of [22] for a partial list of applications. However, while quantum expanders are a natural
generalization of classical expanders, it is yet to be seen whether they are as useful as their classical
counterparts.

Quantum expanders have been defined only recently. Thus far, the following short list of applications
have been identified.

e Quantum one-time pads. Ambainis and Smith [6] used (implicitly) quantum expanders to con-
struct short quantum one-time pads. Loosely speaking, they showed how two parties sharing a
random bit string of length n+ O(logn) can communicate an n qubit state such that any eaves-
dropper cannot learn much about the transmitted state. A subsequent work [11] showed how to
remove the O(logn) term.

e Hastings [19] gave an application from physics. Using quantum expanders, he showed that there
exist gapped one-dimensional systems for which the entropy between a given subvolume and the
rest of the system is exponential in the correlation length.
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e Recently, Hastings and Harrow [21] used specialized quantum expanders (called tensor product
expanders) to approximate 7-designs as well as to attack a certain open question regarding the
Solovay-Kitaev gate approximation.

o In this work we use the quantum expanders constructed by Ambainis and Smith [6] in order to
show the problem Quantum Entropy Difference problem (QED) is QSZK-complete.

Let us now elaborate on the last application.

Watrous [43] defined the complexity class of quantum statistical zero knowledge languages (QSZK).
QSZK is the class of all languages that have a quantum interactive proof system, along with an efficient
simulator. The simulator produces transcripts that, for inputs in the language, are statistically close to the
correct ones (for the precise details see [43, 44]). Watrous defined the Quantum State Distinguishability
promise problem (QSDy, g):

Input: Quantum circuits Qg, Q.
Accept: If || 7o, — 70, ||, > B-
Reject: If || 7o, — T, ||, < .

where the notation 7y denotes the mixed state obtained by running the quantum circuit Q on the initial
state |0") and tracing out the non-output qubits,! and ||A||, = Tr|A| is the quantum analogue of the
classical ¢;-norm (and so in particular || p; — p; ||,, is the quantum analogue of the classical variational
distance of two probability distributions).

In [43], Watrous showed QSD, g is complete for honest-verifier-QSZK (QSZKyy) when 0 < o <
B? < 1. He further showed that QSZKjy;y is closed under complement, that any problem in QSZKyy has
a 2-message proof system and a 3-message public-coin proof system and also that QSZK C PSPACE.
Subsequently, in [44], he showed that QSZKgy = QSZK.

The above results have classical analogues. However, in the classical setting there is another canon-
ical complete problem, the Entropy Difference problem (ED). There is a natural quantum analogue to
ED, the Quantum Entropy Difference problem (QED), that we now define:

Input: Quantum circuits Qgp, Q;.
Accept: If S(tg,) — S(7g,) > 3.

Reject: If S(1p,) —S(7g,) > 5.

—_

where S(p) is the Von-Neumann entropy of the mixed state p (see Section 2). The problem QED is
very natural from a physical point of view. It corresponds to the following task: we are given two mixed
states, each given by a quantum circuit generating it, and we are asked to decide which mixed state has
more entropy. This problem is, in particular, as hard as> approximating the amount of entropy in a given
mixed state (when again the mixed state is given by a circuit generating it).

We prove that QED is QSZK—complete. The proof follows the classical intuition which uses classical
expanders to convert high entropy states to the completely mixed state, while keeping low-entropy states

"Here we assume that a quantum circuit also designates a set of output qubits.
2Under Turing reductions.
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entropy-deficient. Indeed, our proof is an adaptation of the classical proof to quantum entropies, but it
crucially depends on the use of quantum expanders replacing the classical expanders used in the classical
proof.

The proof requires an explicit quantum expander with a near-optimal entropy loss (see Section 5.1).
As it turns out, the only expander that we currently know of that satisfies this property is the Ambainis-
Smith expander. (Indeed it is of non-constant degree but this turns out to be irrelevant in this case.)
Using it we obtain that QED is QSZK-complete.

This result implies that it is not likely that one can estimate quantum entropies in BQP. Furthermore,
a common way of measuring the amount of entanglement between registers A and B in a pure state
is by the Von-Neumann entropy of Trz(|y)(y|) [36]. Now suppose we are given two circuits Q; and
0>, both acting on the same initial pure-state |0"), and we want to know which circuit produces more
entanglement between A and B. Our result shows that this problem is QSZK—complete. As before, this
also shows that the problem of estimating the amount of entanglement between two registers in a given
pure-state is QSZK-hard under Turing reductions and hence unlikely to be in BQP.

The paper is organized as follows. After the preliminaries (Section 2), we give our first construction,
and its analysis, in Section 3. In Section 4 we describe the Zig-Zag construction. Finally, Section 5 is
devoted to proving the completeness of QED in QSZK.

2 Preliminaries

For a Hilbert space V, L(V) is the set of linear operators over V. L(V) is also a Hilbert space, equipped
with the inner-product (A, B) = Tr(A"B) and with the norm || A ||, = Tr(ATA).

Let P = (p1,...,pm) be a vector with real values p; > 0. The Shannon entropy of P is H(P) =

" pilg é The min-entropy of P is H.(P) = min; g i The Rényi entropy of P is Hy(P) =g #(P),
where Col(P) = ¥ p? is the collision probability of the distribution defined by Col(P) = Pr, ,[x = y]
when x,y are sampled independently from P.

We have analogous definitions for density matrices. For a density matrix p, let & = (¢, ..., 0y)
be its set of eigenvalues. Since p is a density matrix, all these eigenvalues are non-negative and their
sum is 1. Thus we can view o as a classical probability distribution. The Von-Neumann entropy of p
is S(p) = H(a). The min-entropy of p is H.(p) = Hw(t). The Rényi entropy of p is Hy(p) = Ha ().
The analogue of the collision probability is simply Tr(p?) = ¥, & = ||p||3. We remark that for any p,
He(p) < Ha(p) < S(p).

The statistical difference between two classical distributions P = (py,...,pn) and Q = (q1,---,qm)
is SD(P,Q) = A Y™, |pi—qil, i. e., half the £; norm of P — Q. This is generalized to the quantum setting
by defining the trace-norm of a matrix X € L(V) to be || X ||, = Tr(|X|), where |X| = VXXT, and by
defining the trace distance between density matrices p and o tobe 1 {|p — o ..

3 Quantum expanders from non-Abelian Cayley graphs

The construction we present in this section constructs a quantum expander by first taking a step on a
non-Abelian Cayley expander followed by a Fourier transform and another step on the non-Abelian
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Cayley expander. It is similar in spirit to the construction of good quantum error correcting codes given
by first encoding the input word with a good classical code, then applying a Fourier transform and then
encoding it again with a classical code. Technically the analysis here is more complicated because we
use a Fourier transform over a non-Abelian group.

