
Using Entanglement in Quantum Multi-Prover Interactive Proofs

Julia Kempe∗

School of Computer Science
Tel Aviv University

Tel Aviv, Israel

Hirotada Kobayashi†

Principles of Informatics Research Division
National Institute of Informatics

Tokyo, Japan

Keiji Matsumoto†

Principles of Informatics Research Division
National Institute of Informatics

Tokyo, Japan

Thomas Vidick‡

Computer Science Division
University of California, Berkeley

USA

Abstract

The central question in quantum multi-prover interactive
proof systems is whether or not entanglement shared among
provers affects the verification power of the proof system.
We study for the first time positive aspects of prior entangle-
ment and show how it can be used to parallelize any multi-
prover quantum interactive proof system to a one-round sys-
tem with perfect completeness, soundness bounded away
from 1 by an inverse polynomial in the input size, and one
extra prover. Alternatively, we can also parallelize to a
three-turn system with the same number of provers, where
the verifier only broadcasts the outcome of a coin flip. This
“public-coin” property is somewhat surprising, since in the
classical case public-coin multi-prover interactive proofs
are equivalent to single prover ones.

1 Introduction

Multi-prover interactive proof systems are a central no-
tion in theoretical computer science. An important general-
ization of interactive proof systems [13, 4], they were orig-
inally introduced in [6] in a cryptographic context. Later it
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was shown [5, 12] that the class MIP of languages having
a multi-prover interactive proof system is equal to NEXP,
which led to the development of the theory of inapproxima-
bility and probabilistically checkable proofs [10, 3, 2].

In a multi-prover interactive proof system, a verifier
communicates with several provers, who do not communi-
cate with each other. One of the central challenges in this
area is to understand the power of quantum multi-prover in-
teractive proof systems (QMIP systems). In particular, the
major open question is how entanglement shared among
the provers affects these systems. This question is unique
to the quantum world, since the related classical resource
of shared randomness is known not to affect the power of
such systems. It is not even clear whether entanglement
increases or decreases the verification power of QMIP sys-
tems. On one hand, using entanglement, dishonest provers
might cheat more easily, thereby breaking the soundness of
the system. On the other hand, the increased power that en-
tanglement gives to honest provers could be harnessed by
the verifier, increasing the expressivity of the proof system.

To the best of our knowledge, all previous results in this
area (see below) have focused on the former case, studying
the negative effects of entanglement, i.e., whether or not
dishonest entangled provers can break proof systems that
are sound for any dishonest unentangled provers. Our work
is the first to focus on the positive aspects of entanglement,
where shared entanglement may be advantageous to honest
provers.

1.1 Previous and related work

Watrous [25] defined quantum interactive proof systems
(QIP) with a single prover in analogy with classical single-
prover interactive proofs, and proved that PSPACE had
3-message quantum interactive proofs. Kitaev and Wa-
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trous [18] showed that these systems can be made perfect
complete and can be parallelized to three turns. As such,
some of our results can be seen as generalizations to the
multi-prover case, and some of our proof techniques origi-
nate in that paper. Kitaev and Watrous also showed a paral-
lel repetition theorem for QIP, which is currently not known
to hold in the multi-prover case.

Kobayashi and Matsumoto [19] introduced QMIP sys-
tems with a quantum verifier, and proved that the class of
languages having a quantum multi-prover interactive proof
system is equal to NEXP when the provers do not share
any prior entanglement, and is contained in NEXP when
they share at most polynomially many entangled qubits.
Cleve, Høyer, Toner, and Watrous [9] studied multi-prover
interactive proof systems in which the verifier remains clas-
sical but provers may initially share entanglement, and
presented several protocols for which shared EPR pairs
can increase the power of dishonest provers. They also
proved that the class of languages having some restricted
version of multi-prover interactive proof system, denoted
by ⊕MIP∗(2, 1), is contained in EXP when provers are
allowed to share prior entanglement (Wehner [27] im-
proved the upper bound to QIP(2), the class of lan-
guages having a two-message quantum interactive proof
system), which is in stark contrast to the corresponding
class ⊕MIP(2, 1) without prior entanglement, which is
equal to NEXP. Very recently, Kempe, Kobayashi, Mat-
sumoto, Toner, and Vidick [15] gave limits on the cheat-
ing power of dishonest entangled provers in some quan-
tum and classical multi-prover interactive proof systems,
by showing how such proof systems can be “immunized”
against the use of entanglement by dishonest provers.
Ito, Kobayashi, Preda, Sun, and Yao [14] and Cleve, Gavin-
sky, and Jain [8] also gave limits on the cheating power of
entangled provers for some classical multi-prover interac-
tive proof systems.

All these studies focus only on the negative aspects of
prior entanglement, i.e., whether or not dishonest but prior-
entangled provers can break the soundness of the proof sys-
tem.

1.2 Our Results

This paper studies the positive aspects of prior entangle-
ment and shows a number of general properties of QMIP
systems, extensively using prior entanglement for honest
provers. Our main theorem states that any quantum k-
prover interactive proof system that may involve polynomi-
ally many rounds can be parallelized to a one-round quan-
tum (k + 1)-prover interactive proof system of perfect com-
pleteness and such that the gap between completeness and
soundness accepting probabilities is still bounded by an
inverse-polynomial.

To state our results more precisely, let QMIP(k,m, c, s)
denote the class of languages having an m-turn quantum k-
prover interactive proof system with completeness at least c
and soundness at most s, where provers are allowed to share
an arbitrary amount of entanglement. We call the difference
c−s the “gap” in this paper. As commonly used in classical
multi-prover interactive proofs we use the term “round” to
describe an interaction consisting of questions from the ver-
ifier followed by answers from the provers. We use the term
“turn” for messages sent in one direction. One round con-
sists of two turns: a turn for the verifier and a turn for the
provers. Let poly and poly−1 be the sets of all functions
upper-bounded by a polynomial and lower-bounded by an
inverse polynomial in the input size, respectively. Through-
out this paper we assume that the numberm of turns and the
number k of provers are functions in poly, and that com-
pleteness c and soundness s are functions of the input size
c, s : Z

+ → [0, 1]. We show the following main theorem.

