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Abstract

We show that disjointness requires randomized communicationΩ
(

n1/(k+1)

22k

)

in the general

k-party number-on-the-forehead model of complexity. The previous best lower bound fork ≥
3was logn

k−1 . Our results give a separation between nondeterministic and randomized multiparty
number-on-the-forehead communication complexity for up to k = log log n−O(log log log n)
many players. Also by a reduction of Beame, Pitassi, and Segerlind, these results imply subex-
ponential lower bounds on the size of proofs needed to refutecertain unsatisfiable CNFs in a
broad class of proof systems, including tree-like Lovász-Schrijver proofs.

1 Introduction

Since its introduction thirty years ago [Abe78, Yao79], communication complexity has become a
key concept in complexity theory and theoretical computer science in general. Part of its appeal is
that it has applications to many different computational models, for example to formula size and
circuit depth, proof complexity, branching programs, VLSIdesign, and time-space trade-offs for
Turing machines (see [KN97] for more details).

One area of communication complexity which still holds manymysteries is thek-party “number-
on-the-forehead” model, originally introduced by Chandra, Furst, and Lipton [CFL83]. In this
model,k parties wish to compute a functionf : ({−1,+1}n)k → {−1, 1}. On input(x1, . . . , xk),
the ith player receives(x1, . . . , xi−1, xi+1, . . . , xk). That is, playeri has knowledge of the entire
input exceptfor the stringxi, which figuratively can be thought of as sitting on his forehead. The
players communicate by writing messages “on a blackboard,”so that all players see each mes-
sage. The large overlap in the player’s knowledge is part of what makes showing lower bounds
in this model so difficult. This difficulty, however, is rewarded by the richness and strength of
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consequences of such lower bounds: for example, by results of [HG91, BT94], showing a super-
polylogarithmic lower bound on an explicit function for polylogarithmic many players would
give an explicit function outside of the classACC0 — that is, a function which requires super-
polynomial size constant-depth circuits using AND, OR, NOT, and modulom gates.

While showing such bounds remains a challenging open problem, we do know of explicit func-
tions which require large communication in this model forΘ(log n) many players. Babai, Nisan,
and Szegedy [BNS89] showed that the inner product function generalized tok-parties requires ran-
domized communicationΩ(n/4k), and for other explicit functions slightly larger bounds ofsize
Ω(n/2k) are known [FG05]. These lower bounds are all achieved using the discrepancy method, a
very general technique which gives lower bounds even on randomized models with error probabil-
ity close to1/2, and also on nondeterministic communication complexity.

For some basic functions, however, there is a huge gap in our knowledge. One example is
the disjointness function, or equivalently its complement, set intersection. In the set intersection
problem, the goal of the players is to determine if there is anindex j such that every stringxi

has a−1 in positionj, where here and throughout the paper we interpret−1 as ‘true.’ The best
known protocol has costO(k2n log(n)/2k) [Gro94]. On the other hand, the best lower bound in
the general number-on-the-forehead model islogn

k−1
, for k ≥ 3 [Tes02, BPSW06]. Fork = 2 tight

bounds are known ofΘ(n) for randomized communication complexity [KS87] andΘ(
√
n) for

quantum communication complexity [Raz03, AA05].
A major obstacle toward proving better lower bounds on set intersection is that it has a low cost

nondeterministic protocol. In case there is a position where all players have a−1, with O(logn)
bits a prover can send the name of this position and the players can then verify this is the case.
Since the discrepancy method is also a lower bound on nondeterministic complexity, it is limited
to logarithmic lower bounds for set intersection. Even in the two-party case, determining the
complexity of set intersection in the randomized and quantum models was a long-standing open
problem, in part for this reason.

In the multiparty case, the discrepancy method is the only technique which has been used
to show lower bounds on the general randomized model of number-on-the-forehead complexity.
Although other two-party methods can be generalized to the multiparty number-on-the-forehead
model, they can become very difficult to handle. One source ofthis difficulty is that, whereas in
the two party case we can nicely represent the functionf(x, y) as a matrix, in the multiparty case
we deal with higher dimensional tensors. This makes many of the linear algebraic tools so useful
in the two-party case inapplicable or at least much more involved. For example, while matrix rank
is a staple lower bound technique for deterministic two-party complexity, in the tensor case even
basic questions like the maximum rank of an× n× n tensor remain open.

Besides this technical challenge, additional motivation to studying the number-on-the-forehead
complexity of disjointness was given by Beame, Pitassi, andSegerlind [BPS06], who showed
that lower bounds on disjointness imply lower bounds on a very general class of proof systems,
including cutting planes and Lovász-Schrijver proof systems.

We show that disjointness requires randomized communicationΩ
(

n1/(k+1)

22k

)

in the generalk-

party number-on-the-forehead model. This separates nondeterministic and randomized multiparty
number-on-the-forehead complexity for up tok = log log n−O(log log log n) many players. Also
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by the work of [BPS06] this implies subexponential lower bounds on the size of proofs needed
to refute certain unsatisfiable formulas by tree-like proofs in Lovász-Schrijver and more powerful
proof systems.

Chattopadhyay and Ada [CA08] have independently obtained similar bounds on disjointness
using similar techniques.

1.1 Related work

For restricted models of computation, bounds are known which are stronger than ours. Wigder-
son showed that for one-way three-party number-on-the-forehead protocols, disjointness requires
communicationΩ(n1/2) (this result appears in [BHK01]). More recently, Viola and Wigderson
[VW07] extended this approach to show a bound ofΩ(n1/(k−1)/kO(k)) on the complexity of one-
way k-party protocols computing disjointness. These results actually show bounds on a pointer
jumping function which reduces to disjointness.

Beame, Pitassi, Segerlind, and Wigderson [BPSW06] deviseda method based on a direct prod-
uct theorem to show aΩ(n1/3) bound on the complexity of three-party disjointness in a model
stronger than one-way where the first player speaks once, andthen the two remaining players
interact arbitrarily.

Following up on our work, David, Pitassi, and Viola [DPV08] gave an explicit function which
separates nondeterministic and randomized number-on-the-forehead communication complexity
for up toΩ(log n) players. They are also able, for any constantc to give a function computable
in AC0 which separates them for up toc log log n players. Note that disjointness can be computed
in AC0, but that our bounds are already trivial forlog log n players. Even more recently, Beame
and Huynh-Ngoc [BHN08] have shown a bound of2Ω(

√
logn/

√
k)−k on thek-party number-on-the-

forehead complexity of disjointness. This bound remains non-trivial for up toΘ(log1/3 n) many
players, but is not as strong as our bound for few players.