We begin this section with some necessary representation theory background. We then describe the
construction and we conclude with its analysis.

3.1 Representation theory background

We survey some basic elements of representation theory. For complete accounts, consult the books of
Serre [41] or Fulton and Harris [17].

A representation p of a finite group G is a homomorphism p : G — GL(V), where V is a (finite-
dimensional) vector space over C and GL(V) denotes the group of invertible linear operators on V.
Fixing a basis for V, each p(g) may be realized as a d x d matrix over C, where d is the dimension
of V. As p is a homomorphism, for any g,k € G, p(gh) = p(g)p(h) (the second product being matrix
multiplication). The dimension d,, of the representation p is d, the dimension of V.

We say that two representations p; : G — GL(V) and p; : G — GL(W) of a group G are isomorphic
when there is a linear isomorphism of the two vector spaces ¢ : V — W so that for all g € G, ¢p;(g) =
P2(g)¢. In this case, we write p; = p.

We say that a subspace W C 'V is an invariant subspace of a representation p : G — GL(V) if
p(g)W C W for all g € G. The zero subspace and the subspace V are always invariant. If no nonzero
proper subspaces are invariant, the representation is said to be irreducible. Up to isomorphism, a finite
group has a finite number of irreducible representations; we let G denote this collection of representa-
tions.

If p : G — GL(V) is a representation, V = V; &V, and each V; is an invariant subspace of p, then
p(g) defines two linear representations p; : G — GL(V;) such that p(g) = p1(g) + p2(g). We then write
p = p1 b p2. Any representation p can be written as p = p1 P p2 P ... B pr, where each p; is irreducible.
In particular, there is a basis in which every matrix p(g) is block diagonal, the ith block corresponding
to the ith representation in the decomposition. While this decomposition is not, in general, unique, the
number of times a given irreducible representation appears in this decomposition (up to isomorphism)
depends only on the original representation p.

The group algebra C|G] of a group G is a vector space of dimension |G| over C, with an orthonormal
basis {|g) | ¢ € G} and multiplication Yag|g) - Lby |g') = Xg o aghy |- g'). This algebra is in bijection
with the set {f : G — C} with the bijection being f — Y., f(g)|g). The inner product in C[G] translates
to the familiar inner product (f,h) = ¥, f(g)h(g). The regular representation pres : G — GL(C[G]) is
defined by preg(s) : |g) — |sg), for any g € G. Notice that preg(ss) is a permutation matrix for any s € G.

An interesting fact about the regular representation is that it contains every irreducible representation

of G. In particular, if py, ..., pi are the irreducible representations of G with dimensions dj,, ..., dp,, then

preg = dplpl D--- @dpkpka

that is, the regular representation contains each irreducible representation p exactly d, times.
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The Fourier transform over G is the unitary transformation F defined by:

Flo = )Y X le () 1P, ),

peG l<17/<dp

where p; j(g) is the (i, j)’th entry of p(g) in some predefined basis. In general one has freedom in
choosing a basis for each invariant subspace. In this paper we choose an arbitrary basis, and later fix
this choice by using special properties of the group G.

Fact 3.1. The Fourier transform block-diagonalizes the regular representation, i. e.,

Fpeg(@F =) Y pir(@)lp,i)(p.i' |-

pEG 1<i,i’,j<d,

This means that when we represent preg(g) in the basis given by F, we get a block diagonal matrix,
with an invariant subspace of dimension d, for each p € G, and with p(g) as the values of that block.
For completeness we give a proof of this fact.

Proof.

Foa@F = ¥ ¥ X Vo e Wlp.i) (00

xGGp7pl€§1§i7j§dp; lgi’,j’gdp/ ‘ |

T D SR MR A S e (PN Y N

XEG p p1cG1<ij<dp: 151, j'<d,y |G| 1<k<d,

= X Y Y, pirlg (mipkj )Ip,w)(p,w\

p.p'€G 1<ij<dp; 1<i!,j'<dy 1<k<dj G| xeG

= Z Z Z plk pp’5kl ,j"p7i7j><p/7i/7j/‘

pp’eé\lﬁiyjfdp; lgil:j/ﬁdp/ 1<k<dp

= Y Y pu@lp.iip.il

peG1<ii,j<dp

In the above analysis we have used the second orthogonality relation (see, e. g., [17]):

Jdd
NP Y pijlx = 8p,p/0:10j -

6l

xeG

3.2 The construction

Fix an arbitrary (Abelian or non-Abelian) group G of order N, and a subset I" of group elements closed
under inverse. The Cayley graph associated with I, C(G,T’), is a graph over N vertices, each corre-
sponding to an element of G. This graph contains an edge (g1,g2) iff g = g,y for some y € I'. The
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graph C(G,T) is a regular undirected graph of degree |I'|. Rather than thinking of the C(G,T") graph
as a graph, we prefer to think of it as a linear operator over C[G]. We associate the graph with the
operator that is its normalized adjacency matrix M (the normalization is such that the operator norm is
1). This operator is thus M = ﬁ Yyerec [x7)(x|? Notice that M = C(G,T') is a symmetric operator,
and therefore diagonalizes with real eigenvalues. We denote by A; > ... > Ay the eigenvalues of M with
orthonormal eigenvectors v, ...,vy. As M is regular, we have A; = 1 and A = max;~ A < 1.

We define the superoperator T : L(C[G]) — L(C[G]) that corresponds to taking one step on the
Cayley graph. The superoperator has a register R of dimension |I'| that is 1n1t1ahzed to ’0> It does the
following: it first applies a transformation H on register R that maps |0) to \F Yyer|y) (getting into

the density matrix \F\ P ® Yy yer|V) (Y- Then, it applies the unitary transformation Z : |g, ) — [g7,7)-
This transformation is a permutation over the standard basis, and hence unitary. It is also classically
easy to compute in both directions, and therefore has an efficient quantum circuit. Finally, it discards
the register R. Algebraically, T (p) = Trg[ Z(I® H)(p ® |0)(0)) (I @ H)Z" ].

We also need the notion of a good basis change. We say a unitary transformation U is a good basis
change if for any g; # e (where e denotes the identity element of G) and any g5 it holds that

Tr(Upreg(gl)UTpreg(gZ)) = 0 (3.1)

The quantum expander is then defined to be:

E(p) =T(UT(p)U")

Lemma 3.2. If U is a good basis change then E is a (|T|?, 1) quantum expander with A defined as
above.

The fact that E is |T'|>-regular is immediate and the rest of this section is devoted to proving the
claimed spectral gap.
Lubotzky et al. [29] showed a constant degree Ramanujan Cayley graph over PGL(2,q), with de-

gree |I'| and second-largest eigenvalue A satisfying v < We show how to efficiently modify the

\F\
Fourier transform for PGL(2 q) to a good basis change (this is done in Section 3.5). Plugging this to

Lemma 3.2 we get a ()L ,A) quantum expander. The construction is not explicit as it is yet unknown

how to efficiently implement the quantum Fourier transform for PGL(2, g).

