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Abstract

We show that disjointness requires randomized communim@ti("lggfl)) in the general

k-party number-on-the-forehead model of complexity. Thevigus best lower bound fdr >

3 wasllg’%’f . Our results give a separation between nondeterministicarmdomized multiparty
number-on-the-forehead communication complexity forasp £ log log n —O(log log log n)
many players. Also by a reduction of Beame, Pitassi, andrdegethese results imply subex-
ponential lower bounds on the size of proofs needed to rektimin unsatisfiable CNFs in a

broad class of proof systems, including tree-like Lov8shyijver proofs.

1 Introduction

Since its introduction thirty years ago [Abe78, Yao79], counication complexity has become a
key concept in complexity theory and theoretical computésrece in general. Part of its appeal is
that it has applications to many different computationatiels, for example to formula size and
circuit depth, proof complexity, branching programs, Videisign, and time-space trade-offs for
Turing machines (see [KN97] for more details).

One area of communication complexity which still holds menysteries is thé-party “number-
on-the-forehead” model, originally introduced by Chandfarst, and Lipton [CFL83]. In this
model,k parties wish to compute a functigh: ({—1,+1}")* — {—1,1}. Oninput(zy, ..., x}),
thei'" player receiveszi, ..., x;_1,7;41,..., 7). Thatis, playeri has knowledge of the entire
inputexceptfor the stringz;, which figuratively can be thought of as sitting on his foratheThe
players communicate by writing messages “on a blackboaalthat all players see each mes-
sage. The large overlap in the player's knowledge is partldtwnakes showing lower bounds
in this model so difficult. This difficulty, however, is rewtird by the richness and strength of
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consequences of such lower bounds: for example, by redul#G91, BT94], showing a super-
polylogarithmic lower bound on an explicit function for gtadgarithmic many players would
give an explicit function outside of the clagsCC® — that is, a function which requires super-
polynomial size constant-depth circuits using AND, OR, N@id modulan gates.

While showing such bounds remains a challenging open prgie do know of explicit func-
tions which require large communication in this model &(log n) many players. Babai, Nisan,
and Szegedy [BNS89] showed that the inner product funcmerplized td&-parties requires ran-
domized communicatiof(n/4*), and for other explicit functions slightly larger boundssife
Q(n/2*) are known [FGO5]. These lower bounds are all achieved ukiagiscrepancy method, a
very general technique which gives lower bounds even ororaimed models with error probabil-
ity close tol/2, and also on nondeterministic communication complexity.

For some basic functions, however, there is a huge gap in mawledge. One example is
the disjointness function, or equivalently its complemeset intersection. In the set intersection
problem, the goal of the players is to determine if there isnalex j such that every string;
has a—1 in positionj, where here and throughout the paper we interprets ‘true.” The best
known protocol has cog?(k?n log(n)/2%) [Gro94]. On the other hand, the best lower bound in
the general number-on-the-forehead modéj%, for k > 3 [Tes02, BPSWO06]. Fok = 2 tight
bounds are known o®(n) for randomized communication complexity [KS87] a®d./n) for
guantum communication complexity [Raz03, AAO5].

A major obstacle toward proving better lower bounds on detsection is that it has a low cost
nondeterministic protocol. In case there is a position wla players have a1, with O(logn)
bits a prover can send the name of this position and the ®ayar then verify this is the case.
Since the discrepancy method is also a lower bound on namdieistic complexity, it is limited
to logarithmic lower bounds for set intersection. Even ig tivo-party case, determining the
complexity of set intersection in the randomized and quantuodels was a long-standing open
problem, in part for this reason.

In the multiparty case, the discrepancy method is the ordfartiejue which has been used
to show lower bounds on the general randomized model of nthoip¢he-forehead complexity.
Although other two-party methods can be generalized to thkiparty number-on-the-forehead
model, they can become very difficult to handle. One sourdbisfdifficulty is that, whereas in
the two party case we can nicely represent the funcfigny) as a matrix, in the multiparty case
we deal with higher dimensional tensors. This makes maniefihear algebraic tools so useful
in the two-party case inapplicable or at least much morelwegb For example, while matrix rank
is a staple lower bound technique for deterministic twaypaomplexity, in the tensor case even
basic questions like the maximum rank of & n x n tensor remain open.

Besides this technical challenge, additional motivatmsttidying the number-on-the-forehead
complexity of disjointness was given by Beame, Pitassi, 8aderlind [BPS06], who showed
that lower bounds on disjointness imply lower bounds on & general class of proof systems,
including cutting planes and Lovasz-Schrijver proof syss.
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We show that disjointness requires randomized communim@ti( = ) in the generak-

party number-on-the-forehead model. This separates temai@istic and randomized multiparty
number-on-the-forehead complexity for upite- log log n — O(log log log n) many players. Also




by the work of [BPS06] this implies subexponential lower bds on the size of proofs needed
to refute certain unsatisfiable formulas by tree-like psdafLovasz-Schrijver and more powerful
proof systems.

Chattopadhyay and Ada [CAO08] have independently obtaimadas bounds on disjointness
using similar techniques.

1.1 Related work

For restricted models of computation, bounds are known hvhre stronger than ours. Wigder-
son showed that for one-way three-party number-on-theliad protocols, disjointness requires
communicatiorf(n'/?) (this result appears in [BHKO01]). More recently, Viola andgderson
[VWO07] extended this approach to show a boundoh!'/ =1 /kO*)) on the complexity of one-
way k-party protocols computing disjointness. These resultsally show bounds on a pointer
jumping function which reduces to disjointness.