Theorem 1. For any k,m ∈ poly and c, s satisfying
c− s ∈ poly−1 there exists a function p ∈ poly such that

QMIP(k,m, c, s) ⊆ QMIP
(
k + 1, 2, 1, 1 − 1

p

)
.

Since it is easy to amplify the success probability with-
out increasing the number of rounds by running multiple
instances of a proof system in parallel using a different set
of provers for every instance, the above theorem shows that
one-round (i.e., two-turn) QMIP systems are as powerful as
general QMIP systems.

Corollary 2. For any k,m ∈ poly and c, s sat-
isfying c− s ∈ poly−1, and p ∈ poly, there
exists a k′ = O(k pm2/(c − s)2) such that
QMIP(k,m, c, s) ⊆ QMIP(k′, 2, 1, 2−p).

The proof of our main theorem comes in three parts, cor-
responding to Sections 3, 4, and 5. The first part shows
how to convert any QMIP system with two-sided bounded
error into one with one-sided bounded error of perfect com-
pleteness without changing the number of provers. The sec-
ond part shows that any QMIP system with polynomially
many turns can be parallelized to one with only three turns
in which the gap between completeness and soundness is
still bounded by an inverse-polynomial. Again the number
of provers remains the same in this transformation. Finally,
the third part shows that any three-turn QMIP system with
sufficiently large gap can be converted into a two-turn (i.e.,
one-round) QMIP system with inverse-polynomial gap, by
adding an extra prover.

Similar statements to our first and second parts have al-
ready been shown by Kitaev and Watrous [18] for single-
prover quantum interactive proofs. Their proofs, however,
heavily rely on the fact that a single quantum prover can ap-
ply arbitrary operators over all the space except for the pri-
vate space of the verifier. This is not the case any more for
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quantum multi-prover interactive proofs, since now a quan-
tum prover cannot access the qubits in the private spaces of
the other quantum provers, in addition to those in the pri-
vate space of the verifier. Hence new methods are required
for the multi-prover case.

To transform proof systems so that they have per-
fect completeness, our basic idea is to adapt the quan-
tum rewinding technique developed for quantum zero-
knowledge proofs by Watrous [26] to our setting. We show
how the main idea behind this technique can be used to
“rewind” an unsuccessful computation that would result in
rejection into a successful one. To this end, we first modify
the proof system so that the honest provers can convince the
verifier with probability exactly 1

2 using some initial shared
state and moreover no other initial shared state achieves a
higher acceptance probability. This initial shared state cor-
responds to the auxiliary input in the case of quantum zero-
knowledge proofs, and as in that scenario we can prove that
the sequence of forward, backward, and forward executions
of the protocol achieves perfect completeness. The obvious
problem of this construction lies in proving soundness, as
the dishonest provers may not use the same strategies for
all of the three executions of the proof system. To settle
this, we design a simple protocol that tests if the second
backward execution is indeed a backward simulation of the
first forward execution. The verifier performs with equal
probability either the original rewinding protocol or this in-
vertibility test without revealing which test the provers are
undergoing. This forces the provers to use essentially the
same strategies for the first two executions of the protocol,
which is sufficient to bound the soundness. As a result we
prove the following.

Theorem 3. For any k,m ∈ poly and c, s satisfying
c− s ∈ poly−1, and p ∈ poly, there exists m′ ∈ poly such
that QMIP(k,m, c, s) ⊆ QMIP(k,m′, 1, 2−p).

For the parallelization to three turns, our approach is to
first show that any QMIP system with sufficiently large gap
can be converted into another QMIP system with the same
number of provers, in which the number of rounds (turns)
becomes almost half of that in the original proof system.
The proof idea is that the verifier in the first turn receives
the snapshot state from the original system after (almost)
half of turns have been executed, and then with equal prob-
ability executes either a forward-simulation or a backward-
simulation of the original system from that turn on. Honest
provers only have to simulate the original system to con-
vince the verifier, while any strategy of dishonest provers
with unallowable high success probability would lead to
a strategy of dishonest provers in the original system that
contradicts the soundness condition. By repeatedly apply-
ing this modification, together with Theorem 3 as prepro-
cessing, we can convert any QMIP system into a three-turn

QMIP system with the same number of provers that still has
an inverse polynomial gap.

Theorem 4. For any k,m ∈ poly and c, s satisfy-
ing c− s ∈ poly−1, there exists p ∈ poly such that

QMIP(k,m, c, s) ⊆ QMIP
(
k, 3, 1, 1 − 1

p

)
.

For k = 1, this gives an alternative proof of the par-
allelization theorem due to Kitaev and Watrous [18] for
single-prover quantum interactive proofs. It is interest-
ing to note that our parallelization method does not need
the controlled-swap test at all, while it is the key test in
the Kitaev-Watrous parallelization method. Another point
worth mentioning in our method is that, at every time step
of our parallelized protocol, the whole system has only one
snapshot state of the original system. This is in contrast
to the fact that the whole system has to simultaneously
treat many snapshot states in the Kitaev-Watrous method.
The merit of our method is, thus, that we do not need to
treat the possible entanglement among different snapshot
states when analyzing soundness, which may be a main rea-
son why our method works well even for the multi-prover
case. Moreover, our method is more space-efficient than the
Kitaev-Watrous method, in particular when we parallelize a
system with polynomially many rounds.

To prove the third part, we will take a detour by proving
that

(i) any three-turn QMIP system with sufficiently large gap
can be modified to a three-turn public-coin QMIP sys-
tem with the same number of provers and a gap of
roughly similar order of magnitude,

(ii) any three-turn public-coin QMIP system can be con-
verted into a two-turn QMIP system without chang-
ing completeness and soundness, by adding one extra
prover.