3.3 The analysis

First, we fully identify the spectrum of 7. We view any eigenvector v; € CV (of M) as an element of C[G],
[vi) = X, vi(g)|g). We also define a linear transformation Diag : C[G] — L(C[G]) by Diag|g) = [g)(g|-
Denote

Mig = preg(g)(Diag|Vt sz )| gx) (x

xeG

3In our definition the generators act from the right. Sometimes the Cayley graph is defined with left action, i.e., g; is
connected to g, iff g; = yg,. However, note that if we define the invertible linear transformation P that maps the basis vector
|g) to the basis vector ‘g 1), then PMP~! = PMP maps x to ﬁ Yy | Ip~1) = ‘—11_‘ Yy ly1x) = ﬁ Y.y |7x) and so the right

action is M and the left action is PMP~!, and therefore they are similar and in particular have the same spectrum.
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Then it is easy to see that these matrices form the set of eigenvectors of 7'

Lemma 3.3. The vectors {llig | i=1,...,N,g € G} form an orthonormal basis of L(C[G)), and p; 4 is
an eigenvector of T with eigenvalue A;.

Proof. Notice that T(|g1)(g2]) = TrR[m Zyl,yzz‘gla?'1><82772|zw T \Z lg17){g27]. Now,

T(Wig) = Zv, 8xY) (XY = Preg(g m Zvl ) |xy) (x|
= Preg g)Diag Zvi x)M |x)) = preg(g)D|ag(M|Vi>) = Aipreg(g)Diag(‘viw = }Li.ui,g'
To see orthonormality notice that for g1 # g2, Tr(li g, ,LL; 4,) = 0 simply because for all (k,¢) for at

least one of the matrices the (k, ¢) entry is zero. If g = g» = g then Tr(/.ti’guljg) = (vi|vi) = ;7. As the
number of vectors {{; ;} is N? they form an orthonormal basis for L(C[G]). O

We decompose the space L(C[G]) to three perpendicular spaces:

Span {4 . }
w = Span{ui[g€Gg# e}
pt = Span{y;, |i#1,g€G}
We also denote u!l = Span {; .} +W = Span{u , | g € G}. Notice that T'(ul) = u!l and T (ut) =
L
[T

We claim:
Claim 3.4. If p € W and U is a good basis change then UpU" € ut.

Proof. The set {pres(g) | g € G} is an orthonormal basis for u!l and hence { preg 8)|g€G, g#e}is
an orthonormal basis for W. Therefore, it is enough to verify that Tr(U preg (1)U preg(g2)") = 0 for any
g1 # e and for any g». Since Preg(g2)7 = Preg(g5 '), this follows directly from Property (3.1). O

Thus, intuitively, we have a win-win situation. Suppose we apply E on p. If p is in u* then we show
that the first 7 application shrinks its norm. On the other hand, if p is in W then we show that the first
application of T keeps it unchanged, the basis change maps it to u* and the last T application shrinks
its norm. Indeed, we are now ready to prove Lemma 3.2, namely, that if U is a good basis change then
Eisa (|[? 1) quantum expander:

Proof of Lemma 3.2. Its regularity is clear from the way the superoperator E is defined. It is easy to
check that E(I) = I. Furthermore, fix any X € L(C[G]) that is perpendicular to [ = u; .. Write X =
X+ X+ where X!l e W and X+ € U+, We can write

EX)=T(cll+0c%),

where o/l = UT(XI)U' and 6+ = UT(X)UT. Observe the following. First, T(X!l) € W, so by
Claim 3.4, o/l Lull. Also, T(X!) LT (X ") (since T preserves both p!l and ), and therefore !l Lot
Moreover, by Lemma 3.3 we know T is normal. We later prove:
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Lemma 3.5. Let T be a normal linear operator with eigenspaces Vi, ...,V, and corresponding eigen-
values Ay, ..., A, in descending absolute value. Suppose u and w are vectors such that u € Span{V,,..., "V, }
and w L u (w does not necessarily belong to V). Then

1T (e w))I[3 < A2 [lul[3 + |21 w5
Using the lemma we see that:

=2
I7(c! + o)z <2716V + 10|13
=2 =2 2 2
= 2 NTEIBE+HITEOIE <A |XE+ 271X 5 = 271X 3.

IEX)II3

We are left to prove of Lemma 3.5:

Proof of Lemma 3.5. Let {v j} be an eigenvector basis for T with eigenvalues J; (from the set {A;,...,4,}).
Writing u =Y ;o;v; and w = Bv+Y ; B;v; withv; € Span{V,...,V,} and v € V;, we get:

IT+w)l[E = 1aBy+)8;(a+Bi)vill3 < |4 PIBI* + 22> ) et + By
J J

A PIBP + 122 (Ll os® + 1 B + (ulw) + (wlu)) < A2 [lul 3+ [ A 1wl 3.
J J
O

3.4 A sufficient condition that guarantees a good basis change

So far we have reduced the problem of constructing a quantum expander to that of finding a good Cayley
graph C(G,T") and a good basis change for G. We now concentrate on the problem of finding a good
basis change for a given group G and show that if G respects some general condition then one can
efficiently get a good basis change from G from its Fourier transform.

A basic fact of representation theory states that ) oG dg = |G|. Equivalently, for any group G there

is a bijection between {(p,i,j) lpeG,1<ij< dp} and G. Finding such a natural bijection is a

fundamental problem both in mathematics (where it is equivalent to describing the invariant subspaces

of the regular representation of G) and in computer science (where it is a main step towards implementing

a fast Fourier transform). Indeed, this question was extensively studied. For example, the “Robinson-

Schensted” algorithm [38, 40] is a mapping from pairs (P,T') of standard shapes (a shape corresponds to

an irreducible representation of S, and its dimension is the number of valid fillings of that shape) to S,,.
Here we require more from such a mapping.
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Definition 3.6. Let f be a bijection from {(p7 i,j) | p € G 1<ij< dp} to G. We say that f is product
if for every p € G:

for some functions fi(p,-), f2(p,-) : [dp] = G.