Beame, Pitassi, Segerlind, and Wigderson [BPSWO06] deasedthod based on a direct prod-
uct theorem to show &(n'/?) bound on the complexity of three-party disjointness in a etod
stronger than one-way where the first player speaks oncethemdthe two remaining players
interact arbitrarily.

Following up on our work, David, Pitassi, and Viola [DPVO&\wg an explicit function which
separates nondeterministic and randomized number-efetekead communication complexity
for up toQ(logn) players. They are also able, for any constatd give a function computable
in ACY which separates them for up ¢dog log n players. Note that disjointness can be computed
in ACY, but that our bounds are already trivial fiog log » players. Even more recently, Beame
and Huynh-Ngoc [BHNO8] have shown a bounc8fvieen/vi—k on thek-party number-on-the-
forehead complexity of disjointness. This bound remains-tmivial for up to ©(log"/* n) many
players, but is not as strong as our bound for few players.

1.2 Overview of techniques

There is a natural correspondence between functfong{—1,+1}")* — {—1,1} and signk-
tensors. Sometimes it is more convenient to consider thetiumform, and sometimes, like when
discussing norms, it is more convenient to consider tensors

Our proof combines two ingredients. The first of these is thtéon of an approximation norm.
For a norm®, and a sign tensot, theapproximation nornassociated t@ and A, denotedb*(A),
is the smalles® norm of an element ‘close’ td. Herea quantifies the term ‘close.’

Approximation norms turn out to be quite useful for showiowér bounds on randomized
and quantum communication complexity [Kla01, Raz03, LS®&gzborov, for example, uses the
approximation trace norm to prove a tight lower bound on thenqum communication complexity
of set intersection.

We use what we call theylinder intersection normdenotedu. This norm can be seen as
a multiparty generalization of a quantity used in Lemma J.Klauck [Kla01]. As a correct
deterministic protocol partitions the communication rixainto rectangles on which the func-
tion is constant, analogously a correct deterministic nemdm-the-forehead protocol decomposes
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the communication tensor into cylinder intersections omctvithe function is constant. Roughly
speaking.(A) measures how efficientlyl can be written as a sum of cylinder intersections. In
this way, if A has low communication complexity, it will also have lgmwnorm. We defer formal
definitions to Section 3.

We denote the approximate version of the cylinder intersectorm byu® wherel < o < 0o
represents the measure of approximation. This measurédpsoa lower bound on randomized
communication complexity in the number-on-the-foreheadleh. The limiting cas@>(A) turns
out to be exactly the usual discrepancy method. For boundee obtain a technique which is
strictly stronger than the discrepancy method.

Following [LMSS07, LS07], to show lower bounds pfi(A), we write it in terms of the dual
normy*. By definition of a dual norm, we have

(1)

This “max” formulation ofy is often more convenient for showing lower bounds. The doaim
1* is closely related to discrepancy with respect to the umfdistribution, so we can use existing
techniques to upper bound(Q).

This formulation ofu also gives a way to writg® in terms of a maximization quantity.

af Ay _ (1+a)[(A, Q)+ (1 —a)Q[:
HAA) = mgx 20°(Q) |

All one needs for showing lower bounds is that the left hadl@ $$ at least as large as the right
hand side. This can be shown quite simply using Equation lelerdentary inequalities and was
noted, for example, by Razborov in the context of the appnation trace norm. The fact that
equality holds here requires the use of linear programmiunglity or a separation theorem for
convex bodies and seems to be less well known.

As the dual normu* is essentially discrepancy with respect to the uniformritigtion, the
approximationy norm can be seen as an extension of discrepancy in another Wwsiead of
proving that the tensor of interesgt has small discrepancy, it is enough to prove that there is a
tensor@ which has small discrepancy and has large correlation wjtrelative to||@Q||;. This is
why this method is calledeneralized discrepanag [CAQ8].

To find a good witness tens@yp, we use ideas from a second line of research. While the
norm framework of Equation (2) provides a nice approach wetdbound communication com-
plexity, it gives no hint about how to choose a good witn@ssin general a difficult problem.
Works by Sherstov [She07, She08] and Shi and Zhu [SZ07] inweparty case, and Chat-
topadhyay [Cha07] in the multiparty case provide an elegayt to choose a good witness for a
general class of matrices and tensors. These works lookeit bbmposed functions of the form
fog(xy,...,x) = flg(zi,...,xh),...,g(x}, ..., 2})). Notice that set intersection is a block
composed function wherg = OR,, is the OR function om bits andg = ANDy, is the k-player
AND function on one bit. Sherstov [She07] first showed thaewd(z, i) = z;, the discrepancy
of a block composed function could be bounded in terms ofhiheshold degree of, the mini-
mum degree of a polynomial which agrees in sign wfitbn the Boolean cube. Building on this

(2)
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result, Chattopadhyay showed an analogous statement muthber-on-the-forehead case for an
appropriately generalized multiparty functign

Sherstov and independently Shi-Zhu showed that the appaigitrace norm of a block com-
posed function could be lower bounded in terms of the apprateé degree of, again provided
that the inner function satisfies certain technical conditions. Tlhaorm provides bounds at least
as large as the trace norm method [LS07], thus these wor&daiger bound.“. In this paper,
we take the natural step to show that of a block composed multiparty function can be lower
bounded in terms of the approximate degre¢ dbr a particular multiparty inner functiojpsuch
that the composed functigfio ¢" can be embedded in the set intersection problem.