The notion of public-coin QMIP systems we use is
a natural generalization of public-coin quantum interac-
tive proofs in the single-prover case introduced by Mar-
riott and Watrous [20]. The corresponding complexity class
is denoted by QMIPpub(k,m, c, s) in this paper. Intu-
itively, at every round, a public-coin quantum verifier flips
a fair classical coin at most polynomially many times, and
then simply broadcasts the result of these coin-flips to all
the provers. Property (i) is a generalization of the result by
Marriott and Watrous [20] to the multi-prover case, whereas
property (ii) is completely new. The idea to prove (ii), as-
suming that the number of provers in the original proof sys-
tem is k, is to send questions only to the first k provers
in the new (k + 1)-prover system, requesting the original
second messages from the k provers in the original system.
The verifier expects to receive from the (k + 1)-st prover
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the original first messages from the k provers in the origi-
nal system without asking any question to that prover. The
public-coin property of the original system implies the non-
adaptiveness of the messages from the verifier, which is es-
sential to prove (ii). In fact, there is a way to directly prove
the third part, but our detour enables us to show another two
important properties of QMIP systems. Specifically, prop-
erty (i) essentially proves the equivalence of public-coin
quantum k-prover interactive proofs and general quantum
k-prover interactive proofs, for any k.

Theorem 5. For any k,m ∈ poly and c, s satisfying
c− s ∈ poly−1, and p ∈ poly, there exists m′ ∈ poly such
that QMIP(k,m, c, s) ⊆ QMIPpub(k,m′, 1, 2−p).

Note that in the classical case, public-coin multi-prover
interactive proofs are only as powerful as single-prover in-
teractive proofs: because every prover receives the same
question from the verifier it means that every prover
knows how other provers will behave and the joint strat-
egy of the provers can therefore be simulated by a sin-
gle prover. Hence, these systems cannot be as powerful
as general classical multi-prover interactive proofs unless
NEXP = PSPACE. In contrast, our result shows that in
the quantum case, public-coin QMIP systems are as power-
ful as general QMIP systems. The non-triviality of public-
coin QMIP systems may be explained as follows: even if
every quantum prover knows how other quantum provers
will behave, still each quantum prover can apply only lo-
cal transformations over a part of some state that may be
entangled among the provers, which is not enough to sim-
ulate every possible strategy a single quantum prover could
follow.

Property (ii) for the case k = 1 implies that any language
in QIP (and thus in PSPACE) has a two-prover one-round
quantum interactive proof system of perfect completeness
with exponentially small error in soundness, since any lan-
guage in QIP has a three-message public-coin quantum in-
teractive proof system of perfect completeness with expo-
nentially small error in soundness [20].

Corollary 6. For any p ∈ poly,
QIP ⊆ QMIP(2, 2, 1, 2−p) (and thus
PSPACE ⊆ QMIP(2, 2, 1, 2−p)).

In the classical case a similar statement to the last corol-
lary was shown by Cai, Condon, and Lipton [7] (and the
stronger statement that two-prover one-round interactive
proofs are as powerful as general multi-prover interactive
proofs was shown later by Feige and Lovász [11]). All
these results are, however, not known to hold under the ex-
istence of prior entanglement among the provers. Before
our result, it has even been open if PSPACE has a two-
prover one-round quantum interactive proof system. (Very
recently, Kempe et al. [15] succeeded in proving that the

classical two-prover one-round interactive proof system for
PSPACE in Ref. [7] is sound in a weak sense against
any pair of dishonest prior-entangled provers: soundness is
bounded away from one by an inverse-polynomial. Their
result is incomparable to ours since on one hand we have a
much stronger soundness condition, and on the other both
the verifier and the honest provers must be quantum. In
contrast, in Ref. [15] both of them just follow a classical
protocol.)

Finally, we stress again that our constructions exten-
sively use the prior shared entanglement of the provers in
a positive sense. In particular, even if the honest provers
in the original proof system do not need any prior entan-
glement at all, the honest provers in the constructed proof
system do need prior entanglement in many cases. Most of
the properties proved in this paper (Theorems 1 and 5 and
Corollary 6 in particular) are not known to hold when con-
sidering only initially unentangled honest provers, and thus
give first evidence that sharing prior entanglement may be
advantageous even to honest provers.

2 Preliminaries

We assume that the reader is familiar with the quantum
formalism, including the quantum circuit model and defi-
nitions of mixed quantum states (density operators) and fi-
delity (all of which are discussed in detail in Refs. [22, 17],
for instance). This section summarizes some of the notions
and notations that are used in this paper, reviews the model
of quantum multi-prover interactive proof systems and in-
troduces the notion of public-coin quantum multi-prover in-
teractive proof systems.

As in earlier work [25, 18, 19], we define QMIP sys-
tems in terms of quantum circuits. It is assumed that our
circuits consist of unitary gates, which is sufficient since
non-unitary and unitary quantum circuits are equivalent in
computational power [1]. To avoid unnecessary complica-
tion, however, in the subsequent sections the descriptions
of protocols often include non-unitary operations (measure-
ments). Even in such cases, it is always possible to con-
struct unitary quantum circuits that essentially achieve the
same outcome. A notable exception is in the definition of
the public-coin quantum verifier, where we want to define
the public coin-flip to be a classical operation. This requires
a non-unitary operation for the verifier, the (classical) public
coin-flip.

When proving statements that involve the perfect-
completeness property, we assume that our universal gate
set satisfies some conditions, which may not hold with an
arbitrary universal gate set. Specifically, we assume that
the Hadamard transformation and any classical reversible
transformations are exactly implementable in our gate set.
Note that this condition is satisfied by most of the stan-
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dard gate sets including the Shor basis [23] consisting of
the Hadamard gate, the controlled-i-phase-shift gate, and
the Toffoli gate, and thus, we believe that this condition is
not restrictive. We stress that most of our main statements
do hold with an arbitrary choice of universal gate set (the
completeness and soundness conditions may become worse
by negligible amounts in some of the claims, which does
not affect the final main statements).

All Hilbert spaces in this paper are of dimension a power
of two, spanned by qubits. We will use the following prop-
erty of fidelity.

Lemma 7 ([24, 21]). For any density operators ρ, σ, ξ over
a Hilbert space H, F (ρ, σ)2 + F (σ, ξ)2 ≤ 1 + F (ρ, ξ).