1.2 Overview of techniques

There is a natural correspondence between functionsf : ({−1,+1}n)k → {−1, 1} and signk-
tensors. Sometimes it is more convenient to consider the function form, and sometimes, like when
discussing norms, it is more convenient to consider tensors.

Our proof combines two ingredients. The first of these is the notion of an approximation norm.
For a normΦ, and a sign tensorA, theapproximation normassociated toΦ andA, denotedΦα(A),
is the smallestΦ norm of an element ‘close’ toA. Hereα quantifies the term ‘close.’

Approximation norms turn out to be quite useful for showing lower bounds on randomized
and quantum communication complexity [Kla01, Raz03, LS07]. Razborov, for example, uses the
approximation trace norm to prove a tight lower bound on the quantum communication complexity
of set intersection.

We use what we call thecylinder intersection norm, denotedµ. This norm can be seen as
a multiparty generalization of a quantity used in Lemma 3.1 of Klauck [Kla01]. As a correct
deterministic protocol partitions the communication matrix into rectangles on which the func-
tion is constant, analogously a correct deterministic number-on-the-forehead protocol decomposes
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the communication tensor into cylinder intersections on which the function is constant. Roughly
speaking,µ(A) measures how efficientlyA can be written as a sum of cylinder intersections. In
this way, ifA has low communication complexity, it will also have lowµ norm. We defer formal
definitions to Section 3.

We denote the approximate version of the cylinder intersection norm byµα where1 ≤ α < ∞
represents the measure of approximation. This measure provides a lower bound on randomized
communication complexity in the number-on-the-forehead model. The limiting caseµ∞(A) turns
out to be exactly the usual discrepancy method. For boundedα we obtain a technique which is
strictly stronger than the discrepancy method.

Following [LMSS07, LS07], to show lower bounds onµα(A), we write it in terms of the dual
normµ∗. By definition of a dual norm, we have

µ(B) = max
Q

〈B,Q〉
µ∗(Q)

. (1)

This “max” formulation ofµ is often more convenient for showing lower bounds. The dual norm
µ∗ is closely related to discrepancy with respect to the uniform distribution, so we can use existing
techniques to upper boundµ∗(Q).

This formulation ofµ also gives a way to writeµα in terms of a maximization quantity.

µα(A) = max
Q

(1 + α)|〈A,Q〉|+ (1− α)‖Q‖1
2µ∗(Q)

. (2)

All one needs for showing lower bounds is that the left hand side is at least as large as the right
hand side. This can be shown quite simply using Equation 1 andelementary inequalities and was
noted, for example, by Razborov in the context of the approximation trace norm. The fact that
equality holds here requires the use of linear programming duality or a separation theorem for
convex bodies and seems to be less well known.

As the dual normµ∗ is essentially discrepancy with respect to the uniform distribution, the
approximationµ norm can be seen as an extension of discrepancy in another way. Instead of
proving that the tensor of interestA has small discrepancy, it is enough to prove that there is a
tensorQ which has small discrepancy and has large correlation withA, relative to‖Q‖1. This is
why this method is calledgeneralized discrepancyin [CA08].

To find a good witness tensorQ, we use ideas from a second line of research. While the
norm framework of Equation (2) provides a nice approach to lower bound communication com-
plexity, it gives no hint about how to choose a good witnessQ—in general a difficult problem.
Works by Sherstov [She07, She08] and Shi and Zhu [SZ07] in thetwo-party case, and Chat-
topadhyay [Cha07] in the multiparty case provide an elegantway to choose a good witness for a
general class of matrices and tensors. These works look at block composed functions of the form
f ◦ gn(x1, . . . , xk) = f(g(x1

1, . . . , x
1
k), . . . , g(x

n
1 , . . . , x

n
k)). Notice that set intersection is a block

composed function wheref = ORn is the OR function onn bits andg = ANDk is thek-player
AND function on one bit. Sherstov [She07] first showed that wheng(x, i) = xi, the discrepancy
of a block composed function could be bounded in terms of the threshold degree off , the mini-
mum degree of a polynomial which agrees in sign withf on the Boolean cube. Building on this
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result, Chattopadhyay showed an analogous statement in thenumber-on-the-forehead case for an
appropriately generalized multiparty functiong.

Sherstov and independently Shi-Zhu showed that the approximate trace norm of a block com-
posed function could be lower bounded in terms of the approximate degree off , again provided
that the inner functiong satisfies certain technical conditions. Theµ norm provides bounds at least
as large as the trace norm method [LS07], thus these works also lower boundµα. In this paper,
we take the natural step to show thatµα of a block composed multiparty function can be lower
bounded in terms of the approximate degree off , for a particular multiparty inner functiong such
that the composed functionf ◦ gn can be embedded in the set intersection problem.

1.3 Consequences for Lov́asz-Schrijver proof systems and beyond

Beame, Pitassi, and Segerlind [BPS06] show that bounds on multiparty disjointness imply strong
lower bounds on the size of refutations of certain unsatisfiable formulas, for a very general class of
proof systems. We now introduce and motivate the study of these proof systems. Formal definitions
and the implications of our results will be given in Section 6.2.

The fact that linear and semidefinite programs can be solved with high precision in polynomial
time is a remarkable algorithmic achievment. It is thus interesting to ask how these algorithms
fare when pitted against NP-complete problems. For many NP-complete problems, there is a
very natural approach to solving them via linear or semidefinite programming: namely, we first
formulate the problem as optimizing a convex function over the Boolean cube, i.e. with variables
subject to the quadratic constraintsx2

i = xi. We then relax these quadratic constraints to linear or
semidefinite constraints to obtain a program which can be solved in polynomial time. For example,
a linear relaxation ofx2

i = xi may simply be the constraint0 ≤ xi ≤ 1. In the case of vertex cover,
for example, such a simple relaxation already gives a linearprogram with approximation ratio
of 2. Semidefinite constraints are in general more complicated, but there are several “automatic”
ways of generating valid semidefinite inequalities—that is, semidefinite inequalities satisfied by all
Boolean solutions of the original problem. Perhaps the bestknown of these is the Lovász-Schrijver
“lift and project” method [LS91]. The seminal0.878-approximation algorithm for MAXCUT of
Goemans and Williamson [GW95] can be obtained by relaxing the natural Boolean programming
problem with semidefinite constraints obtained by one application of the Lovász-Schrijver method.

As these techniques have given impressive results in approximation algorithms, it is natural to
ask if they can also be used to efficiently obtain exact solutions. Namely, how many inequalities
need to be added in general until all fractional optima are eliminated and only true Boolean optima
remain?