1.3 Consequences for La&sz-Schrijver proof systems and beyond

Beame, Pitassi, and Segerlind [BPS06] show that bounds dtiparty disjointness imply strong
lower bounds on the size of refutations of certain unsahkditormulas, for a very general class of
proof systems. We now introduce and motivate the study sitipeoof systems. Formal definitions
and the implications of our results will be given in SectioB.6

The fact that linear and semidefinite programs can be solvdhigh precision in polynomial
time is a remarkable algorithmic achievment. It is thusregéng to ask how these algorithms
fare when pitted against NP-complete problems. For manycdiRplete problems, there is a
very natural approach to solving them via linear or semidtefiprogramming: namely, we first
formulate the problem as optimizing a convex function oherBoolean cube, i.e. with variables
subject to the quadratic constrainfs= ;. We then relax these quadratic constraints to linear or
semidefinite constraints to obtain a program which can begoh polynomial time. For example,
alinear relaxation of? = z; may simply be the constraifit< x; < 1. In the case of vertex cover,
for example, such a simple relaxation already gives a lipgagram with approximation ratio
of 2. Semidefinite constraints are in general more com@dabut there are several “automatic”
ways of generating valid semidefinite inequalities—thag&nidefinite inequalities satisfied by all
Boolean solutions of the original problem. Perhaps thelkesivn of these is the Lovasz-Schrijver
“lift and project” method [LS91]. The seminal878-approximation algorithm for MAXCUT of
Goemans and Williamson [GW95] can be obtained by relaxiegitural Boolean programming
problem with semidefinite constraints obtained by one apfithn of the Lovasz-Schrijver method.

As these techniques have given impressive results in appation algorithms, it is natural to
ask if they can also be used to efficiently obtain exact smhgti Namely, how many inequalities
need to be added in general until all fractional optima armeiebted and only true Boolean optima
remain?

One way to address this question is to consider proof systathsderivation rules based on
linear programming or the Lovasz-Schrijver method. Outipalar application will look at the
size of proofs needed to refute unsatisfiable formulas. iIG&ENF¢, we can naturally represent
the satisfiability ok as the satisfiability of a system of linear inequalities, foveeach clause. For
example, the clause, v x, vV —x5 would be represented as + =4 + (1 — z5) > 1. Suppose
that ¢ is unsatisfiable. Then consider a proof system in which tixétas” are the inequalities
obtained from the clauses ¢f and the goal is to derive the contradictior™> 1. By the results
of [BPSO06], our results on disjointness imply that there @meatisfiable formulas such that any
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refutation obtained by generating new inequalities by tbedsz-Schrijver method in a “tree-like”
way requires size""" . For a standard formulation of the Lovasz-Schrijver mdtkoown as
LS., bounds of siz&*™ for tree-like proofs have already been shown by very dififeraethods
[IKOG].

The advantage of the number-on-the-forehead communicetimplexity approach, however,
is that it can also be applied to much more powerful proofeystwhich are currently untouchable
by other methods. Beame, Pitassi, and Segerlind [BPS06] gtad lower bounds oh-party com-
munication complexity of disjointness give lower boundsloa size of tree-like proofs of certain
unsatisfiable CNF8(x), where the derivation rule is as follows: from inequalitjeg of degree
k — 11in z, we are allowed to conclude a degree- 1 inequalityh if every Boolean assignment
to = which satisfiesf andg also satisfied. Lovasz-Schrijver proof systems are a special case of
such degree-2 systems. Our bounds on disjointness implgxistence of unsatisfiable formulas
whose refutation requires subexponential size tree-ldgreek proofs, for any constarit. * The
aforementioned lower bounds drb, proof systems strongly rely on specific properties of the
Lovasz-Schrijver operator—showing superpolynomialimgion the size of tree-like proofs in the
more general degreemodel was previously open even in the cése 2.

2 Preliminaries and notation

We let[n] = {1,...,n}. For multiparty communication complexity it is convenig¢atwork with
tensors, the generalization of matrices to higher dimerssitf an element of a tensa¥ is speci-
fied by indices, we say that is ak-tensor. For &-tensorA of dimensiongn,, . .., ny) we write
size(A) = ny - - - ng. A tensor for which all entries are i1, 1} we call a sign tensor. For a func-
tion f: Xy x...x X — {—1, 1}, we define the communication tensor correspondinfjttobe a
k-tensorA; whereA[zy, ..., zx] = f(z1,...,z). We identify f with its communication tensor.
ForasetZ C X; x ... x X we lety(Z) be its characteristic tensor wheye€Z)[z1, ..., x| =1

if (z1,...,2) € Z and is0 otherwise.

For a sign tensord, we denote byD*(A) the deterministic communication complexity of
A in the k-party number-on-the-forehead model. The public coin camded communication
complexity with error bound > 0 is denotedR*(A). We drop the superscript when the number
of players is clear from context.

We use the shorthandl > ¢ to indicate that all of the entries of are at least. The Hadamard
or entrywise product of two tensorsand B is denoted byA o B. Their inner product is denoted
(A,B) = >, 2 Alzy, o 2] Blay, ... ], Thely andl,, norms of a tensod are||Al|; =
Dwrney Az, ]| @nd[| Al = maxy, ., A2, ..., 2i]], respectively.

We also need some basic elements of Fourier analysiss Eofn| we defineys : {—1,+1}" —
{—=1,1} asxs(z) = [[,c5 z:- Asthex s form an orthogonal basis, for any functign {—1, +1}" —

The conference version of this paper reported bounds oredégproof systems for up t& = loglogn —
O(logloglogn). As pointed out to us by Paul Beame, however, this is notfjedtby the reduction of [BPS06],
which requires certain constraints on the sizé.of



R we have a unique representation

A

Fa) = 3 F(S)xs(a)

SCn

wheref(S) = (1/2"){f,xs), are the Fourier coefficients gt The degree of is the size of the
largest sef5 for which f () is nonzero.

3 The Method

In this section we present a method for proving lower boundgamdomized communication
complexity in the number-on-the-forehead model that gaiees and significantly strengthens the
discrepancy method.