The Robinson-Schensted mapping is not product. However, S,, has a product mapping for n < 6. We
think it is a natural question whether product mappings for S,, exist. For some groups it is easy to find
a product mapping. For example, in any Abelian group all irreducible representations are of dimension
one and so we can define fi(p,i) = e and f2(p,j) = f(p,1,1). Another easy example is the dihedral
group D,, of rotations and reflections of a regular polygon with m sides. Its generators are r, the rotation
element, and s, the reflection element. This group has 2m elements and the defining relations are s> = 1
and srs = r~!. We shall argue this group has a product mapping for odd m (although it is true for even
m as well). The dihedral group has mT_l representations {py} of dimension two and two representations
of dimension one 71,7, (see [41, Section 5.3]). A product mapping in this case can be given by defining
f(p,i,j) as follows:

1 Ifp=1,i=j=1
flp,i,j) = s Ifp=mn,i=j=1 (3.3)
p2=1)+igj Ifp=py

We now show that if G has a product mapping then G has a good basis change:
Lemma 3.7. Let G be a group that has a product mapping f, and let F be the Fourier transform over
. d .. . .
G, that is F |g) = Zp6621§i:j§dp \ /ﬁpt}j(é’) |p.i, j). Define the unitary mapping
S Apsisg) = g 1f(p,i ),

where @y, is a primitive root of unity of order dp, and set U to be the unitary transformation U = SF.
Then U is a good basis change.

Proof. Fix some g; # e and g,. If g» = e then

Tr (Upreg(gl)UTpreg(gZ)) =Tr (Upreg(gl)UT) =Tr (preg(gl>) = 07

where the last equality follows from the assumption that g; # e.
We are left with the case g, # e. By Fact 3.1,

dp
Tr (SFPreg(gl)FTSTpreg(gZ)) = Z Z pi,i’(gl)Tr <2S]p,l,]><p,l/,]}STZ]gzxMx]) :

peG1<ii'<d,

Therefore, it suffices to show that for any p,i,i’ we have Tr (Z;"’:l S|p,i, j)p,i,j|STY,|g2x) <x!> =0.
Fix p € G and i,i' € {1,...,dp}. Since f is product, f(p,i,j) = fi(p,i)- f2(p,j) for some functions
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fi,f2. Denote h; = fi(p,i) and t; = f>(p, j). The sum we need to calculate can be written as:

dp dp

Y. Y o T ([t (et | gox) (x]) Z ”): x| hitj) (hat; | g2x)

j:] X :

dp
= Zcod" (g2|hihi"),

where the last equality is because we get a non-zero value iff x = h;t; and hyt; = g>x, which happens iff
hitj = g5 'ht;, i.e., g2 = hyh; ' However, when g, = hyh; ' we get the sum ij:1 a’c(z,lj_l i Since g, # e,

it follows i # ', hence the expression is zero. O

3.5 PGL(2,q9) has a product bijection

The group PGL(2,¢) is the group of all 2 x 2 invertible matrices over F, modulo the group center. This
group has % irreducible representations of dimension g+ 1, % irreducible representations of dimen-
sion g — 1, 2 irreducible representations of dimension ¢ and 2 irreducible representations of dimension
1 (see [17, Section 5.2] and [1]). We let pjf denote the x’th irreducible representation of dimension d.
We look for a bijection from G to the irreducible representations of G. Our approach is to use a
tower of subgroups, G3 =G > G, =Dy, > Gy =27, > Gy = {e}, with G, and G| defined as follows.

0 -1 0 1
a dihedral subgroup of G with 2g elements, i.e., D,. The first matrix is the reflection, denoted by s, and
the second is the rotation, denoted by r. This group has a cyclic subgroup G| = Z, (the group generated
by 7).
Let T» = {t1,...,t} be a transversal for G, with £ = |G| /|G| = W. For each p € G we let
fi(p,i) € {r1,...,t;} define a coset of Gy, and f>(p, j) € G deﬁne an element in G,. We do that as
follows. The representations of dimension ¢+ 1 take the first 5= (q + 1) cosets:

The group G, is generated by the equivalence classes of < 10 ) and of < b > . This group is

-1 e
ATy = {; igjéﬂq forallx=1,...,%% —1
1 . — .
fz( + ,]) = Ix—1)(g+1)+j forallle,...,%—l,J:1,...,q—|—1

We match them with representations of dimension g — 1:

fl(pfffl,i) = s forallle,...,%,i:1,...,q—1
21

L) =ty forallx=1,..., % j=1,...,4-1

Notice that so far we have covered the first £ (q +1)= T(‘l — 1) — 2 cosets without repetitions.
Two cosets are partially covered with d1mens10n g — 1 representation (in each coset ¢ — 1 elements are
covered). We put the dimension 1 representation into these cosets.

filpl, 1) = s forx=1,2
fHlpe 1) = teyen, forx=1,2
2

THEORY OF COMPUTING 14


http://dx.doi.org/10.4086/toc

QUANTUM EXPANDERS: MOTIVATION AND CONSTRUCTIONS

Finally, we fill all the remaining gaps with dimension g representations. The first two fill the partially
full cosets, and the rest fill each coset in pairs. Notice that here we use the fact that G; < G,. The
function f; returns an element in the traversal set of G| and f] returns an element of G;.

filpd,i) =1 forx=1,2

! (g-3)(g+1) ifj=gq
q N _ T forx=1,2
f2(px. J) { 1 ’%éq*” +j otherwise ’

One can verify that this product mapping is a bijection as desired.

4 The Zig-Zag construction

We now present the second construction. We follow the structure of the iterative construction of Rein-
gold et al. [37]. Their starting point is a good expander of constant size (that can be found by an
exhaustive search). Then, they construct a series of expanders with an increasing number of vertices by
applying a sequence of three basic transformations: tensoring (that squares the number of vertices at the
expense of a worse ratio between the spectral gap and the degree), squaring (that improves the spectral
gap) and Zig-Zag product (that reduces the degree to its original size). These three transformations are
repeated iteratively, resulting in a good constant degree expander over many vertices.

The first two transformations have natural counterparts in the quantum setting. For ease of notation,
we denote by T'(V) the set of superoperators on L(V) (that is, T(V) = L(L(V))). We also denote by
U (V) the set of unitary operators in L(V).

e Squaring: For a superoperator G € T (V) we denote by G? the superoperator given by G*(X) =
G(G(X)) for any X € L(V).

e Tensoring: For superoperators G; € T(V;) and G, € T(V,) we denote by G; ® G, the superop-
erator given by (G ® G2)(X ®Y) = G1(X) ® G2(Y) for any X € L(V;),Y € L(V).

In order to define the quantum Zig-Zag product we first recall the classical Zig-Zag product. We
have two graphs G and G,. The graph G; is Dj—regular graph over N; vertices and the graph G, is
D,—regular graph over N, = D vertices. We first define the replacement product graph. This graph
has V| x V; as its set of vertices. We call the set of vertices {v} x V, the cloud of v. The replacement
product has a copy of G, on each cloud, and also inter-cloud edges between (v,i) and (w, j) if the i’th
neighbor of v is w and the j’th neighbor of w is v in G;. Thus, the replacement product has the same
connected components as the original graph but a much lower degree (D, + 1 instead of D). The Zig-
Zag product graph G;(@G> has the same set of vertices as the replacement product, but has an edge
between x = (v,a) and x’ = (V/,d’) iff in the replacement product graph there is a three step walk from x
to x’ that first takes a cloud edge, then an inter-cloud edge and then again a cloud edge. Thus, the graph
G1@ G, is D3-regular.