One way to address this question is to consider proof systemswith derivation rules based on
linear programming or the Lovász-Schrijver method. Our particular application will look at the
size of proofs needed to refute unsatisfiable formulas. Given a CNFφ, we can naturally represent
the satisfiability ofφ as the satisfiability of a system of linear inequalities, onefor each clause. For
example, the clausex1 ∨ x4 ∨ ¬x5 would be represented asx1 + x4 + (1 − x5) ≥ 1. Suppose
thatφ is unsatisfiable. Then consider a proof system in which the “axioms” are the inequalities
obtained from the clauses ofφ, and the goal is to derive the contradiction0 ≥ 1. By the results
of [BPS06], our results on disjointness imply that there areunsatisfiable formulas such that any
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refutation obtained by generating new inequalities by the Lovász-Schrijver method in a “tree-like”
way requires size2n

Ω(1)
. For a standard formulation of the Lovász-Schrijver method known as

LS+, bounds of size2Ω(n) for tree-like proofs have already been shown by very different methods
[IK06].

The advantage of the number-on-the-forehead communication complexity approach, however,
is that it can also be applied to much more powerful proof systems which are currently untouchable
by other methods. Beame, Pitassi, and Segerlind [BPS06] show that lower bounds onk-party com-
munication complexity of disjointness give lower bounds onthe size of tree-like proofs of certain
unsatisfiable CNFsφ(x), where the derivation rule is as follows: from inequalitiesf, g of degree
k − 1 in x, we are allowed to conclude a degreek − 1 inequalityh if every Boolean assignment
to x which satisfiesf andg also satisfiesh. Lovász-Schrijver proof systems are a special case of
such degree-2 systems. Our bounds on disjointness imply theexistence of unsatisfiable formulas
whose refutation requires subexponential size tree-like degree-k proofs, for any constantk. 1 The
aforementioned lower bounds onLS+ proof systems strongly rely on specific properties of the
Lovász-Schrijver operator—showing superpolynomial bounds on the size of tree-like proofs in the
more general degree-k model was previously open even in the casek = 2.

2 Preliminaries and notation

We let [n] = {1, . . . , n}. For multiparty communication complexity it is convenientto work with
tensors, the generalization of matrices to higher dimensions. If an element of a tensorA is speci-
fied byk indices, we say thatA is ak-tensor. For ak-tensorA of dimensions(n1, . . . , nk) we write
size(A) = n1 · · ·nk. A tensor for which all entries are in{−1, 1} we call a sign tensor. For a func-
tion f : X1× . . .×Xk → {−1, 1}, we define the communication tensor corresponding tof to be a
k-tensorAf whereAf [x1, . . . , xk] = f(x1, . . . , xk). We identifyf with its communication tensor.
For a setZ ⊆ X1 × . . .×Xk we letχ(Z) be its characteristic tensor whereχ(Z)[x1, . . . , xk] = 1
if (x1, . . . , xk) ∈ Z and is0 otherwise.

For a sign tensorA, we denote byDk(A) the deterministic communication complexity of
A in the k-party number-on-the-forehead model. The public coin randomized communication
complexity with error boundǫ ≥ 0 is denotedRk

ǫ (A). We drop the superscript when the number
of players is clear from context.

We use the shorthandA ≥ c to indicate that all of the entries ofA are at leastc. The Hadamard
or entrywise product of two tensorsA andB is denoted byA ◦ B. Their inner product is denoted
〈A,B〉 =

∑

x1,...,xk
A[x1, . . . , xk]B[x1, . . . , xk]. Theℓ1 andℓ∞ norms of a tensorA are‖A‖1 =

∑

x1,...,xk
|A[x1, . . . , xk]| and‖A‖∞ = maxx1,...,xk

|A[x1, . . . , xk]|, respectively.
We also need some basic elements of Fourier analysis. ForS ⊆ [n]we defineχS : {−1,+1}n →

{−1, 1} asχS(x) =
∏

i∈S xi. As theχS form an orthogonal basis, for any functionf : {−1,+1}n →
1The conference version of this paper reported bounds on degree-k proof systems for up tok = log logn −

O(log log logn). As pointed out to us by Paul Beame, however, this is not justified by the reduction of [BPS06],
which requires certain constraints on the size ofk.
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R we have a unique representation

f(x) =
∑

S⊆n

f̂(S)χS(x)

wheref̂(S) = (1/2n)〈f, χS〉, are the Fourier coefficients off . The degree off is the size of the
largest setS for which f̂(S) is nonzero.

3 The Method

In this section we present a method for proving lower bounds on randomized communication
complexity in the number-on-the-forehead model that generalizes and significantly strengthens the
discrepancy method.

3.1 Cylinder intersection norm

In two-party communication complexity, a key role is playedby combinatorial rectangles—subsets
of the formZ1×Z2 whereZ1 is a subset of inputs to Alice andZ2 is a subset of inputs to Bob. The
analogous concept in the number-on-the-forehead model of multiparty communication complexity
is that of a cylinder intersection.

Definition 1 (Cylinder intersection) A subsetZi ⊆ X1 × . . . × Xk is called a cylinder in the
ith dimension if membership inZi does not depend on theith coordinate. That is, for every
(z1, . . . , zi, . . . , zk) ∈ Zi and z′i ∈ Xi it also holds that(z1, . . . , z′i, . . . , zk) ∈ Zi. A setZ is
called a cylinder intersection if it can be expressed asZ = ∩k

i=1Zi where eachZi is a cylinder in
theith dimension.

Cylinder intersections are important because a correct deterministic number-on-the-forehead
protocol for a functionf partitions the corresponding communication tensor into cylinder inter-
sections, each of which is monochromatic with respect to thefunctionf .

Fact 2 LetA be a signk-tensor, and suppose thatDk(A) ≤ c. Then there are cylinder intersec-
tionsZ1, . . . , Z2c such that

A =

2c
∑

i=1

αiχ(Zi)

whereαi ∈ {−1,+1}.

Our main object of study, termed the cylinder intersection norm, relaxes this notion of de-
composition to allowαi ∈ R. A similar such relaxation is done by [KKN95] in the context of
nondeterministic communication complexity.
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Cylinder intersection norm We denote byµ the norm induced by the absolute convex hull of
the characteristic functions of all cylinder intersections. That is, for ak-tensorB

µ(B) = min

{

∑

i

|αi| : B =
∑

i

αiχ(Zi), αi ∈ R

}

where eachZi is a cylinder intersection andχ(Zi) is its characteristic tensor.
In the two dimensional case,µ is very closely related to theγ2 norm [LMSS07, LS07]. Indeed,

for matricesB we haveµ(B) = Θ(γ2(B)).