Quantum Multi-Prover Interactive Proof Systems
(QMIP systems): Throughout this paper k and k′ denote
the number of provers and m,m′ denote the number of
turns. All of these are from the set of polynomially bounded
functions in the input size |x|, denoted by poly. Further, c
and s denote functions of the input size into [0, 1] corre-
sponding to completeness and soundness. For notational
convenience in what follows we will omit the arguments of
these functions.

A quantum k-prover interactive proof system consists of
a verifier V with private quantum register V and k provers
P1, . . . , Pk with private quantum registers P1, . . . ,Pk, as
well as quantum message registers M1, . . . ,Mk, which
without loss of generality are assumed to have the same
number of qubits, denoted by qM. One of the private qubits
of the verifier is designated as the output qubit. At the be-
ginning of the protocol, all the qubits in (V,M1, . . . ,Mk)
are initialized to |0 · · · 0〉, and the qubits in (P1, . . . ,Pk) are
in some a priori shared state |Φ〉 prepared by the provers in
advance (and hence possibly entangled), which without loss
of generality can be assumed to be pure. No direct commu-
nication between the provers is allowed after that. The pro-
tocol consists of alternating turns of the provers and of the
verifier, starting with the verifier, if m is even, and with the
provers otherwise. At a turn of the verifier, V applies some
polynomial-time circuit to the qubits in (V,M1, . . . ,Mk),
and then sends each register Mi to prover Pi. At a turn of
the provers each prover Pi applies some transformation to
the registers (Pi,Mi) for 1 ≤ i ≤ k and sends Mi back to
the verifier. The last turn is always a turn for the provers.
After the last turn the verifier applies a polynomial-time cir-
cuit to the qubits in (V,M1, . . . ,Mk), and then measures the
output qubit in the standard basis, accepting if the outcome
is |1〉 and rejecting otherwise.

Formally, an m-turn polynomial-time quantum verifier
V for k-prover QMIP systems is a polynomial-time com-
putable mapping from input strings x to a set of polynomial-
time uniformly generated circuits {V 1, . . . , V �m+1/2�},

and a partition of the space on which they act into regis-
ters (V,M1, . . . ,Mk), which consist of polynomially many
qubits. Similarly an m-turn quantum prover P is a map-
ping from x to a set of circuits {P 1, . . . , P �m+1/2�} each
acting on registers (P,M). No restrictions are placed on the
complexity of this mapping or the size of P. We will de-
note the i-th prover, his registers and transformations with
a subscript i. We will always assume that each prover Pi
is compatible with the verifier, i.e. that the corresponding
register Mi is the same for the verifier and the prover for
1 ≤ i ≤ k.

The protocol (V, P1, . . . , Pk, |Φ〉) is the alternating ap-
plication of prover’s and verifier’s circuits to the state
|0 · · · 0〉⊗|Φ〉 in registers (V,M1, . . . ,Mk,P1, . . . ,Pk). For
odd m, circuits P 1

1 ⊗ · · · ⊗ P 1
k , V 1, P 2

1 ⊗ · · · ⊗ P 2
k ,

V 2 and so on are applied in sequence terminating with
V m+1/2. If m is even, the sequence begins with V 1 fol-
lowed by P 1

1 ⊗ · · · ⊗ P 1
k and so on up to V m+2/2. We

say that (V, P1, . . . , Pk, |Φ〉) accepts x if the designated
output qubit in V is measured in |1〉 at the end of the
protocol and call the probability with which this happens
pacc(x, V, P1, . . . , Pk, |Φ〉).
Definition 8. A language L is in QMIP(k,m, c, s) iff there
exists an m-turn polynomial-time quantum verifier V for
quantum k-prover interactive proof systems such that, for
every input x:

(Completeness) if x ∈ L, there exist m-turn quantum
provers P1, . . . , Pk and an a priori shared state |Φ〉
such that pacc(x, V, P1, . . . , Pk, |Φ〉) ≥ c,

(Soundness) if x 	∈ L, for any m-turn quantum provers
P ′

1, . . . , P
′
k and any a priori shared state |Φ′〉,

pacc(x, V, P ′
1, . . . , P

′
k, |Φ′〉) ≤ s.

Next, we introduce the notions of public-coin quantum
verifier and public-coin QMIP systems. These are natural
generalizations of the corresponding notions in the single-
prover case introduced by Marriott and Watrous [20]. Intu-
itively, a quantum verifier for quantum multi-prover inter-
active proof systems is public-coin if, at each of his turns,
after receiving the message registers from the provers, he
first flips a fair classical coin at most a polynomial num-
ber of times, and then simply broadcasts the result of these
coin-flips to all the provers. No other messages are sent
from the verifier to the provers. At the end of the protocol,
the verifier applies some quantum operation to the messages
received so far, and decides acceptance or rejection.

Formally, an m-turn polynomial-time quantum verifier
for k-prover interactive proof systems is public-coin if each
of the circuits V 1, V 2, . . . , V �m−1/2� implements the fol-
lowing procedure: V receives the message registers Mi

from the provers, stores them in his private space, and then
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flips a classical fair coin at most qM times to generate a pub-
lic string rj , records rj in his private space, and broadcasts
rj to all the provers. The circuit V �(m+1)/2� is some uni-
tary transformation controlled by all the recorded random
strings rj for 1 ≤ j ≤ 
(m− 1)/2�. A QMIP system is
public-coin if the associated verifier is public-coin, and we
define QMIPpub(k,m, c, s) to be the class of languages in
QMIP(k,m, c, s) with a public-coin verifier.

3 QMIP with Perfect Completeness Equals
General QMIP

In this section we prove Theorem 3, showing that any
QMIP system with two-sided bounded error can be trans-
formed into a one with one-sided bounded error of perfect
completeness without changing the number of provers. For
the case of a single prover, this was shown by Kitaev and
Watrous [18], but their proof relies on the single prover per-
forming a global unitary on the whole system, and therefore
does not carry over to the multi-prover case (no prover has
access to the other prover’s private spaces and the private
space of each prover might be arbitrarily large, so we can-
not use the verifier to transfer those spaces from one prover
to the other).

First, we introduce the notion of perfectly rewindable
QMIP systems.