We now define the quantum Zig-Zag transformation. Let G; € T'(Hy, ) be an Np—regular operator
and G, € T(Hy,), where Hy denotes the Hilbert space of dimension N. Since G is D;—regular, it can
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be expressed as G (X) = D% Y UdX UdT for some unitaries U, € U(Hy, ). We lift the ensemble {U,} to
a superoperator U € L(Hy, ® Hp, ) defined by:

U(lay®|b)) = Upla)®1b).

We also define G| € T(Hy, ® Hp,) by G1(X) = UXU'. The superoperator G corresponds to the
inter-cloud edges in the replacement product. We are now ready to define the quantum Zig-Zag product.

Definition 4.1. Let G,G; be as above. The Zig-Zag product of G and G, denoted by GI@G,; €
T(Hy, ®Hp, ), is defined to be (G1@G2)X = (12 G,)G1(I® G2)X

Remark 4.2. Notice that formally G;@) G, depends on the Kraus decomposition of G| and the notation
should have reflected this. However, we fix this decomposition once and use this simpler notation.

Finally we explain how to find a base quantum operator H that is a (D%, D, 1) quantum expander. Its
existence follows from the result of Hastings [20]:

Theorem 4.3 ([20]). There exists an integer Dy such that for every D > Dy there exists a (D%,D, 1)
4y/D=1

quantum expander for A = =5

Remark 4.4. Hastings [20] actually shows the stronger result that for any D there exist a (D8, D, (1 +
O(D~'9/1510g D)) 2¥P=1 ZV 1) quantum expander.

We use an exhaustive search over a net S C U(Hps) of unitary matrices to find such a quantum
expander. The set S has the property that for any unitary matrix U € U (Hpys) there exists some Vi € S

such that sup) x| _ H UXUT—VyX VJ H < A. It is not hard to verify that indeed such S exists, with size

depending only on D and A. Moreover, we can find such a set in time depending only on D and A4
Suppose G is a (D%, D, A) quantum expander, G(X) = %ZD U;XU,;'. We denote by G’ the superoperator

G(X)=4Y>2 VUXVU Let X € L(Hps) be orthogonal to I. Then ||G'(X)]| = H Lye VU,XVJ H <
|GX)||+A||X|| <24 X]|. Hence, G’ is a (D}, D, SV —1) quantum expander. This implies that a

brute force search over the net finds a good base superoperator H in time which depends only on D and

A.

Remark 4.5. We can actually get an eigenvalue bound of (1 + €) Lg_] for an arbitrary small € on the
expense of increasing Dy, using the better bound in Remark 4.4.

Given all these ingredients we define an iterative process as in [37], composed of a series of super-
operators. The first two superoperators are G; = H> and G, = H ® H. For every t > 2 we define

G, = (GG ) @H

We claim:

4One way to see this is using the Solovay-Kitaev theorem (see, e. g., [10]). The theorem assures us that, for example, the
set of all the quantum circuits of length O(log 6*1) generated only by Hadamard and Tofolli gates gives an €-net of unitaries.
The accuracy of the net is measured differently in the Solovay-Kitaev theorem, but it can be verified that the accuracy measure
we use here is roughly equivalent.
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Theorem 4.6. For everyt > 0, G, is an explicit (DY ,D? ;) quantum expander with A, = A + O(A?),
where the constant in the O notation is some absolute constant.

Thus, G; is a constant degree, constant gap quantum expander, as desired.

4.1 The analysis
Tensoring and squaring are easy to analyze and the following proposition is immediate from their defi-
nitions.

Proposition 4.7. If G is a (N,D, ) quantum expander then G* is a (N,D*,A?) quantum expander. If
Gy is a (N1,D1,A1) quantum expander and Gy is a (N2,D2, ) quantum expander then G, @ G, is a
(N1 -Na,Dy - Dy,max(Ay,A2)) quantum expander.

We are left to analyze is the quantum Zig-Zag product. We claim:

Theorem 4.8. If G, is a (Ny,D1, A1) quantum expander and G, is a (Dy,Dy, A;) quantum expander then
G1@G, is a (N -Dl,D%, M+A+ 322) quantum expander.

With these two claims, the proof of Theorem 4.6 is identical to the one in [37] and is omitted.
In order to prove Theorem 4.8 we claim:

Proposition 4.9. For any X,Y € L(Hy, ® Hp,) such that X is orthogonal to the identity operator we
have

(Gi1@GX,Y)| < (A, ) [IX (|- [V ],
where f(ll,lz) =N +2~2+2,22.

Theorem 4.8 follows from the proposition, because given X orthogonal to  we let Y = (G1@G»)X
and plug X and Y to the proposition. We see that || (Gi@G2)X || < f(A1,42) || X || as required.

The proof of Proposition 4.9 is an adaptation of the proof in [37]. The main difference is that the
classical proof works over the Hilbert space 'V whereas the quantum proof works over L(V). Remarkably,
the same intuition works in both cases.

Proof of Proposition 4.9. We first decompose the space L(Hy, ® Hp, ) to
wi = Span{6®l~| o< L(iHNl)} and,
wt = Span{c@f |6 €L(Hy,), 1€ L(Hp,), (1.1) :o}.
Next, we write X as X = X/l + X', where X!l € W!l and X+ € W', and similarly Y = Y!l 4 Y. By

definition,
{(G1@G2)X,Y)| = [(Gi(I©Ga) (X! +X5), (10 G) (Y + Y1)

Using linearity and the triangle inequality (and the fact that / ® G, is identity over wlh, we get
(G1@G)xX.Y)| < [GXL. YD) +|(Gix!, (10 Gy ") +
G (T2 G)X YD)+ (Gi(12 Go)X L, (12 Ga)Y ).

In the last three terms we have I ® G, acting on an operator from W+. As expected, when this happens
the quantum expander G shrinks the norm of the operator. Formally,
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Claim 4.10. For any Z € W+ it holds that || (12 G2)Z || < A || Z]|.

Proof. The matrix Z can be written as Z = Y, 6; ® 7;, where each 7; is perpendicular to I and {o;} is an
orthogonal set. Hence,

2

®G2 ’L',

I G2z —‘ ZIIG:®G2 %) | <23§H61®%H =2z

d

To bound the first term, we observe that on inputs from W/ the operator G| mimics the operation of
G with a random seed. Formally,

Claim 4.11. For any A,B € W\l such that (A,T) = 0, it holds that
(GiA,B)| < i [|A|-||BI|.

Proof of Claim 4.11. Since A,B € wll, they can be written as

o 1
A=0QRI=—) o®|i)(i
b, Lol

| )
B=n®1=51;n®ll><l

Moreover, since A is perpendicular to the identity operator, it follows that o is perpendicular to the
identity operator on the space L(Hy, ). This means that applying G| on ¢ will shrinks its norm by at a
factor of least A;.