Remark 3 In our definition ofµ above we chose to takeχ(Zi) as{0, 1} tensors. One can alter-
natively take them to be±1 valued tensors—a form which is sometimes easier to bound—without
changing much. One can show

µ(B) ≥ µ±1(B) ≥ 2−kµ(B).

whereB is a k-tensor andµ±1(B) is defined as above withχ(Zi) taking values from{−1, 1}. In
the matrix case,µ± is also known as the nuclear norm [Jam87].

By Fact 2 we have the following.

Theorem 4 It holds thatDk(A) ≥ log(µ(A)) for every signk-tensorA.

A public coin randomized protocol is simply a probability distribution over deterministic pro-
tocols. This gives us the following fact:

Fact 5 A signk-tensorA satisfiesRk
ǫ (A) ≤ c if and only if there are signk-tensorsA′

i for i =
1, . . . , ℓ satisfyingDk(A′

i) ≤ c and a probability distribution(p1, . . . , pℓ) such that

‖A−
ℓ
∑

i=1

piA
′
i‖∞ ≤ 2ǫ.

To lower bound randomized communication complexity we consider an approximate variant of the
cylinder intersection norm.

Definition 6 (Approximate cylinder intersection norm) Let A be a signk-tensor, andα ≥ 1.
We define theα-approximate cylinder intersection norm as

µα(A) = min
B

{µ(B) : 1 ≤ A ◦B ≤ α}

In words, we take the minimum of the cylinder intersection norm over all tensorsB which are
signed asA and have entries with magnitude between 1 andα. Considering the limiting case as
α → ∞ motivates the definition

µ∞(A) = min
B

{µ(B) : 1 ≤ A ◦B}

8



One should note thatµα(A) ≤ µβ(A) for 1 ≤ β ≤ α.
The following theorem is an immediate consequence of the definition of the approximate cylin-

der intersection norm and Fact 5.

Theorem 7 LetA be a signk-tensor, and0 ≤ ǫ < 1/2. Then

Rk
ǫ (A) ≥ log(µα(A))− log(αǫ)

whereαǫ = 1/(1− 2ǫ) andα ≥ αǫ.

Proof: Let pi andA′
i for 1 ≤ i ≤ ℓ be as in Fact 5. We take

B =
1

1− 2ǫ

ℓ
∑

i=1

piA
′
i.

Notice that1 ≤ B ◦ A ≤ αǫ, and hence by Definition 6

µαǫ(A) ≤ µ(B).

Employing the fact thatµ is a norm and Theorem 4, we get

µ(B) ≤ 1

1− 2ǫ

∑

i

piµ(A
′
i)

≤ 1

1− 2ǫ

∑

i

pi2
Dk(A′

i)

≤ 2R
k
ǫ (A)

1− 2ǫ
.

✷

The nondeterministic complexity of a signk-tensorA, denotedNk(A), is the logarithm of the
minimum cardinality of a set of cylinder intersections{Zi} such that every entry ofA with value
−1 is covered by someZi, and no entry ofA with value1 is covered byZi. Notice that if{Zi} is
such a covering ofA, then lettingB = −

∑

χ(Zi) we have1 ≤ A ◦ (2B + J) < ∞ whereJ is
the all one tensor. AsJ is itself a cylinder, we haveµ(J) = 1, which gives the following.

Theorem 8 (folklore) For a signk-tensorA,

Nk(A) ≥ log
µ∞(A)− 1

2

As we shall see in Section 3.3,µ∞ is exactly the discrepancy method, which explains why the
discrepancy method cannot show good lower bounds on disjointness, or indeed any function with
low nondeterministic or co-nondeterministic communication complexity.
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3.2 Employing duality

We now have a quantity,µα(A), which can be used to prove lower bounds on randomized commu-
nication complexity in the number-on-the-forehead model.As this quantity is defined in terms of
a minimization, however, it seems in itself a difficult quantity to bound from below.

In this section, we employ the duality theory of linear programming to find an equivalent for-
mulation ofµα(A) in terms of a maximization problem. This makes the task of proving lower
bounds forµα(A) much easier, as the∀ quantifier we had to deal with before is now replaced by
an∃ quantifier.

As it turns out, in order to prove lower bounds onµα(A) we will need to understand the dual
norm ofµ, denotedµ∗. The standard definition of a dual norm is

µ∗(Q) = max
B:µ(B)≤1

|〈B,Q〉|,

for any tensorQ. Since the unit ball ofµ is the absolute convex hull of the characteristic vectors
of cylinder intersections, we can alternatively write

µ∗(Q) = max
Z

|〈Q, χ(Z)〉|

where the maximum is taken over all cylinder intersectionsZ.
It is instructive to compare this with the definition of discrepancy.

Definition 9 (discrepancy) LetA be a signk-tensor, and letP be a probability distribution on its
entries. The discrepancy ofA with respect toP , writtendiscP (A), is

discP (A) = max
Z

|〈A ◦ P, χ(Z)〉|

where the maximum is taken over cylinder intersectionsZ.

Thus we see thatdiscP (A) = µ∗(A ◦ P ), and we can use existing techniques for discrepancy to
also upper boundµ∗.

As the dual of a dual norm is again the norm, we can write theµ norm as

µ(B) = max
Q

〈B,Q〉
µ∗(Q)

. (3)

To prove our lower bounds, we will use an equivalent formulation of µα in terms of the dual norm
µ∗.

Theorem 10 LetA be a sign tensor and1 ≤ α < ∞.

µα(A) = max
Q

(1 + α)〈A,Q〉+ (1− α)‖Q‖1
2µ∗(Q)

Whenα = ∞ we have

µ∞(A) = max
Q:A◦Q≥0

〈A,Q〉
µ∗(Q)

10



Proof: We can quite easily see that the left hand side is at least as large as the right hand side,
which is all that is needed for proving lower bounds. By Equation (3) and the definition ofµα we
have

µα(A) = min
B:1≤A◦B≤α

max
Q

〈B,Q〉
µ∗(Q)

.

If we rewriteQ as the sum of two parts,Q+, satisfyingQ+ ◦A ≥ 0 andQ− satisfyingQ− ◦A < 0
then we can see that

µα(A) ≥ max
Q+,Q−

〈A,Q+〉+ α〈A,Q−〉
µ∗(Q+ +Q−)

It is now straightforward to verify that this expression canbe reworked into the form given above
in the two cases1 ≤ α < ∞ andα = ∞.