Definition 9. Let s < 1
2 . A language L has a perfectly

rewindable m-turn quantum k-prover interactive proof sys-
tem with soundness at most s iff there exists an m-turn
polynomial-time quantum verifier V , such that, for every
input x:

(Perfect Rewindability) if x ∈ L, there exists a set
of m-turn quantum provers P1, . . . , Pk such that
max|Φ〉 pacc(x, V, P1, . . . , Pk, |Φ〉) = 1

2 , where the
maximum is taken over all a priori shared states |Φ〉
prepared by P1, . . . , Pk.

(Soundness) if x 	∈ L, for any set of m-turn quantum
provers P ′

1, . . . , P
′
k and any a priori shared state |Φ′〉,

pacc(x, V, P ′
1, . . . , P

′
k, |Φ′〉) ≤ s.1

We first show how to modify any general QMIP sys-
tem (with some appropriate conditions on completeness and
soundness) to a perfectly rewindable one with the same k
and m.

Lemma 10. Let c ≥ 1
2 > s. Then, any language L in

QMIP(k,m, c, s) has a perfectly rewindable m-turn quan-
tum k-prover interactive proof system with soundness at
most s.

1Note that both for completeness and soundness we first fix the provers’
transformations and then maximize over all a priori shared states, which
hence have a fixed dimension.

Proof. Let L be a language in QMIP(k,m, c, s) and V
be the corresponding m-turn quantum verifier. We slightly
modify V to construct another m-turn quantum verifier W
for a perfectly rewindable proof system for L. The new ver-
ifier W , in addition to the registers of V , prepares another
single-qubit register B, initialized to |0〉. For the first m− 2
turns, W simply simulates V . In the (m− 1)-st turn, a turn
for the verifier, W proceeds like V would, but sends B to
the first prover in addition to the qubits V would send in
the original proof system. In the m-th turn the first prover
is requested to send B back to W , in addition to the qubits
sent to V in the original proof system. ThenW proceeds for
the final decision procedure like V would, but accepts iff V
would have accepted and B is in the state |1〉. Notice that
W accepts only if V would have accepted, so the soundness
is obviously at most s in the constructed proof system.

For perfect rewindability we slightly modify the protocol
for honest provers in the case x ∈ L. Let |Φ∗〉 be the a priori
shared state in the original proof system that maximizes the
acceptance probability for the original honest provers and
let pmax be that maximal acceptance probability. The new
provers use |Φ∗〉 as the a priori shared state and simulate the
original provers except for the last turn. The only difference
is that in the last turn the first prover proceeds as P1 would,
and applies a one-qubit unitary T to the qubit in B,

T : |0〉 →
√

1 − 1
2pmax

|0〉 +
√

1
2pmax

|1〉.

From the construction it is obvious that the maximum ac-
cepting probability is exactly equal to 1

2 and that this max-
imum is achieved when the provers use the a priori shared
state |Φ∗〉.

Now, we are ready to show the following lemma.

Lemma 11. Let c ≥ 1
2 and s < 1

25 . Then,
QMIP(k,m, c, s) ⊆ QMIP

(
k, 3m, 1, 1

2 + 2
√
s+ 5s

2

)
.

Proof. The intuitive idea behind the proof of this lemma,
using Watrous’ “quantum rewinding technique”, has al-
ready been explained in the introduction. We add some
more intuition before proceeding to the technical proof. Us-
ing Lemma 10 we can assume that in the case of honest
provers (x ∈ L) the acceptance probability with shared
state |Φ∗〉 is exactly 1

2 and furthermore that no other a pri-
ori shared state achieves higher acceptance probability. The
acceptance probability when the provers use any a priori
shared state |Φ〉 can be written as pacc = ‖ΠaccQ|Ψ〉‖2 =
‖ΠaccQΠinit|Ψ〉‖2, where |Ψ〉 = |0 · · · 0〉(V,M1,...,Mk) ⊗
|Φ〉, Q is the unitary transformation induced by the QMIP
system just before the verifier’s final measurement, Πinit is
the projection on |0 · · · 0〉(V,M1,...,Mk) and Πacc is the pro-
jection on |1〉 of the designated output qubit. In other words
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the state |Ψ∗〉 = |0 · · · 0〉(V,M1,...,Mk) ⊗ |Φ∗〉 maximizes the
expression

max
|Ψ〉

〈Ψ|ΠinitQ
†ΠaccQΠinit|Ψ〉,

meaning that the matrixM = ΠinitQ
†ΠaccQΠinit has max-

imum eigenvalue 1
2 with corresponding eigenvector |Ψ∗〉.

Now we apply the quantum rewinding technique by per-
forming forward, backward, and forward executions of the
proof system in sequence. Perfect completeness follows
from the fact that the initial state is an eigenvector of M
with the corresponding eigenvalue exactly 1

2 , and the porof
is similar to that of the zero-knowledge scenario of [26].

The challenge of this construction lies in the proof of
soundness. If the input is a no-instance, the maximum
eigenvalue of any matrixM corresponding to our proof sys-
tem is small. This shows that if the dishonest provers are ac-
tually “not so dishonest”, i.e., if they use the same strategies
for all of the three (forward, backward, and forward) execu-
tions of the original proof system, the acceptance probabil-
ity is still small. However, the problem arises when the dis-
honest provers change their strategies for some of the three
executions. To settle this, we design a simple protocol that
tests if the backward execution is indeed a backward simu-
lation of the first forward execution. The verifier performs
the original rewinding protocol or this invertibility test uni-
formly at random without revealing which test the provers
are undergoing. Honest provers always pass this invertibil-
ity test, and thus perfect completeness is preserved. When
the input is a no-instance, this forces the provers to use ap-
proximately the same strategies for the first two executions
of the proof system, which is sufficient to bound the sound-
ness.

We now proceed with the technical details. Let L be a
language in QMIP(k,m, c, s) and let V be the verifier in
the perfectly rewindable m-turn quantum k-prover interac-
tive proof system for L as per Lemma 10. We construct a
3m-turn quantum verifierW of a new quantum k-prover in-
teractive proof system for L. W has the same registers as V
in the original proof system, and performs one of two tests,
which we call “REWINDING TEST” and “INVERTIBILITY

TEST”. The exact protocol is described below, where for
simplicity it is assumed that m is even (the case in which m
is odd can be proved in a similar manner).