3.1 Cylinder intersection norm

In two-party communication complexity, a key role is playgdcombinatorial rectangles—subsets
of the formZ; x Z, whereZ, is a subset of inputs to Alice ari, is a subset of inputs to Bob. The
analogous concept in the number-on-the-forehead modeltijparty communication complexity
is that of a cylinder intersection.

Definition 1 (Cylinder intersection) A subsetZ; C X; x ... x X is called a cylinder in the
it" dimension if membership i#; does not depend on th&" coordinate. That is, for every
(21, 2y, 2k) € Z;and 2z, € X, it also holds that(zy,...,z2,,...,2x) € Z;. AsetZis
called a cylinder intersection if it can be expressedzas- N*_, Z; where eacly; is a cylinder in
thes*" dimension.

Cylinder intersections are important because a correeriehistic number-on-the-forehead
protocol for a functionf partitions the corresponding communication tensor intandgr inter-
sections, each of which is monochromatic with respect tdithetion f.

Fact 2 Let A be a signk-tensor, and suppose that*(A) < c. Then there are cylinder intersec-
tions 7y, ..., Zs such that

A= Z a;x(Z;)
=1
whereq; € {—1,+1}.
Our main object of study, termed the cylinder intersectionnm relaxes this notion of de-

composition to allowy; € R. A similar such relaxation is done by [KKN95] in the context o
nondeterministic communication complexity.



Cylinder intersection norm We denote by: the norm induced by the absolute convex hull of
the characteristic functions of all cylinder intersectiomhat is, for &-tensorB

p(B) = min {Z lay| : B = Zaix(Zi),ai € R}

where eacl?; is a cylinder intersection ang(Z;) is its characteristic tensor.
In the two dimensional casg,is very closely related to thg, norm [LMSS07, LS07]. Indeed,
for matricesB we haveu(B) = O(72(B)).

Remark 3 In our definition ofu above we chose to takg Z;) as {0, 1} tensors. One can alter-
natively take them to b&1 valued tensors—a form which is sometimes easier to bountheti
changing much. One can show

p(B) > pa1(B) > 27" u(B).

whereB is a k-tensor andu. (B) is defined as above with(Z;) taking values fron{—1,1}. In
the matrix casey. is also known as the nuclear norm [Jam87].

By Fact 2 we have the following.
Theorem 4 It holds thatD*( A) > log(u(A)) for every signk-tensorA.

A public coin randomized protocol is simply a probabilitgttibution over deterministic pro-
tocols. This gives us the following fact:

Fact5 A signk-tensor A satisfiesk¥(A) < c if and only if there are sigrk-tensorsA’ for i =
1,...,¢satisfyingD*(A}) < ¢ and a probability distributior{(ps, . . ., p,) such that

4
1A= " pidill < 2e

1=1

To lower bound randomized communication complexity we @ersan approximate variant of the
cylinder intersection norm.

Definition 6 (Approximate cylinder intersection norm) Let A be a signk-tensor, andy > 1.
We define the-approximate cylinder intersection norm as

p(A) = mBin{,u(B) 1< AoB<a}

In words, we take the minimum of the cylinder intersectiommover all tensorsB which are
signed asA and have entries with magnitude between 1 andConsidering the limiting case as
a — oo motivates the definition

ue(A) = mén{,u(B) :1< Ao B}



One should note that*(A4) < p#(A)for1 < 8 < a.
The following theorem is an immediate consequence of thaitiefi of the approximate cylin-
der intersection norm and Fact 5.

Theorem 7 Let A be a signk-tensor, and) < e < 1/2. Then
RE(A) = log(n*(A)) — log(a)
wherea, = 1/(1 — 2¢) anda > «..

Proof: Letp; and A} for 1 <i < ¢ be as in Fact 5. We take

l
1
B=—— AL
1— 26 ;p i
Notice thatl < B o A < «a,, and hence by Definition 6

(1 (A) < pu(B).

Employing the fact that is a norm and Theorem 4, we get

p(B) < %26 me(z‘lé)

1 9D (A7)

=1 "9 i Di
9RE(A)

1—2¢

IA

O

The nondeterministic complexity of a sigatensorA, denotedV*(A), is the logarithm of the
minimum cardinality of a set of cylinder intersectiofig;} such that every entry ofl with value
—1 is covered by somg;, and no entry ofd with valuel is covered byZ;. Notice that if{ Z;} is
such a covering of4, then lettingB = — > x(Z;) we havel < Ao (2B + J) < oo whereJ is
the all one tensor. Ad is itself a cylinder, we have(J) = 1, which gives the following.

Theorem 8 (folklore) For a signk-tensorA,

pe(A) -1

N*(A) > log =

As we shall see in Section 3.35° is exactly the discrepancy method, which explains why the
discrepancy method cannot show good lower bounds on disgss, or indeed any function with
low nondeterministic or co-nondeterministic communigcatcomplexity.



3.2 Employing duality

We now have a quantity,*(A), which can be used to prove lower bounds on randomized commu-
nication complexity in the number-on-the-forehead model this quantity is defined in terms of
a minimization, however, it seems in itself a difficult quanto bound from below.

In this section, we employ the duality theory of linear preogming to find an equivalent for-
mulation of u®(A) in terms of a maximization problem. This makes the task of/img lower
bounds foru*(A) much easier, as thé quantifier we had to deal with before is now replaced by
and quantifier.

As it turns out, in order to prove lower bounds pfi(A) we will need to understand the dual
norm of i, denoted.*. The standard definition of a dual norm is

1 Q) = A (B, Q)
for any tensok). Since the unit ball of: is the absolute convex hull of the characteristic vectors
of cylinder intersections, we can alternatively write

p(Q) = max |(Q, x(2))]

where the maximum is taken over all cylinder intersectigns
It is instructive to compare this with the definition of dispancy.