To see that this inequality holds with equality, we writeµα as a linear program and then use
duality to derive the dual expression given in the theorem. As it is easy to check that the primal pro-
gram is feasible with a finite optimum, by Slater’s conditionthese primal and dual forms coincide
with the same finite value.

We treat the case1 ≤ α < ∞ first. We can writeµα(A) as a linear program as follows. For
each cylinder intersectionZi letXi = χ(Zi). Then

µα(A) = min
p,q

∑

i

pi + qi

s.t. 1 ≤
(

∑

i

(pi − qi)Xi

)

◦ A ≤ α

pi, qi ≥ 0

Taking the dual of this program in the straightforward way, we obtain

µα(A) = max
Q

(1 + α)〈A,Q〉+ (1− α)‖Q‖1
2

s.t. |〈Xi, Q〉| ≤ 1, for all Xi

Forα = ∞ we get the same program as above without the constraint(
∑

i(pi − qi)Xi)◦A ≤ α.
Dualizing this program gives the desired result. ✷

Let us take a moment to compare our approach with that of Chattopadhyay and Ada. They also
use the approximationµ norm, but with an additive approximation factor rather thana multiplica-
tive factor as we use. More precisely, they use the measureµǫ(A) = minB:‖A−B‖∞≤ǫ µ(B). The
dual form of this measure has the form

µǫ(A) = max
Q

〈A,Q〉 − ǫ‖Q‖1
µ∗(Q)

.

Chattopadhyay and Ada directly derive that this dual expression is a lower bound on multiparty
distributional communication complexity. Yao’s characterization of randomized complexity in

11



terms of distributional complexity [Yao83] then gives thatit is also a lower bound on randomized
communication complexity. They do not mention the primal definition of µα, but other than that,
their proof is similar in structure to ours. For our proof we do not use Yao’s principle but apply
duality directly on the measureµ rather than on the complexity class itself.

While our presentation through the primal version of theµ norm is perhaps not as familiar
as that via distributional complexity, we feel it does have advantages. First of all, this discussion
holds quite generally: for any normΦ one can show using the separation theorem that the approx-
imation versionΦα has a dual characterization analogous to that in Theorem 10.Second, we feel
that the primal definition ofµα arises very naturally and gives insight into the origin of the dual
formulation—we do not have to guess this formula but can derive it. Finally, it is interesting to
note that the primal and dual formulations areequivalent. This means that we do not lose anything
in considering the more convenient dual formulation for proving lower bounds.

3.3 The discrepancy method

Virtually all lower bounds in the general number-on-the-forehead model have used the discrepancy
method. LetA be a sign tensor, and recall the definition ofdiscP (A) from Section 3.2. Let
disc(A) = minP discP (A), where the minimum is taken over all probability distributionsP . The
discrepancy method turns out to be equivalent toµ∞(A).

Theorem 11
µ∞(A) =

1

disc(A)
.

Proof: By Theorem 10, for every sign tensorA

µ∞(A) = max
Q◦A≥0

{〈A,Q〉 : µ∗(Q) ≤ 1}

We can rewrite this as

µ∞(A) = max
Q◦A≥0

〈A,Q〉
µ∗(Q)

= max
P :P≥0

〈A,A ◦ P 〉
µ∗(A ◦ P )

As both numerator and denominator are homogeneous, we have

µ∞(A) = max
P :P≥0
‖P‖1=1

〈A,A ◦ P 〉
µ∗(A ◦ P )

= max
P :P≥0
‖P‖1=1

1

µ∗(A ◦ P )

=
1

disc(A)
.

✷
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4 Techniques to boundµ∗(Q)

In the last section, we saw that to bound the randomized number-on-the-forehead communication
complexity of a sign tensorA, it suffices to find a tensorQ such that〈A,Q〉 is large andµ∗(Q)
is small. The first quantity is relatively simple and is in general not too hard to compute. Upper
boundingµ∗(Q) is more subtle. In this section, we review some techniques for doing this.

In upper bounding the magnitude of the largest eigenvalue ofa matrixB, a common thing is
to consider the matrixBBT , and use the fact that‖B‖2 ≤ ‖BBT ‖. We will try to do a similar
thing in upper boundingµ∗. In analogy withBBT we make the next definition. Here and in what
follows all expectations are taken with respect to the uniform distribution.

Definition 12 (Contraction product) LetB be ak-tensor with entries indexed by elements from
X1× . . .×Xk. We define the contraction product ofB alongX1, denotedB •1B, to be a2(k−1)-
tensor with entries indexed by elements fromX2 × X2 × . . . × Xk × Xk. Thex2, x

′
2, . . . , xk, x

′
k

entry is defined to be

B •1 B[x2, x
′
2, . . . , xk, x

′
k] = Ex1





∏

y2∈{x2,x′

2},...,yk∈{xk,x
′

k}
B[x1, y2, . . . , yk]





The contraction product may be defined along other dimensions mutatis mutandis.

Notice that whenB is am-by-n matrixB •1 B corresponds to(1/m)BBT . In analogy with
the fact that‖B‖2 ≤ m‖B •1 B‖, the next lemma gives a corresponding statement for theµ∗

norm andk-tensors. This lemma originated in the work of Babai, Nisan,and Szegedy [BNS89]
(see also [Chu90, Raz00]) and all lower bounds on the generalmodel of randomized number-on-
the-forehead complexity use some version of this lemma. Theparticular statement we use is from
Chattopadhyay [Cha07].

Lemma 13 LetB be ak-tensor. Then

(

µ∗(B)

size(B)

)2k−1

≤ µ∗(B •1 B)

size(B •1 B)
≤ E[|B •1 B|]

Proof: The second inequality follows sinceµ∗(X) ≤ ‖X‖1 for any real tensorX. The first
inequality is standard, and follows by applying the Cauchy-Schwarz inequality repeatedlyk − 1
times. ✷

4.1 Example: Hadamard tensors

We give an example to show how Lemma 13 can be used in conjunction with ourµ method. Let
H be aN-by-N Hadamard matrix. We show thatµ∞(H) ≥

√
N . Indeed, simply let the witness

13



matrixQ beH itself. Incidentally, this corresponds to taking the uniform probability distribution
in the discrepancy method. With this choice we clearly haveH ◦Q ≥ 0, and so

µ∞(H) ≥ 〈H,H〉
µ∗(H)

=
N2

µ∗(H)

Now we boundµ∗(H) using Lemma 13 which gives:

µ∗(H)2 ≤ N4
E[|H •1 H|] = N3

asH •1 H has nonzero entries only on the diagonal, and these entries are of magnitude one.
Ford and Gál [FG05] extend the notion of matrix orthogonality to tensors, defining what they

call Hadamard tensors.