Verifier’s Protocol for Perfect Completeness

1. Simulate the original verifier for the first m turns.

2. Choose b ∈ {0, 1} uniformly at random. If b = 0,
move to the REWINDING TEST described in Step 3,
while if b = 1, move to the INVERTIBILITY TEST de-
scribed in Step 4.

3. (REWINDING TEST)

3.1. Apply V
m
2 +1 to the qubits in (V,M1, . . . ,Mk).

Accept if the content of (V,M1, . . . ,Mk) cor-
responds to an accepting state in the original
proof system. Otherwise apply (V

m
2 +1)† to the

qubits in (V,M1, . . . ,Mk), and send Mi to the ith
prover, for 1 ≤ i ≤ k.

3.2. For j = m
2 down to 2, do the following:

Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply (V j)† to the qubits in (V,M1, . . . ,Mk),
and send Mi to the ith prover, for 1 ≤ i ≤ k.

3.3. Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply (V 1)† to the qubits in (V,M1, . . . ,Mk).
Perform a controlled-phase-flip: multiply the
phase by −1 if all the qubits in (V,M1, . . . ,Mk)
are in state |0〉. Apply V 1 to the qubits in
(V,M1, . . . ,Mk), and send Mi to the ith prover,
for 1 ≤ i ≤ k.

3.4. For j = 2 to m
2 , do the following:

Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply V j to the qubits in (V,M1, . . . ,Mk), and
send Mi to the ith prover, for 1 ≤ i ≤ k.

3.5. Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply V

m
2 +1 to the qubits in (V,M1, . . . ,Mk).

Accept if the content of (V,M1, . . . ,Mk) corre-
sponds to an accepting state in the original proof
system, and reject otherwise.

4. (INVERTIBILITY TEST)

4.1. Send Mi to the ith prover, for 1 ≤ i ≤ k.

4.2. For j = m
2 down to 2, do the following:

Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply (V j)† to the qubits in (V,M1, . . . ,Mk),
and send Mi to the ith prover, for 1 ≤ i ≤ k.

4.3. Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply (V 1)† to the qubits in (V,M1, . . . ,Mk).
Accept if all the qubits in (V,M1, . . . ,Mk) are in
state |0〉, and reject otherwise.

Completeness: Assume the input x is in L. From
the original provers P1, . . . , Pk we design honest provers
R1, . . . , Rk for the constructed 3m-turn system. Each new
prover Ri has the same quantum register Pi as Pi has,
and the new provers initially share |Φ∗〉. For the first m
turns each Ri simulates Pi. At the (m + 2j)-th turn for

1 ≤ j ≤ m
2 , Ri applies (P

m
2 −j+1
i )† (i.e. the inverse of the

(m − 2j + 2)-nd turn of the original Pi) . Finally, for the
(2m+ 2j)-th turn for 1 ≤ j ≤ m

2 , Ri again applies P ji .
It is obvious from this construction that the provers

R1, . . . , Rk can convince W with certainty when W per-
forms the INVERTIBILITY TEST. We show thatR1, . . . , Rk
can convince W with certainty even when W performs the
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REWINDING TEST. In short, this holds for essentially the
same reason that the quantum rewinding technique works
well in the case of quantum zero-knowledge proofs, and we
will closely follow that proof.

For notational convenience, let P̃ j = P j1 ⊗ · · · ⊗ P jk for
1 ≤ j ≤ m

2 , and let Q = V
m
2 +1P̃

m
2 V

m
2 · · · P̃ 1V 1. Recall

that M |Ψ∗〉 = 1
2 |Ψ∗〉 where M = ΠinitQ

†ΠaccQΠinit.
Define the unnormalized states |φ0〉 = ΠaccQ|Ψ∗〉,
|φ1〉 = ΠrejQ|Ψ∗〉, |ψ0〉 = ΠinitQ

†|φ0〉, and |ψ1〉 =
ΠillegalQ

†|φ0〉 where Πillegal = I(V,M1,...,Mk) − Πinit is the
projection onto states orthogonal to |0 · · · 0〉(V,M1,...,Mk)

and Πrej = I(V,M1,...,Mk) − Πacc. Then, noticing that
|Ψ∗〉 = Πinit|Ψ∗〉, we have

|ψ0〉 = ΠinitQ
†ΠaccQ|Ψ∗〉

= ΠinitQ
†ΠaccQΠinit|Ψ∗〉 = M |Ψ∗〉 =

1
2
|Ψ∗〉

and thus,

Q†|φ1〉 = Q†ΠrejQ|Ψ∗〉 = |Ψ∗〉 −Q†ΠaccQ|Ψ∗〉
= |Ψ∗〉 −Q†|φ0〉 = |ψ0〉 − |ψ1〉.

Hence, the state just before the controlled-phase-flip in
Step 3.3 when entering the REWINDING TEST is exactly

1
‖|φ1〉‖Q

†|φ1〉 =
1

‖|φ1〉‖ (|ψ0〉 − |ψ1〉).

Since Πinit|ψ0〉 = |ψ0〉 and Πinit|ψ1〉 = 0, the controlled-
phase-flip changes the state to

− 1
‖|φ1〉‖ (|ψ0〉 + |ψ1〉) = − 1

‖|φ1〉‖Q
†|φ0〉.

Therefore, the state just after V
m
2 +1 is applied in Step 3.5

is exactly

− 1
‖|φ1〉‖QQ

†|φ0〉 = − 1
‖|φ1〉‖ |φ0〉,

and thus, the fact that Πacc|φ0〉 = |φ0〉 implies that the ver-
ifier W always accepts in Step 3.5.