Definition 9 (discrepancy) Let A be a signk-tensor, and let” be a probability distribution on its
entries. The discrepancy df with respect taP, writtendiscp(A), is

discp(A) = max (Ao P, x(Z))]

where the maximum is taken over cylinder intersectiéns

Thus we see thatiscp(A) = p*(A o P), and we can use existing techniques for discrepancy to
also upper boung*.
As the dual of a dual norm is again the norm, we can writetherm as

_(B,Q)
ulB) = mgx 1+(Q)

To prove our lower bounds, we will use an equivalent formataof ;* in terms of the dual norm
e
Theorem 10 Let A be a sign tensor antl < o < oo.

(1+a)(A,Q) + (1 -a)||Q]:
2u4(Q)

: @)

pu*(A) = max

Whena = oo we have

(4,Q

~




Proof: We can quite easily see that the left hand side is at leastrge & the right hand side,
which is all that is needed for proving lower bounds. By Eqrat3) and the definition ofi“ we

have (B, @)
po(4) = B1ShoB<a G 1 (Q)

If we rewrite (Q as the sum of two part§)™, satisfyingQ* o A > 0 and@~ satisfyingQ o A < 0

then we can see that . -
) S max Q) (A Q)
et pH (@Y +Q7)
It is now straightforward to verify that this expression dareworked into the form given above
in the two case$ < a < oo anda = oc.

To see that this inequality holds with equality, we write as a linear program and then use
duality to derive the dual expression given in the theoresnit A easy to check that the primal pro-
gram is feasible with a finite optimum, by Slater’s condittbese primal and dual forms coincide
with the same finite value.

We treat the casé < a < oo first. We can writeu®(A) as a linear program as follows. For
each cylinder intersectiof; let X; = x(Z;). Then

p*(A) = H;ianpﬂrqi

s.t. 1< (Z(p,- - qi)XZ) 0 A<

)

Pi;q >0
Taking the dual of this program in the straightforward wag, ebtain

8) = e (FNAQ (0=

s.t. (X;, Q)] <1, for all X;

Fora = oo we get the same program as above without the constfainty; — ¢;) X;)c A < a.
Dualizing this program gives the desired result. O

Let us take a moment to compare our approach with that of Qpedhyay and Ada. They also
use the approximation norm, but with an additive approximation factor rather thamultiplica-
tive factor as we use. More precisely, they use the measir) = ming.ja_p|. < 1(B). The
dual form of this measure has the form

(A — g Q) — €@
S

Chattopadhyay and Ada directly derive that this dual exgpoesis a lower bound on multiparty
distributional communication complexity. Yao’s characterization of ramized complexity in
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terms of distributional complexity [Yao83] then gives tlitas also a lower bound on randomized
communication complexity. They do not mention the primdirdgon of ;*, but other than that,
their proof is similar in structure to ours. For our proof we bt use Yao’s principle but apply
duality directly on the measuyerather than on the complexity class itself.

While our presentation through the primal version of theorm is perhaps not as familiar
as that via distributional complexity, we feel it does hadgantages. First of all, this discussion
holds quite generally: for any norda one can show using the separation theorem that the approx-
imation version®® has a dual characterization analogous to that in Theorerséd€ond, we feel
that the primal definition of:* arises very naturally and gives insight into the origin o tual
formulation—we do not have to guess this formula but canveeiti Finally, it is interesting to
note that the primal and dual formulations arpiivalent This means that we do not lose anything
in considering the more convenient dual formulation forvimg lower bounds.

3.3 The discrepancy method

Virtually all lower bounds in the general number-on-theettead model have used the discrepancy
method. LetA be a sign tensor, and recall the definitiondifcp(A) from Section 3.2. Let
disc(A) = minp discp(A), where the minimum is taken over all probability distrilauts P. The
discrepancy method turns out to be equivalenttd A).

Theorem 11 )
P(A) = )
) disc(A)

Proof: By Theorem 10, for every sign tensdr

p(A) = max {(4,Q) : 17(Q) < 1}

We can rewrite this as

_ - <A,Q>_ <A,AOP>
p(A) = QeAZo yr(Q) — Pib20 (Ao P)

As both numerator and denominator are homogeneous, we have

®(4) = ma (A, Ao P) a 1
2 = X ————— = X —————
P:P>0 u*(Ao P pP.P>0 u*(Ao P
|Pll1=1 a ( ) |Plli=1 a ( )
B 1
 disc(A)’
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4  Techniques to boundu*(Q)

In the last section, we saw that to bound the randomized nuorbéhe-forehead communication
complexity of a sign tensad, it suffices to find a tensap such that{A, Q) is large andu*(Q)

is small. The first quantity is relatively simple and is in gead not too hard to compute. Upper
boundingu*(Q) is more subtle. In this section, we review some techniqueddng this.

In upper bounding the magnitude of the largest eigenvalierftrix B, a common thing is
to consider the matriB B, and use the fact thdtB||? < || BBT||. We will try to do a similar
thing in upper bounding*. In analogy withBB” we make the next definition. Here and in what
follows all expectations are taken with respect to the umfdistribution.

Definition 12 (Contraction product) Let B be ak-tensor with entries indexed by elements from
Xj X...x X;. We define the contraction productBfalong X, denotedB e; B, to be a2(k — 1)-
tensor with entries indexed by elements fridmx X, x ... x Xy x Xj. Thexy, 25, ..., xg, 2},
entry is defined to be

B ey Blry, 2h, ..., xp, 1)) = By, H Blz1,y2, -, Yk

y2€{:1:27$/2} 7777 yke{xkvx;c}
The contraction product may be defined along other dimessimntatis mutandis.