Definition 14 (Hadamard tensor) LetH be a signk-tensor. We say thatH is a Hadamard tensor
if

(H •1 H)[x2, x
′
2, . . . , xk, x

′
k] = 0

wheneverxi 6= x′
i for all i = 2, . . . , k.

The simple proof above for Hadamard matrices can be easily extended to Hadamard tensors:

Theorem 15 (Ford and Ǵal [FG05]) LetH be a Hadamardk-tensor of side lengthN . Then

µ∞(H) ≥
(

N

k − 1

)1/2k−1

Proof: We again take the witnessQ to beH itself. This clearly satisfiesH ◦Q ≥ 0, and so

µ∞(H) ≥ 〈H,H〉
µ∗(H)

=
Nk

µ∗(H)

It now remains to upper boundµ∗(H) which we do by Lemma 13. This gives us

µ∗(H)2
k−1 ≤ Nk2k−1

E[|H •1 H|]
The “Hadamard” property ofH lets us easily upper boundE[|H •1 H|]. Note that each entry of
H •1 H is of magnitude at most one, and the probability of a non-zeroentry is at most

Pr[∨k
i=2(xi = x′

i)] ≤
k − 1

N
by a union bound. Hence, we obtain

µ∗(H)2
k−1 ≤ (k − 1)

Nk2k−1

N
.

Putting everything together, we have

µ∞(H) ≥
(

N

k − 1

)1/2k−1

✷

Remark 16 By doing a more careful inductive analysis, Ford and Gál obtain this result without
thek − 1 term in the denominator. They also construct explicit examples of Hadamard tensors.
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5 Lower bounds onµα for pattern tensors

In Section 5.1 we describe a key lemma which relates the approximate polynomial degree off to
the existence of a hard input “distribution” forf . This will only truly correspond to a distribution
in the case of discrepancy—otherwise it can take on negativevalues. This lemma was first used in
the context of communication complexity by Sherstov [She08] and independently by Shi and Zhu
[SZ07].

In Section 5.2 we use this distribution, together with the machinery developed in Section 4
to prove lower bounds on a special kind of tensors, named pattern tensors. The application to
disjointness appears in Section 6.1.

5.1 Dual polynomials

We define approximate degree in a slightly non-standard way to more smoothly handle both the
boundedα andα = ∞ cases.

Definition 17 Let f : {−1,+1}n → {−1, 1}. For α ≥ 1 we say that a functiong gives anα-
approximation tof if 1 ≤ g(x)f(x) ≤ α for all x ∈ {−1,+1}n. Similarly we say thatg gives an
∞-approximation tof if 1 ≤ g(x)f(x) for all x ∈ {−1,+1}n. We let theα-approximate degree of
f , denoteddegα(f), be the smallest degree of a functiong which gives anα-approximation tof .

Remark 18 In a more standard scenario, one is considering a 0/1 valued functionf and defines
the approximate degree asdeg′ǫ(f) = min{deg(g) : ‖f − g‖∞ ≤ ǫ}. Letting f± be the sign
representation off , one can see that for0 ≤ ǫ < 1/2 our definition is equivalent to the standard
one in the following sense:deg′ǫ(f) = degαǫ

(f±) whereαǫ =
1+2ǫ
1−2ǫ

.

For a fixed natural numberd, let αd(f) be the smallest value ofα for which there is a degree
d polynomial which gives anα-approximation tof . Notice thatαd(f) can be written as a linear
program. Namely, letB(n, d) =

∑d
i=0

(

n
i

)

, andW be a2n-by-B(n, d) incidence matrix, with rows
labelled by stringsx ∈ {−1,+1}n and columns labeled by monomials of degree at mostd. We set
W (x,m) = m(x), wherem(x) is the evaluation of the monomialm on inputx. Then

αd(f) = min
y

{‖Wy‖∞ : 1 ≤ Wy ◦ f}

If this program is infeasible with valueα—that is, if there is no degreed polynomial which gives
anα-approximation tof—then the feasibility of the dual of this program will give usa “witness”
to this fact. We refer to this witness as a dual polynomial forf . It is this witness that we will use
to construct a tensorQ which witnesses thatµα is large.

Lemma 19

αd(f) = max
v

{

1 + 〈v, f〉
1− 〈v, f〉 : ‖v‖1 = 1, vTW = 0

}

Proof: Follows from duality theory of linear programming. ✷
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Corollary 20 (Sherstov Corollary 3.3.1 [She08], Shi-Zhu Section 3.1 [SZ07]) Letf : {−1,+1}n →
R and letd = degα(f). Then there exists a functionv : {−1,+1}n → R such that

1. 〈v, χT 〉 = 0 whenever|T | ≤ d.

2. ‖v‖1 = 1.

3. 〈v, f〉 ≥ α−1
α+1

.

Whenα = ∞, there is a functionv : {−1,+1}n → R satisfying items (1), (2), and such that
v(x)f(x) ≥ 0 for all x ∈ {−1,+1}n.

Špalek [̌Spa08] has given an explicit construction of an optimal dualpolynomial for theOR
function. For our analysis, however, we only make use of the properties guaranteed by Corol-
lary 20.

5.2 Pattern Tensors

We define a natural generalization of the pattern matrices ofSherstov [She07] to the tensor case.
We use a slightly different definition of pattern tensors than that of Chattopadhyay [Cha07] to
allow the reduction to disjointness.

Let φ : {−1,+1}m → R be a function andM a natural number. We define ak-dimensional
pattern tensorAk,M,φ as follows. Letx ∈ {−1,+1}mMk−1

. We viewx = (x1, . . . , xm) as con-
sisting ofm many blocks, where eachxi ∈ {−1,+1}Mk−1

can be viewed as ak − 1 dimensional
tensor of side lengthM . We further letyi ∈ [M ]m for eachi = 1, . . . , k − 1 and view each
yi = (yi[1], . . . , yi[m]) as consisting ofm-blocks whereyi[j] ∈ [M ] is an index into a side ofxi.
Now define

Ak,m,φ[x, y1, . . . , yk−1] = φ(x1[y1[1], . . . , yk−1[1]], . . . , x
m[y1[m], . . . , yk−1[m]]).

Note thatsize(Ak,M,φ) = 2mMk−1
Mm(k−1). We will often use the abbreviation̄y = (y1, . . . , yk−1).

A nice property of pattern tensors is that everym-bit stringz appears as input toφ an equal number
of times, over all choices ofx, ȳ.