Soundness: Now suppose that the input x is not in L. Let
R′

1, . . . , R
′
k be any k provers for the constructed 3m-turn

proof system, and let |ψ〉 be any a priori shared state. LetRji
be the transformation that R′

i applies at his 2j-th turn, for
1 ≤ i ≤ k and 1 ≤ j ≤ 3m

2 and let Z denote the controlled-

phase-flip operator in Step 3.3. Call R̃j = Rj1 ⊗ · · · ⊗Rjk
for 1 ≤ t ≤ 3m

2 , and define

U1 = R̃
m
2 V

m
2 · · · R̃2V 2R̃1V 1,

U2 = (V 1)†R̃m · · · (V m
2 −1)†R̃

m
2 +2(V

m
2 )†R̃

m
2 +1,

U3 = R̃
3m
2 V

m
2 · · · R̃m+2V 2R̃m+1V 1.

There are three cases of acceptance in the constructed proof
system. In the first case, the verifier W performs the
REWINDING TEST and accepts in Step 3.1. This happens
with probability p1

2 , where

p1 = ‖ΠaccV
m
2 +1U1|ψ〉‖2.

In the second case, the verifier W performs the REWIND-
ING TEST and accepts in Step 3.5. This happens with prob-
ability p2

2 , where

p2 = ‖ΠaccV
m
2 +1U3ZU2(V

m
2 +1)†ΠrejV

m
2 +1U1|ψ〉‖2.

Finally, in the third case, the verifier W performs the IN-
VERTIBILITY TEST and accepts in Step 4.3. This happens
with probability p3

2 , where

p3 = ‖ΠinitU2U1|ψ〉‖2.

Hence, the total probability pacc that W accepts x
when communicating with R′

1, . . . , R
′
k is given by

pacc = 1
2 (p1 + p2 + p3). From the soundness condition of

the original proof system, it is obvious that p1 ≤ s. We
shall show that p2 ≤ 1 + 4

√
s+ 4s− p3. This implies that

pacc ≤ 1
2 + 2

√
s+ 5s

2 , and the soundness condition fol-
lows.

Using the triangle inequality, we have that

‖ΠaccV
m
2 +1U3ZU2(V

m
2 +1)†ΠrejV

m
2 +1U1|ψ〉‖

≤ ‖ΠaccV
m
2 +1U3ZU2(V

m
2 +1)†ΠrejV

m
2 +1U1|ψ〉

− ΠaccV
m
2 +1U3ZU2U1|ψ〉‖

+ ‖ΠaccV
m
2 +1U3ZU2U1|ψ〉

− ΠaccV
m
2 +1U3ZΠinitU2U1|ψ〉‖

+ ‖ΠaccV
m
2 +1U3ZΠinitU2U1|ψ〉‖.

(1)

The first term (a) of the right-hand side of inequality (1)
can be bounded from above as follows:

(a) ≤ ‖V m
2 +1U3ZU2(V

m
2 +1)†ΠrejV

m
2 +1U1|ψ〉

− V
m
2 +1U3ZU2U1|ψ〉‖

= ‖(V m
2 +1)†ΠrejV

m
2 +1U1|ψ〉 − U1|ψ〉‖

= ‖ΠrejV
m
2 +1U1|ψ〉 − V

m
2 +1U1|ψ〉‖

= ‖ − ΠaccV
m
2 +1U1|ψ〉‖

= ‖ΠaccV
m
2 +1U1|ψ〉‖ =

√
p1 ≤ √

s.

The second term (b) of the right-hand side of inequality (1)
can be bounded from above as follows:

(b) ≤ ‖V m
2 +1U3ZU2U1|ψ〉 − V

m
2 +1U3ZΠinitU2U1|ψ〉‖

= ‖U2U1|ψ〉 − ΠinitU2U1|ψ〉‖
= ‖ΠillegalU2U1|ψ〉‖ =

√
1 − p3.
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Here the last equality follows from the facts that
U2U1|ψ〉 = ΠinitU2U1|ψ〉 + ΠillegalU2U1|ψ〉 is a unit vec-
tor, that ΠinitU2U1|ψ〉 and ΠillegalU2U1|ψ〉 are orthogonal,
and that ‖ΠinitU2U1|ψ〉‖2 = p3.

Finally, since ΠinitU2U1|ψ〉 is an unnormalized state
parallel to some legal initial state and ZΠinit = −Πinit

from the definitions of Z and Πinit, the third term (c) of
the right-hand side of inequality (1) can be bounded as fol-
lows by using the soundness condition of the original proof
system:

(c) = ‖ − ΠaccV
m
2 +1U3ΠinitU2U1|ψ〉‖

= ‖ΠaccV
m
2 +1U3ΠinitU2U1|ψ〉‖ ≤ √

s

Putting everything together, we have

p2 = ‖ΠaccV
m
2 +1U3ZU2(V

m
2 +1)†ΠrejV

m
2 +1U1|ψ〉‖2

≤ (2
√
s+

√
1 − p3)2 = 1 + 4

√
s(1 − p3) + 4s− p3

≤ 1 + 4
√
s+ 4s− p3,

as desired.

To finish the proof of Theorem 3 it suffices to repeat se-
quentially the proof system obtained in Lemma 11 an ap-
propriate number of times (and accept if and only if all the
original verifiers would have accepted every time). To see
that this reduces soundness exponentially with the number
of repetitions, imagine by contradiction that there exists a
set of provers that succeeds in the k-th repetition of the pro-
tocol with probability s′ greater than the original protocol’s
soundness s. Then we can construct provers for the origi-
nal protocol by letting them initially share the state of the
provers at the end of the k − 1-st repetition of the new pro-
tocol. These provers would be accepted with probability
s′ > s, a contradiction.

4 Parallelizing to Three Turns

In this section we prove Theorem 4, which reduces the
number of turns to three without changing the number of
provers. This is done by repeatedly converting any (2l + 1)-
turn QMIP system into a (2l−1 + 1)-turn QMIP system
where the gap decreases, but is still bounded by an inverse-
polynomial. We first show the following lemma.

Lemma 12. Let c2 > s. Then,

QMIP(k, 4m+ 1, c, s) ⊆ QMIP
(
k, 2m+ 1, 1+c

2 , 1+
√
s

2

)
.