Notice that whenB is am-by-n matrix B e; B corresponds t¢1/m)BBT. In analogy with
the fact that|| B||> < m||B e; B||, the next lemma gives a corresponding statement forthe
norm andk-tensors. This lemma originated in the work of Babai, Nisam] Szegedy [BNS89]
(see also [Chu90, Raz00]) and all lower bounds on the generdel of randomized number-on-
the-forehead complexity use some version of this lemma.pEncular statement we use is from
Chattopadhyay [Cha07].

Lemma 13 Let B be ak-tensor. Then

< E[|B e, B]]

Proof: The second inequality follows singe(X) < ||X||; for any real tensotX. The first
inequality is standard, and follows by applying the CauSltjnwarz inequality repeatedky— 1
times. O

4.1 Example: Hadamard tensors

We give an example to show how Lemma 13 can be used in conjumeith our;: method. Let
H be aN-by-N Hadamard matrix. We show that°(H) > +/N. Indeed, simply let the witness

13



matrix (Q be H itself. Incidentally, this corresponds to taking the umnifioprobability distribution
in the discrepancy method. With this choice we clearly hdwe @ > 0, and so
(H,H) N?
W) = ) T e

Now we bound.*(H) using Lemma 13 which gives:
p(H)* < N'E[|H e H|| = N

asH e; H has nonzero entries only on the diagonal, and these enteexd enagnitude one.
Ford and Gal [FGO5] extend the notion of matrix orthogadyab tensors, defining what they
call Hadamard tensors.

Definition 14 (Hadamard tensor) Let H be a sigrk-tensor. We say thdi is a Hadamard tensor
if

(H oy H)[x9,2h, ..., 25,1.,] =0
whenever; # z forall i =2,... k.
The simple proof above for Hadamard matrices can be eadiyndrd to Hadamard tensors:
Theorem 15 (Ford and Gal [FGO05]) Let H be a Hadamard:-tensor of side lengttV. Then

N 1/2k71
L H)> | ——

Proof: We again take the witnesgg to be H itself. This clearly satisfies/ o () > 0, and so
(H H)  NF
W) = ) T e
It now remains to upper bound (H ) which we do by Lemma 13. This gives us
pr(H)* " < N E[|H ey H|]

The “Hadamard” property of{ lets us easily upper bourid]|H e, H|]. Note that each entry of
H e H is of magnitude at most one, and the probability of a non-eatoy is at most

2k71

kE—1
PrVF (2 = 20)] < ——
I'[ 2—2("1: xz)] — N
by a union bound. Hence, we obtain
- NF
H? < (k-1
W HPT < (k= )=

Putting everything together, we have

Remark 16 By doing a more careful inductive analysis, Ford anél@btain this result without
thek — 1 term in the denominator. They also construct explicit edaspf Hadamard tensors.
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5 Lower bounds onyu® for pattern tensors

In Section 5.1 we describe a key lemma which relates the appate polynomial degree of to
the existence of a hard input “distribution” fgr This will only truly correspond to a distribution
in the case of discrepancy—otherwise it can take on negadilvees. This lemma was first used in
the context of communication complexity by Sherstov [SHe®®l independently by Shi and Zhu
[SZ07].

In Section 5.2 we use this distribution, together with thechiaery developed in Section 4
to prove lower bounds on a special kind of tensors, name@npatensors. The application to
disjointness appears in Section 6.1.

5.1 Dual polynomials

We define approximate degree in a slightly non-standard wagdre smoothly handle both the
boundedv anda = oo cases.

Definition 17 Let f : {—1,+1}" — {—1,1}. For o > 1 we say that a functiog gives ana-
approximation tof if 1 < g(z)f(z) < aforall z € {—1,+1}". Similarly we say thay gives an
oo-approximation tof if 1 < g(z) f(z) forall z € {—1, +1}". We let thex-approximate degree of
f, denotedleg,, (f), be the smallest degree of a functipwhich gives amv-approximation tof.

Remark 18 In a more standard scenario, one is considering a 0/1 valuedtion f and defines
the approximate degree akg’ (f) = min{deg(g) : ||f — g/l« < €}. Letting f+ be the sign
representation off, one can see that far < ¢ < 1/2 our definition is equivalent to the standard

one in the following senseteg.(f) = deg,, (f+) wherea, = {2,

For a fixed natural numbet, let o;( f) be the smallest value af for which there is a degree
d polynomial which gives am-approximation tof. Notice thato,(f) can be written as a linear
program. Namely, leB(n, d) = E?:o ("), andW be a2"-by-B(n, d) incidence matrix, with rows
labelled by strings: € {—1, +1}" and columns labeled by monomials of degree at niog¥e set
W (z, m) = m(zx), wherem(x) is the evaluation of the monomial on inputz. Then

aq(f) = min{[[Wyll : 1 < Wyo [}

If this program is infeasible with value—that is, if there is no degreépolynomial which gives
an«a-approximation tof —then the feasibility of the dual of this program will give aswitness”
to this fact. We refer to this witness as a dual polynomialffoit is this witness that we will use
to construct a tensd@p which witnesses that® is large.

Lemma 19 L o f)
+ (v, T
) = { L o = 107w — 0}
Proof: Follows from duality theory of linear programming. O
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Corollary 20 (Sherstov Corollary 3.3.1 [She08], Shi-Zhu Setion 3.1 [SZ07]) Letf : {—1,+1}" —
R and letd = deg,,(f). Then there exists a functioan: {—1,+1}" — R such that

1. (v, xr) = 0 whenevellT'| < d.
2. ||v|ly = 1.
3. (v.f) > &5

a+1"

Whena = oo, there is a functiorv : {—1,+1}" — R satisfying items (1), (2), and such that
v(z)f(z) > 0forall z € {—1,+1}".