The key lemma about pattern tensors is given next. Such a lemma was first shown by Chat-
topadhyay [Cha07]. Chattopadhyay and Ada [CA08] also show astatement similar to this one.

Lemma 21 LetA be a(k,M, c·φ) pattern tensor, wherec = 2msize(A)−1. Suppose thatφ satisfies
ℓ1(φ) = 1 andφ̂T = 0 for all setsT ⊆ [m] with |T | ≤ d. Then

µ∗(A) ≤ 2−d

provided thatM ≥ 2e(k − 1)22
k−1

m/d.
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Proof: The idea of the proof will be to boundE[|A •1 A|] and apply Lemma 13 to obtain an upper
bound onµ∗(A). For a stringℓ ∈ {0, 1}k−1 we use the abbreviation̄yℓ = (yℓ11 , . . . , y

ℓk−1

k−1 ). In
particular,ȳ0 = (y01, . . . , y

0
k−1) andȳ1 = (y11, . . . , y

1
k−1).

E[|A •1 A|] =
(

2m

size(A)

)2k−1

Eȳ0,ȳ1

∣

∣

∣

∣

∣

∣

Ex

2k−1−1
∏

ℓ=0

∑

T⊆[m]

φ̂(T )
∏

i∈T
xi[yℓ11 [i], . . . , y

ℓk−1

k−1 [i]]

∣

∣

∣

∣

∣

∣

(4)

≤ 1

size(A)2k−1Eȳ0,ȳ1

∑

T0,...,T2k−1−1

|Tℓ|>d

m
∏

i=1

∣

∣

∣

∣

∣

∣

∣

∣

Exi

∏

ℓ∈{0,1}k−1

i∈Tℓ

xi[yℓ11 [i], . . . , y
ℓk−1

k−1 [i]]

∣

∣

∣

∣

∣

∣

∣

∣

. (5)

Here we have used the fact thatφ̂(T ) ≤ 2−nℓ1(φ) = 2−n.
We now develop a sufficient condition in terms ofȳ0, ȳ1 andT0, . . . , T2k−1−1, for the product

of expectations overxi to be zero. We say that̄y0, ȳ1 select a nondegenerate cube in position
i if y0j [i] 6= y1j [i] for all j = 1, . . . , k − 1. The reason for this terminology is that in this case

(yℓ11 [i], . . . , y
ℓk−1

k−1 [i]) define2k−1 distinct points overℓ ∈ {0, 1}k−1. If this is not the case, we say
that ȳ0, ȳ1 select a degenerate cube in positioni.

Notice that if ȳ0, ȳ1 select a nondegenerate cube in positioni ∈ [m] and i ∈ Tℓ for some
ℓ ∈ {0, 1}k−1 then

Exi

∏

ℓ∈{0,1}k−1

i∈Tℓ

xi[yℓ11 [i], . . . , y
ℓk−1

k−1 [i]] = 0.

We will now upper bound the probability over the choice ofȳ0, ȳ1 andT0, . . . , T2k−1−1 that this
does not happen. Suppose thatȳ0, ȳ1 selectg many degenerate cubes. By the above reasoning the
number of setsT0, . . . , T2k−1−1 which lead to a nonzero expectation is at most

(

g
∑

r=d+1

(

g

r

)

)2k−1

≤ 2g2
k−1

.

Now we bound the probability that̄y0, ȳ1 selectg many degenerate cubes. The probability that
y0j [i] = y1j [i] is 1/M . Thus by a union bound, the probability that a single cube is degenerate is
at most(k − 1)/M . Finally, as each index is chosen independently, the probability of g many
degenerate cubes is at most

(

m

g

)(

k − 1

M

)g

.
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Putting everything together we have

E[|A •1 A|] ≤
1

size(A)2k−1

m
∑

g=d+1

(

m

g

)(

k − 1

M

)g

2g2
k−1

≤ 1

size(A)2k−1

m
∑

g=d+1

(

e(k − 1)22
k−1

m

dM

)g

≤ 2−d

size(A)2k−1

provided thatM ≥ 2e(k − 1)22
k−1

m/d. ✷

Remark 22 Our analysis cannot be improved by much without using more explicit information
about the Fourier coefficientŝq(T ) than given in Corollary 20. Apart from removing the Fourier
coefficients, the only inequality we have used to arrive at Equation (5) is to turn an absolute value
of a sum into a sum of absolute values. Whenȳ0, ȳ1 select a degenerate cube, the most likely case
is that it is what we call1-degenerate—that isy0i [t] = y1i [t] for exactly one1 ≤ i ≤ k − 1. If the
degenerate cubes selected byȳ0, ȳ1 are all 1-degenerate, then one can see that the only sets{Tℓ}
which lead to a nonzero expectation are ones where the setsTℓ come in pairs. The number of such
paired sets{Tℓ} is not significantly smaller than the upper bound we give; furthermore, in this
case all Fourier coefficients will be taken to an even power and so no cancellation occurs and the
absolute value of the sum will be equal to the sum of absolute values.

With this lemma in hand, we can now show our main result, proving a lower bound onµα(Ak,M,f)
in terms of the approximate degree off .

Theorem 23 For a nonnegative integerm and a Boolean functionf on m variables, and an
integerk ≥ 2

log µα(Ak,M,f) ≥ degα0
(f)/2k−1 + log

α0 − α

α0 + 1
,

for every1 ≤ α < α0 < ∞, providedM ≥ 2e(k − 1)22
k−1

m/ degα0
(f).

Furthermore,
logµ∞(Ak,M,f) ≥ deg∞(f)/2k−1,

providedM ≥ 2e(k − 1)22
k−1

m/ deg∞(f)

Proof: For simplicity we will drop the subscripts and just writeA for Ak,M,f . Recall that

µα(A) = max
Q:‖Q‖1=1

(1 + α)〈A,Q〉+ (1− α)

2µ∗(Q)

µ∞(A) = max
Q:Q◦A≥0

〈A,Q〉
µ∗(Q)

.
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Let q be the vector from Corollary 20 which witnesses that theα0-approximate degree off
is at leastd. We letQ be the(k,M, c · q) pattern tensor wherec = 2m/size(A). This choice of
normalization implies that‖Q‖1 = 1 as‖q‖1 = 1.

First consider the case1 ≤ α < ∞. Then we have〈q, f〉 ≥ (α0 − 1)/(α0 + 1), and so
〈A,Q〉 ≥ (α0 − 1)/(α0 +1). This allows us to bound(1/2) the term in the numerator ofµα(A) as
follows:

(1 + α)〈A,Q〉+ (1− α)

2
≥ α0 − α

α0 + 1
.