Considering the inner product

|<G1A,B>|=D1% Y1 ((wiov)) eli) (el ul))

1 Nl
- 5. ZTr( UisU/n’") z><m><ﬂ)‘
1 )
- = YT (UioUn") @ i)l
1]
1
= r(U,c;UT T)
Dy
1 1
— i \< HGH Il =2 llAl- 1B,
~ D ni=
where the inequality follows from the expansion property of G; (and Cauchy-Schwartz). O
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Having the claims we see that

((GI@G)X,Y)| < (pxprM+pxarha+praxda+axarA3) | X |- 1Y ||, “4.1)
[ 1 I 1
where py = HH);HH and gx = HH);—HH, and similarly py = % and gy = HHXYHH‘ Notice that p% +¢q% =

p%, —|—q)2/ = 1. It is easy to see that pxpy,gxqy < 1. Also, by Cauchy-Schwartz, pxqy + pygx < 1.
Therefore, the right hand side of Equation (4.1) is upper bounded by f(A;,42) || X || - || Y ||- O

4.2 Explicitness

A D-regular superoperator is a transformation E(X) = %Zi UX UIT. We said E is explicit if it can be
implemented by an efficient quantum circuit. Now we need a slight refinement of this definition. We say
that E is label-explicit if each U; has an efficient implementation. It can be checked that the squaring,
tensoring and Zig-Zag operations map label-explicit transformations to label-explicit transformations.
Also, our base superoperator is label-explicit (since it is defined over a constant size space). Therefore,
the construction is label-explicit and in particular explicit.

5 The complexity of estimating entropy

In this section we show that the language QED is QSZK—-complete. The proof that QSD < QED is
standard, and is shortly described in Subsection 5.4. The more challenging direction is the proof that
QED is in QSZK, or, equivalently, that QED < QSD, which in the classical case uses extractors.

Some parts of this proof are also standard. We define the problem QEA (Quantum Entropy Approx-
imation) as follows:

Input: Quantum circuit Q, t > 0.
Accept: If S(tg) > 1+ 3.
Reject: If S(7p) <1— 3.

QEA is the problem of comparing the entropy of a given quantum circuit to some known threshold ¢
(whereas QED compares two quantum circuits with unknown entropies). One immediately sees that

max {out;,outy }

QED(Q,01)= \/  [((Qo,t) € QEAy) A ((Q1.1) € QEA)],

t=1

where out; is the number of output qubits of Q;.

A standard classical reduction can be easily adapted to the quantum setting to show that QEA €
QSZK implies that QED € QSZK. We shortly describe this part in Subsection 6. Thus, it is sufficient to
prove that QEA € QSZK. We now focus on this part and the use of quantum expanders in the proof.

The classical reduction from EA to SD (where EA is like QEA but with the input being a classical
circuit) uses extractors. An extractor is a function E : {0,1}" x {0,1} — {0,1}". We say E is a (k,€)
extractor if for every distribution X on {0, 1}" that has k min-entropy the distribution E(X,Uy) obtained
by sampling x € X, y € {0, l}d and outputting E (x,y), is €—close to uniform.
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We begin with the classical intuition why EA reduces to SD. We are given a classical circuit C
and we want to distinguish between the cases the distribution it defines has substantially more than ¢
entropy or substantially less than 7 entropy. First assume that the distribution is flat, i.e., all elements
that have a non-zero probability in the distribution, have equal probability. In such a case we can apply
an extractor on the n output bits of C, hashing it to about ¢ output bits. If the distribution C defines has
high entropy, it also has high min-entropy (because for flat distributions entropy is the same as min-
entropy) and therefore the output of the extractor is close to uniform. If, on the other hand, the entropy
is less than t —d — 1, where d is the extractor’s seed length, then even after applying the extractor the
output distribution has at most r — 1 bits of entropy, and therefore it must be “far away” from uniform.
Hence, we get a reduction to SD.

There are, of course, a few gaps to complete. First, the distribution C defines is not necessarily flat.
This is solved in the classical case by taking many independent copies of the circuit C, which makes
the output distribution “close” to “nearly-flat”. A simple analysis shows that this flattening works also
in the quantum setting (this is Lemma 5.6). Also, we need to amplify the gap we have between 7+ 1/2
and r — 1/2 to a gap larger than d (the seed length). This, again, is solved by taking many independent
copies of C, since S(C®7) = ¢S(C).

This section is organized as follows. We first discuss quantum extractors. We then prove the quantum
flattening lemma and prove that QEA < QSD. This proof uses quantum extractors. Together with the
closure of QSZK under Boolean formula, which is proved in Section 6, we get that QED € QSZK. We
conclude this section with QSD < QED, using a simple quantum adaptation of the classical proof.

5.1 Quantum extractors

Definition 5.1. A superoperator T : L(Hy) — L(Hy) is a (k,d, €) quantum extractor if:
e The superoperator 7T is 2¢—regular.

e For every density matrix p € L(Hy) with Hw(p) > k, it holds that || T(p)—1I|| < &, where

_ 1
I=1r

We say T is explicit if 7 can be implemented by a quantum circuit of size polynomial in log/N. The
entropy loss of T is k+d —log(N).

In the classical world balanced extractors are closely related to expanders (see, e.g., [15]). This
generalizes to the quantum setting. We prove:

Lemma 5.2. Suppose T : L(Hy) — L(Hy) is a (N =2",D =24, 1) quantum expander. Then for
everyt >0, T is also a (k=n—t,d,€) quantum extractor with € = 2'/>. ). The entropy loss of T is
k+d—n=d-t.

Proof. The superoperator 7 has a one dimensional eigenspace W; with eigenvalue 1, spanned by the

unit eigenvector v = ﬁl . Our input p is a density matrix and therefore (p|vi) = -~ Tr(p) = L. In

i w g
particular p — [ = p — ﬁvl is perpendicular to Wj. It follows that
- = =2 - =2
IT(p) =113 = IT(p—D)ll3 < Alp =113 < A7[[pl[3,
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where we have used
- - - 1
lo =115 =1lpl3 — 2 Tr(Ip) + [|][5 = HPH%—N <|lplf3

Plugging H>(p) > Hw(p) > k=n—1t we see that || T (p) — 1|3 < A2, Using Cauchy-Schwartz

IT(p) 1|, < VNIIT(p)~Tl2<e.

We conclude that

Corollary 5.3. For every n,t,€ > 0 there exists an explicit (n—t,d, €) quantum extractor T : L(Hpn) —
L(Hon), where

e d=2(t+2log(L))+ O(1) and the entropy loss is t +4log(1) + O(1), or,
e d=1+2log(1)+2log(n) + O(1) and the entropy loss is 21og(n) +2log(1) + O(1).