Spalek Bpa08] has given an explicit construction of an optimal ghedynomial for theOR
function. For our analysis, however, we only make use of ttupgrties guaranteed by Corol-
lary 20.

5.2 Pattern Tensors

We define a natural generalization of the pattern matric&shefstov [She07] to the tensor case.
We use a slightly different definition of pattern tensorsntliaat of Chattopadhyay [Cha07] to
allow the reduction to disjointness.

Let¢ : {—1,4+1}"™ — R be a function and\/ a natural number. We definekadimensional
pattern tensor,, »;, as follows. Letr € {—1,+1}™M""", We viewz = (z,...,2™) as con-
sisting ofm many blocks, where each € {—1,+1}*""" can be viewed asa— 1 dimensional
tensor of side lengtld/. We further lety; € [M]|™ for eachi = 1,...,k — 1 and view each

vi = (y[1],-..,y:|m]) as consisting ofn-blocks wherey;[j] € [M] is an index into a side of'.
Now define
ArmslT, Y1y Ypa] = <b($1[y1[1], oy U] 2™ m]s g [m]]).

Note thatsize(Ag 1) = 2™M" " M™k-1_ We will often use the abbreviation= (1, . . ., yr_1).
A nice property of pattern tensors is that evenbit string z appears as input tvan equal number
of times, over all choices af, 3.

The key lemma about pattern tensors is given next. Such a éewas first shown by Chat-
topadhyay [Cha07]. Chattopadhyay and Ada [CAO08] also shetat@ment similar to this one.

Lemma 21 LetAbe a(k, M, c-¢) pattern tensor, where = 2™size(A)~". Suppose that satisfies
l1(¢) = 1 and¢r = 0 for all setsT" C [m] with || < d. Then

pr(A) <27

provided thatM > 2e(k — 1)22" 'm/d.
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Proof: The idea of the proof will be to bourié| A e; A||] and apply Lemma 13 to obtain an upper
bound onu*(A). For a stringl € {0,1}*~! we use the abbreviatiogf = (', ... ,yﬁ" ). In
particular,y” = (y7, ..., yp_1) andy' = (y1, ..., Y1)

E”A”A”:Qi;?m) po B 1 X 6 [Tobl . olilll] @

=0 TC[m] €T

SWEQO,gl S ITE: ] 2Bl usiil. 6)

To,.Ty—1_, =1 2e{0,1}+—1
|T¢|>d i€Ty

Here we have used the fact thi(l’) < 2-"¢,(¢) = 27"

We now develop a sufficient condition in termsidf 5! andTy, . .., Thx-1_4, for the product
of expectations over’ to be zero. We say that’, ! select a nondegenerate cube in position

i if yfli] # yj[] forall j = 1,...,k — 1. The reason for this terminology is that in this case

(yi), . . . ,yk '[i]) define2k-1 dlstlnct points over € {0,1}¢~1. If this is not the case, we say
thaty°, ' select a degenerate cube in position

Notice that if 5°, 5' select a nondegenerate cube in positioa [m] and: € T, for some
¢ €{0,1}*1 then

B [ Wil 0l =o.
2e{0,1}*1
ieTy

We will now upper bound the probability over the choice®fy! andTy, . .., Th-1_, that this
does not happen. Suppose thaty' selecty many degenerate cubes. By the above reasoning the
number of setgy, . .., Tox—1_; which lead to a nonzero expectation is at most

2/071

(= 0) ==

Now we bound the probability that, ' selecty many degenerate cubes. The probability that
y?[ i = yjli ![i] is 1/M. Thus by a union bound, the probability that a single cubesigederate is
at most(k — 1)/M. Finally, as each index is chosen independently, the pibtyabf ¢ many

degenerate cubes is at most
m E—1\"
g M)
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Putting everything together we have

el = o > () (S5)

g=d+

1 " = 1 )22\’
<
= size(A)ZT Z ( )
1
d

g=d+
<
B SiZQ(A)2k71

provided that\/ > 2e(k — 1)2% "'m/d. O

Remark 22 Our analysis cannot be improved by much without using mopdicexinformation
about the Fourier coefficien®T") than given in Corollary 20. Apart from removing the Fourier
coefficients, the only inequality we have used to arrive atdfign (5) is to turn an absolute value
of a sum into a sum of absolute values. Whtr! select a degenerate cube, the most likely case
is that it is what we calll-degenerate—that ig)[t] = v, [t] for exactly onel < i < k — 1. If the
degenerate cubes selectedidyy' are all 1-degenerate, then one can see that the only £Ets
which lead to a nonzero expectation are ones where the/setsme in pairs. The number of such
paired sets{7,} is not significantly smaller than the upper bound we givettfermore, in this
case all Fourier coefficients will be taken to an even powet smno cancellation occurs and the
absolute value of the sum will be equal to the sum of absoéltes.

With this lemma in hand, we can now show our main result, prgeilower bound op® (A iz, f)
in terms of the approximate degree fof

Theorem 23 For a nonnegative integem and a Boolean functiorf on m variables, and an
integerk > 2

oy —
IOg :ua<Ak,J\/[,f> Z degao(f)/Qk_l + 1 0 + 1 )
for everyl < a < ay < oo, providedM > 2e(k — 1)22* 'm/ deg,, (f).