In the caseα = ∞, observe thatQ inherits the propertyQ ◦ A ≥ 0 asq ◦ f ≥ 0. The fact that
q ◦ f ≥ 0 together with‖q‖1 = 1 gives〈f, q〉 = 1, which in turn implies〈A,Q〉 = 1.

Let d = degα0
(f) or d = deg∞(f), respectively. Asq has no nonzero Fourier coefficients of

degree less thand by Corollary 20, we can apply Lemma 21 to give

µ∗(Q) ≤ 2−d,

under the assumption thatM ≥ 2e(k − 1)22
k−1

m/d. The statement now follows from Lemma 13.
✷

6 Applications

In this section, we apply Theorem 23 to prove lower bounds on thek-party number-on-the-forehead
randomized communication complexity of disjointness. Then we formally state the implications
this result has for proof systems via the results of Beame, Pitassi, and Segerlind [BPS06].

6.1 A lower bound for disjointness

LetORn : {−1,+1}n → {−1,+1} be the OR function onn bits, and letDISJk,n : ({−1,+1}n)k →
{−1,+1} be defined asDISJk,n(x1, . . . , xk) = −ORn(x1 ∧ x2 . . . ∧ xk).

By embedding a pattern tensor into the tensorDISJk,n, we can get the following lower bound.

Corollary 24

R1/4(DISJk,n) = Ω

(

n1/(k+1)

22k

)

Proof: The idea of the proof will be to embed an appropriate pattern tensor intoDISJk,n and apply
Theorem 23. Letck = 5e(k − 1)22

k−1
. As Nisan and Szegedy have showndeg3(ORn) ≥

√

n/6,
we wish to define integersm,M such thatM ≥ ck

√
m andmMk−1 ≤ n. To this end, let

m = ⌊ n
(2ck)k−1 ⌋ andM = ck ⌈

√
m ⌉. Letn′ = mMk−1. One can easily check thatn′ ≤ n.

We will now see that the pattern tensor(k,M,ORm) is a subtensor ofORn′(x1 ∧ . . . ∧ xk).
This will then give the result by the obvious reduction toDISJk,n.
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Let A be the(k,M,ORm) pattern tensor. Recall that

A[x, y1, . . . , yk−1] = ORm(x
1(y1[1], . . . , yk−1[1]), . . . , x

m[y1[m], . . . , yk−1[m]]),

where eachyj [i] ∈ [M ], andxj is ak − 1 dimensional tensor of side lengthM . To eachyj [i] we
associate ak − 1 tensorzij of side lengthM , wherezij [t1, . . . , tk−1] = 1 if and only if tj = yj[i].
In this way,x1[y1[1], . . . , yk−1[1]] = ORMk−1(x1 ∧ z11 ∧ . . . ∧ z1k−1). Lettingzj = (z1j , . . . , z

m
j ) we

have

ORn′(x1∧z1 . . .∧zk−1) = ORm(ORMk−1(x1
1∧z11∧. . .∧z1k−1), . . . ,ORMk−1(xm

1 ∧zm1 ∧. . .∧zmk−1)).

This shows thatA is a subtensor of−DISJk,n′. The result now follows from Theorem 23 and
Theorem 7. ✷

Remark 25 Note that a statement similar to that of Corollary 24 can be proved for any symmetric
function, not justOR. But for some functions (e.g. threshold functions with threshold a constant
fraction ofn) much better bounds can be proved by reduction to inner product. For this reason, we
do not include the general statement here.

6.2 Proof systems

In this section we formally define the proof systems discussed in the introduction, and the lower
bounds which follow from our results on disjointness.

A k-threshold formula is a formula of the form
∑

j γjmj ≥ t, wheret, γj are integers, and each
mj is a monomial over variablesx1, . . . , xn. The size of ak-threshold formula is the sum of the
sizes ofγj andt, written in binary. Fork-threshold formulasf1, f2, g, we say thatg is semantically
entailedby f1 andf2 if every 0/1 assignment tox1, . . . , xn that satisfies bothf1 andf2 also satisfies
g.

Let φ be an unsatisfiable CNF formula with variablesx1, . . . , xn. For each clause ofφ we
create a linear threshold formula which is satisfied if and only if the clause is. We refer to these
clauses asaxioms. We say thatP is aTh(k) refutation ofφ if

• P is a sequenceL1, . . . , Lt of k-threshold formulas.

• Each formulaLj is either an axiom or is semantically entailed by formulasLi, Li′ with
i, i′ < j.

• The final formulaLt is 0 ≥ 1.

The size ofP is the sum of the sizes ofL1, . . . , Lt. We say thatP is tree-like if the underlying
directed acyclic graph representing the implication structure of the proof is a tree.

We are now ready to state the connection of [BPS06] between the number-on-the-forehead
complexity of disjointness and the size ofTh(k) proofs.
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Theorem 26 (Beame, Pitassi, and Segerlind [BPS06])Let k ≥ 2 be a constant. For everyn,
there is a CNF formulaφ onn variables such that the size of anyTh(k − 1) refutation ofφ is at
least

exp



Ω

(

Rk
1/4(DISJk,m)

log n

)1/3


 .

wherem = n2/3

2 logn
.

Substituting the bounds from Corollary 24 we obtain the following.

Corollary 27 Let k ≥ 2 be a constant. For everyn there is a CNF formulaφ overn variables
which requiresTh(k − 1) refutation proofs of size

exp

(

Ω

(

n2/(9k+9)

(log n)4/9 22k/3

))

.
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[Špa08] R.Špalek. A dual polynomial for OR. Technical Report arXiv:0803.4516 [cs.CC],
arXiv, 2008.

[SZ07] Y. Shi and Y. Zhu. Quantum communication complexity of block-composed functions.
Technical Report arXiv:0710.0095 [quant-ph], arXiv, 2007.

[Tes02] P. Tesson.Communication complexity questions related to finite monoids and semi-
groups. PhD thesis, McGill University, 2002.

[VW07] E. Viola and A. Wigderson. One-way multi-party communication lower bound for
pointer jumping with applications. InProceedings of the 48th IEEE Symposium on
Foundations of Computer Science. IEEE, 2007.

[Yao79] A. Yao. Some complexity questions related to distributive computing. InProceedings
of the 11th ACM Symposium on the Theory of Computing, pages 209–213. ACM, 1979.

[Yao83] A. Yao. Lower bounds by probabilistic arguments. InProceedings of the 24th IEEE
Symposium on Foundations of Computer Science, pages 420–428, 1983.

23