The first bound on d is achieved using the Zig-Zag quantum expander of Theorem 4.6, and the second
bound is achieved using the explicit construction of Ambainis and Smith [6] cited in Theorem 1.4.

A natural generalization of Definition 5.1 is for a superoperator T : L(Hy) — L(Hy,) where N = 2"
is not necessarily equal to M = 2™, That is, the superoperator 7 may map a large Hilbert space Hy to a
much smaller Hilbert space ;. In the classical case this corresponds to hashing a large universe {0, 1}"
to a much smaller universe {0, 1}". We suspect that unlike the classical case, no non-trivial unbalanced
quantum extractors exist when M < N/2. Specifically, we suspect that all (k,d,€) quantum extractors
T :L(Hyn) — L(Hp) withk =n—1 and d < n— 1 must have error € close to 1.

5.2 A flattening lemma

We first recall the classical flattening lemma that appears, e. g., in [42, Section 3.4.3].

Lemma 5.4. Let A = (A, ..., Ay) be a distribution, q a positive integer, and @A denote the distribution
composed of q independent copies of A. Suppose that for all i, A; > A. Then for every € > 0, the
distribution Q@11 is €-close to some distribution & such that

Ho(0) > gH() ~ 0 (log@ qlog@) .

One can write a similar lemma for density matrices.

Lemma 5.5. Let p be a density matrix whose eigenvalues are A = (Ay,...,Ay) and let q a positive
integer. Suppose that for all i, A; > A. Then for every € > 0, p©9 is e-close to some density matrix &
such that

H.(0) > 4S(p) — O <log<i> qlog@) .
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Lemma 5.5 follows directly from Lemma 5.4 since S(p) = H(A) and the vector of eigenvalues of
p®4 equals ®IA.

We also need a way to deal with density matrices that may have arbitrary small eigenvalues. This
is really just a technicality as extremely small eigenvalues hardly affect the Von-Neumann entropy.
Formally we claim

Lemma 5.6. Let p be a density matrix of rank 2™, € > 0 and q a positive integer. Then p®9 is 2e-close
to a density matrix ©, such that

1.(0) > 48(p) ~ 0 (m+1og(1) )y [gtos ().

For the proof we need the following fact:

Fact 5.7 (Fannes’ inequality, [33, Box 11.2]). Suppose p and ¢ are density matrices over a Hilbert space
of dimension d. Suppose further that the trace distance between them satisfies t = |[|[p — o ||, < 1/e.
Then

IS(p) —S(o)| <t(Ind —Int).
Proof of Lemma 5.6. Let p = Y2, A;|v;)(vi| be the spectral decomposition of p. Let A = {i | Ai < q%}

denote the set of indices of “light” eigenvalues and define pg = ¥.;z4 A: [vi) (vi|. Observe that

_ _bPo
P~ Tilpo)
The eigenvalues of the density matrix py/Tr(pp) are all at least ﬁ. Hence, by Lemma 5.5,
Po/ Tr(po))®4 is e-close to a density matrix ¢ such that

BN o)

—

H.(6) 2 q-((po/ Te(po))) — O (m+Tog(1) ) [glog().

Notice that
®q Po  \sq Po
H Tr(po) tr Tr(po) tr
and therefore || p®? — o ||,, < 2€. By Fact 5.7, |S(Tr‘(’go)) —S(p)| < §(m+log(%)). Thus,

H.(0) > 4-5(p) ~ O (m+Tog(1) )y qlos(}).

53 QEA <QSD

We follow the outline of the classical reduction given in the beginning of the section. Let (Q,7) be an
input to QEA, where Q is a quantum circuit with n input qubits and m output qubits. We look at the
circuit Q%7 (for some g = poly(n) to be specified later). We let E be a (gt,d,€) quantum extractor
operating on gm qubits, where d = g(m —t) + 2log(1) +log(gm) + O(1) and & = 1/poly(n) will be
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fixed later. Such an extractor exists by Corollary 5.3. Let § = E (Tg ) and let I = 279]. The output of
the reduction is (€,17).
To prove the correctness of the reduction, consider first a NO-instance (Q,¢) € QEAy. This implies

S(&) < S(ty?) +d < q(t—0.5)+d.

We fix the parameters such that

1
% > 210g(g) +log(gm)+O(1) (5.1
and then S(&) < gm — 1. However, for any density matrix p over n qubits and € > 0, if S(p) < (1—¢)n

then ||p — 51||, > € — 5. It follows that || & — 7| > L — 5 T B as required.

2n* gm
Now assume (Q,7) € QEAy. By Lemma 5.6, ‘Eg s 2e-close to a density matrix ¢ such that

H.(0)

Y

45(p) 0 (m-+105(1)) | qtog ()

> qlt+ )~ Olm+1og(1), [atos( )

and, || & _thr <|E(o) —I~Htr+28.
We set the parameters such that H..(0) is larger than gz, that is,

1
> O(m+1log(1)),/qlog(2). (52)

N

&I, <3e L.

We set ¢ and £~ large enough (but still polynomial in n, e. g., € = ©(m~ ') and ¢ = ®(m*)) such that
the constraints (5.1) and (5.2) are satisfied and also that o < [32. Watrous [43] showed QSD,, g € QSZK
for these values of «, 3.

Now, by the quantum extractor property we obtain H o1 H o« < € Therefore,

54 QSD < QED

Watrous [43] showed that QSD,, g is QSZK-complete, even with parameters & =w(n) and § =1 —w(n)
where n is the size of the input and w(n) is a function smaller than any inverse polynomial in . Assume
we are given an input to QSDy, g, namely, two quantum circuits Qp, Q1. Construct two quantum circuits
Zy and Z; as follows. The circuit Z; outputs 1 [0)(0| ® Tg, + % |1)(1| ® Tg,. The circuit Zy is the same as
Z, except that the first register is traced out. The output of Zj is therefore %TQO + %TQI.

First consider the case Tg, and 7p, are & close to each other, i. e., Qg and Q1 produce almost the same
mixed state. In this case Tz, ~ Tg, whereas 7z, =~ (% [0)(0] + [1)(1]) ® Tg,, and therefore 77, has about
one bit of entropy more than 7z,. On the other hand, when 7y, and 7y, are very far from each other,
Tz, = 370, + T, contains about the same amount of entropy as 7z, = 1 0)(0| ® g, + 1 [1){1| ® 7o, .

Formally, to estimate the entropy of 7z, one can use the joint-entropy theorem (see [33, Theorem
11.8]) to get that S(tz,) = 1 + 1 (S(tg,) +S(7o,)). When 7o, and Ty, are a close to each other, Fannes’
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inequality (Fact 5.7) tells us that S(7z,) is close to 3(S(tg,) + S(7g,)) < S(7z,) — 0.9. When 7, and
Tp, are B far from each other, there exists a measurement that distinguishes the two with probability
(14 B)/2 and by [5, Lemma 3.2],

S(tz,) > %[S(TQO) +S(1p,)] + <1 —-H (1;[3)) > §(17,) —0.1.