Furthermore,
log 11> (Aparp) = deg (f)/257,

providedM > 2e(k — 1)22° "'m/ deg..(f)
Proof: For simplicity we will drop the subscripts and just writefor A, 5, ;. Recall that

Ay = e LTAAQ) +(A—a)
peA) = Q=1 2u(Q)

max (4,0)
Q:QoA>0 p*(Q)

p>(A) =
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Let ¢ be the vector from Corollary 20 which witnesses that djeapproximate degree of
is at leastd. We let@ be the(k, M, c - q) pattern tensor where = 2™ /size(A). This choice of
normalization implies thatQ||; = 1 as||¢||, = 1.

First consider the case < o < oo. Then we havdg, f) > (ap — 1)/(ap + 1), and so
(A, Q) > (ap—1)/(cvp+1). This allows us to boun(l /2) the term in the numerator @f*(A) as
follows:

(I+a){A,Q)+ (1 —«) S M—a
2 _Oéo—i—l‘

In the casex = oo, observe thaf) inherits the property) o A > 0 asq o f > 0. The fact that
qo f > 0together with||¢||; = 1 gives(f, q) = 1, which in turn implies(A, Q) = 1.

Letd = deg, (f) ord = deg,(f), respectively. As; has no nonzero Fourier coefficients of
degree less thaihby Corollary 20, we can apply Lemma 21 to give

pH(Q) <27,

2/071

under the assumption thaf > 2e(k — 1)2
O

m/d. The statement now follows from Lemma 13.

6 Applications

In this section, we apply Theorem 23 to prove lower bound$ieh-party number-on-the-forehead
randomized communication complexity of disjointness. M formally state the implications
this result has for proof systems via the results of Beantas§li and Segerlind [BPS06].

6.1 A lower bound for disjointness

LetOR,, : {—1,+1}" — {—1,+1} be the OR function on bits, and leDISJ;.,, : ({—1, +1}")* —
{-=1,41} be defined a®ISJ (21, ..., zx) = —OR, (21 Axg. .. A xp).
By embedding a pattern tensor into the terlsétJ, ,,, we can get the following lower bound.

Corollary 24
nl/(k+1))

Ry/4(DISJy,) = Q ( >

Proof: The idea of the proof will be to embed an appropriate patemadr intaDISJ, ,, and apply
Theorem 23. Let;, = 5e(k — 1)22° . As Nisan and Szegedy have showay,(OR,) > 1/n/6,
we wish to define integers:, M such thatM > c,/m andmM*~1 < n. To this end, let
m = LWJ andM = ¢, [/m |. Letn’ = mM*~1. One can easily check that < n.

We will now see that the pattern tengdr, M, OR,,,) is a subtensor 0OR,/(z1 A ... A zy).
This will then give the result by the obvious reductiorx&s Jy, ,,.
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Let A be the(k, M, OR,,) pattern tensor. Recall that

Alx,yr, . Yp—1) = ORm(xl(yl[l], o Uk—1[1])y 2 ml, - yk—1[m]]),

where eachy;[i] € [M], andz’ is ak — 1 dimensional tensor of side lengif. To eachy,[i] we
associate & — 1 tensorz; of side lengthM, wherezi[t,,. .. t,_1] = 1if and only if t; = y;]i].
In this way,z'[y1[1], ..., ye—1[1]] = ORppe—r(z' A2f Ao A zp_y). Lettingz; = (z),..., 2]") we
have

OR,(21A21 .. Azp_1) = ORm(ORym1 (T]AZT A AZ_y)s - o ORpet (T AZT AL AZE ).

This shows thatd is a subtensor of-DISJ; . The result now follows from Theorem 23 and
Theorem 7. O

Remark 25 Note that a statement similar to that of Corollary 24 can bevad for any symmetric
function, not jusiOR. But for some functions (e.g. threshold functions withghcdd a constant
fraction ofn) much better bounds can be proved by reduction to inner prodtr this reason, we
do not include the general statement here.

6.2 Proof systems

In this section we formally define the proof systems discdissehe introduction, and the lower
bounds which follow from our results on disjointness.

A k-threshold formula is a formula of the forn ; y;m; > ¢, wheret, +; are integers, and each
m; is @ monomial over variables,, . .., z,. The size of &-threshold formula is the sum of the
sizes ofy,; andt, written in binary. Fork-threshold formulagi, f», g, we say thay is semantically
entailedby f; andf; if every 0/1 assignmentto,, .. ., z,, that satisfies botlf; and f; also satisfies
qg.

Let ¢ be an unsatisfiable CNF formula with variables ..., z,. For each clause af we
create a linear threshold formula which is satisfied if anly drthe clause is. We refer to these
clauses aaxioms We say tha is aTh(k) refutation of¢ if

e Pisasequencéq,..., L, of k-threshold formulas.

e Each formulaL; is either an axiom or is semantically entailed by formulgasZ,, with
1,1 < j.
e The final formulal, is0 > 1.
The size ofP is the sum of the sizes dfy, ..., L;. We say thafP is tree-likeif the underlying
directed acyclic graph representing the implication strrecof the proof is a tree.

We are now ready to state the connection of [BPS06] betweemtimber-on-the-forehead
complexity of disjointness and the sizedfii(k) proofs.
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Theorem 26 (Beame, Pitassi, and Segerlind [BPS06let £ > 2 be a constant. For every,
there is a CNF formula onn variables such that the size of afifa(k — 1) refutation of¢ is at

least »
( <R§/4<st:rk,m>> )
exp | Q| —/———— .
logn

Substituting the bounds from Corollary 24 we obtain thedwihg.

n2/3

wherem = oo
ogn

Corollary 27 Letk > 2 be a constant. For every there is a CNF formula) overn variables
which requiresTh(k — 1) refutation proofs of size

2/ (9k+9)
o (9 (g )
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