The reduction from QSD,, g to QED is therefore as follows. Given an input (Q0,01) to QSDg g
we reduce it to the pair of circuits (Oy = Zy ® Zy @ C,01 = Z; ® Z;) where C outputs a qubit in the
completely mixed state. If (Qo, Q1) € (QSDy g)y then

$(t0,) = S(tzwzec) = 28(7z) +1 < 28(7) — 0.8 < $(70, ),
whereas if (Qo, Q1) € (QSDy g)n then

S(TOO) = S(TZ()@Z()@C) = 25(1’20) +1> ZS(TZI ) +0.8 = S(Tol) +0.8.

6 Closure under Boolean formula

We saw that one can express QED as a formula in QEA, namely,

max {out;,outy }

QED(Qy, Q1) = V [((Qo,?) € QEAy) A ((Q1,1) € QEAy)],

=1

where out; is the number of output qubits of Q;. In the classical setting it is known that SZK is closed
under Boolean formula. We now briefly explain why the same holds for QSZK. See [39] for more
details.

We first define what closure under Boolean formula means. For a promise problem I1, the charac-
teristic function of Il is the map yp : {0,1}" — {0,1,%} given by

1 ifxelly
xn(x) =< 0 ifxelly
* otherwise

A partial assignment to variables vy,...,vy is a k-tuple @ = (ay,...,a;) € {0, 1,*}]‘. For a propositional
formula ¢ on variables vy, ..., v, the evaluation ¢ (a) is recursively defined as follows:

1 if¢(a)=1and y(@) =1

vi(@) = ai, (pAy)(@)=q 0 if¢(@=0o0ry(@=0
* otherwise
1 ifg(a)=0 1 if¢(a)=1ory(a) =
(—¢)(@)=4q 0 if¢@=1 (sVy)(@=4q 0 if¢(a)=0andy(@) =0
* otherwise * otherwise
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Notice that, e. g., 0 Ax = 0 even though one of the inputs is “undefined” in II. This is because the
sentence a A 0 = 0 no matter what a is. For any promise problem I1, we define a new promise problem
®(IT), with m instances of IT as input, as follows:

CI)(H)Y = {(d)axla“'?xm) ‘ ¢(XH(XI)7--~7XH(Xm)) = 1}
q)(H)N = {((P,X],...,Xm> ‘ ¢(XH<XI)7--~7XH<Xm)) :O}

If one can solve ®(IT) than once can solve any Boolean formula over IT. Thus, the main claim is:
Theorem 6.1. For any promise problem I1 € QSZK, ®(I1) € OSZK.

The proof is identical to the classical proof in [39] except for straightforward adaptations (replacing
the variational distance with the trace distance, using the closure of QSZK under complement, using the
polarization lemma for QSD, etc.) and we sketch it here for completeness.

Proof. Let Il be any promise problem in QSZK. Since QSD is QSZK-complete, IT reduces to QSD.
This induces a reduction from ®(IT) to ®(QSD). Thus, it suffice to show that ®(QSD) reduces to QSD,
which we show next. g

Claim 6.2. ®(QSD) reduces to QSD.

Proof. Let w = (¢,(X],X]),...,(X",X")) be an instance of ®(QSD). By applying De Morgan’s
Laws, we may assume that the only negations in ¢ are applied directly to the variables. (Note that
De Morgan’s Laws still hold in our extended Boolean algebra.) By the polarization lemma [43] and
by the closure of QSZK under complement [43], we can construct in polynomial time pairs of circuits
(Yo, Y1),..., (Y vy and (Z},2)),...,(Z5, Z") such that:

o 1
(Xy,X{) €QSDy = H Ty~ T |, 2 1— 3’¢‘ and HTZ, i g 39|
o 1
(X.,X!) € QSDy = Hr _1, and Hr —ty | 215
01 N Y, Y 3|¢’ Z, Z 3|¢|

The reduction outputs the pair of circuits (BuildCircuit(¢,0), BuildCircuit(¢, 1)), where BuildCir-
cuit is the following recursive procedure:

BuildCircuit(y, b)
1. If y = v;, output Y.

2. if y = —w;, output Zé.
3. If y = { Vv u, output BuildCircuit(&, ») ® BuildCircuit(u, b).

4.1f w = { Au, output %(BuildCircuit(¢,0) ® BuildCircuit(i,b)) + 1 (BuildCircuit({,1) ®
BuildCircuit(u, 1 —b)).
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Notice that the number of recursive calls equals the number of sub-formula of ¢, and therefore the
procedure runs in time polynomial in |y| and |X/], i. e., polynomial in its input length.
We now turn to proving correctness by induction. For a sub-formula § of ¢, let

All) = % || (BuildCircuit({,0) — BuildCircuit(£, 1)) [0) ||,

We claim:

Claim 6.3. Leta = (XQSD(X(} X1, 7XQSD(X6"7X1m))' For every sub-formula y of ¢, we have:

oy 4
Z) — 4

Proof. By induction on the sub-formula of ¢. It holds for atomic sub-formula by the properties of the
Y’s and Z’s.

e Thecase y =V L.

If y(a) = 1 then either {(a) =1 or u(a) = 1. W.lo.g., say {(a) = 1. In this case we have for
any i € {0, 1} that BuildCircuit({,i) = € (BuildCircuit(y,i)), where € is the quantum operation
tracing out the registers associated with the (t sub-formula. Thus, by induction,

AW M@ 2 1- 30 =1
If y(a) =0, then both {(a) = u(a) =0.
Using
[po@pr—co@o0ill, < [[pPo@p1—00®@p1l+Co®p1—0Co@ 0|,
= llpo—00llx+ P11 =01l
we get

_ Il el

AY) S AQ)+AK) = 30+ 3057 S 357

e The case y = { A . Using

2

11 1
5 H 5[P0®60+P1®61]*§[P0®61+p1®60]

tr

1 1
= ZH(PO*Pl)@@(Go*Gl)Hn = lePO*PllhrHGo*GlHtra

we get A(y) = A(Q) - Au).
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If w(a) = 1, then, by induction,

RN e\ gt vl
A("’)Z< 3\¢|>< 3|¢|>>1 T

If y(a) = 0, then, w.l.o.g., say {(a) = 0. By induction

A) = A)-Aw) <AQ) < 1ol < ¥
3¢~ 39|
O
Let A, = BuildCircuit(¢,b). By the above claim if w € ®(QSD)y then || 14, — T4, ||, > 2/3 and if
w € ®(QSD)y then || T4, — T4, ||, < 1/3. Thus the claim follows. O
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