Proof. Let L be a language in QMIP(k, 4m+ 1, c, s) and
let V be the corresponding (4m+ 1)-turn quantum verifier.
We construct a (2m+ 1)-turn quantum verifier W for the
new quantum k-prover interactive proof system for L. The
idea is that W first receives the snapshot state that V would

have in (V,M1, . . . ,Mk) just after the (2m+ 1)-st turn of
the original system. W then executes with equal probability
either a forward-simulation of the original system from the
(2m+ 1)-st turn or a backward-simulation of the original
system from the (2m+ 1)-st turn. In the former case, W
accepts if and only if the simulation results in acceptance in
the original proof system, while in the latter caseW accepts
if and only if the qubits in V are in state |0 · · · 0〉.2 Here is a
detailed description of the protocol:

Verifier’s Protocol to Half the Number of Turns

1. Receive V and M1 from the first prover and Mi from
the ith prover for 2 ≤ i ≤ k.

2. Choose b ∈ {0, 1} uniformly at random.

3. If b = 0, execute a forward-simulation of the original
proof system as follows:

3.1. Apply V m+1 to the qubits in (V,M1, . . . ,Mk).
Send b and Mi to the ith prover, for 1 ≤ i ≤ k.

3.2. For j = m+ 2 to 2m, do the following:
Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply V j to the qubits in (V,M1, . . . ,Mk). Send
Mi to the ith prover, for 1 ≤ i ≤ k.

3.3. Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply V 2m+1 to the qubits in (V,M1, . . . ,Mk).
Accept if the content of (V,M1, . . . ,Mk) is an
accepting state of the original proof system, and
reject otherwise.

4. If b = 1, execute a backward-simulation of the original
proof system as follows:

4.1. Send b and Mi to the ith prover, for 1 ≤ i ≤ k.

4.2. For j = m down to 2, do the following:
Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply (V j)† to the qubits in (V,M1, . . . ,Mk).
Send Mi to the ith prover, for 1 ≤ i ≤ k.

4.3. Receive Mi from the ith prover, for 1 ≤ i ≤ k.
Apply (V 1)† to the qubits in (V,M1, . . . ,Mk).
Accept if the qubits in V are in state |0 · · · 0〉, and
reject otherwise.

Completeness: Assume the input x is in L. Let
P1, . . . , Pk be the honest quantum provers in the original
proof system with a priori shared state |Φ〉. Let |ψ2m+1〉 be
the quantum state in (V,M1, . . . ,Mk,P1, . . . ,Pk) just af-
ter the (2m+ 1)-st turn in the original proof system. We
construct honest proversR1, . . . , Rk for the new (2m+ 1)-
turn system. In addition to V and M1, R1 prepares P1 in
his private space. Similarly, in addition to Mi, Ri prepares

2Recall that in the original proof system the first turn was done by the
provers, hence we do not measure the qubits in each Mi here.
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Pi in his private space for 2 ≤ i ≤ k. R1, . . . , Rk initially
share |ψ2m+1〉 in (V,M1, . . . ,Mk,P1, . . . ,Pk). At the first
turn of the constructed proof system, R1 sends V and M1 to
W , while each Ri, for 2 ≤ i ≤ k, sends Mi to W . At the
(2j − 1)-st turn for 2 ≤ j ≤ m+ 1, if b = 0, each Ri ap-
plies Pm+j

i (i.e. Pi’s transformation at the (2m+2j−1)-st
turn in the original system) while if b = 1, each Ri applies
(Pm−j+3
i )† (i.e. the inverse of Pi’s transformation at the

(2m − 2j + 5)-th turn in the original system) to the qubits
in (Pi,Mi), for 1 ≤ i ≤ k. The provers R1, . . . , Rk can
then clearly convince W with probability at least c if b = 0,
and with certainty if b = 1. Hence, W accepts every input
x ∈ L with probability at least 1+c

2 .
Soundness: Now suppose that x is not in L. Let

R′
1, . . . , R

′
k be arbitrary provers for the constructed proof

system, and let |ψ〉 be an arbitrary quantum state that
represents the state just after the first turn in the con-
structed system. Suppose that, at the (2j − 1)-st turn
for 2 ≤ j ≤ m+ 1, each R′

i applies Xj
i if b = 0 and Y ji

if b = 1, for 1 ≤ i ≤ k and write X̃j = Xj
1 ⊗ · · · ⊗Xj

k

and Ỹ j = Y j1 ⊗ · · · ⊗ Y jk . Define unitary transformations
U0 and U1 by U0 = V 2m+1X̃m+1V 2m · · · X̃2V m+1

and U1 = (V 1)†Ỹ m+1 · · · (V m)†Ỹ 2, and
let |α〉 = 1

‖ΠaccU0|ψ〉‖ΠaccU0|ψ〉 and

|β〉 = 1
‖ΠinitU1|ψ〉‖ΠinitU1|ψ〉, where Πacc is the pro-

jection onto accepting states in the original proof system
and Πinit is the projection on |0 · · · 0〉V in V. Then

‖ΠaccU0|ψ〉‖ =
1

‖ΠaccU0|ψ〉‖
∣∣〈ψ|U†

0ΠaccU0|ψ〉
∣∣

= F
(|α〉〈α|, U0|ψ〉〈ψ|U†

0

)
= F

(
U†

0 |α〉〈α|U0, |ψ〉〈ψ|
)

and thus, the probability p0 of acceptance when b = 0
is given by p0 = F

(
U†

0 |α〉〈α|U0, |ψ〉〈ψ|
)2

. Similarly,
the probability p1 of acceptance when b = 1 is given by
p1 = F

(
U†

1 |β〉〈β|U1, |ψ〉〈ψ|
)2

. Hence the probability pacc

that W accepts x when communicating with R′
1, . . . , R

′
k is

given by

pacc =
1
2
(p0 + p1) =

1
2

(
F

(
U†

0 |α〉〈α|U0, |ψ〉〈ψ|
)2

+ F
(
U†

1 |β〉〈β|U1, |ψ〉〈ψ|
)2

)
Therefore, from Lemma 7, we have

pacc ≤ 1
2

(
1 + F

(
U†

0 |α〉〈α|U0, U
†
1 |β〉〈β|U1

))
=

1
2

(
1 + F

(|α〉〈α|, U0U
†
1 |β〉〈β|U1U

†
0

))
Note that Πinit|β〉 = |β〉 and thus |β〉 is a legal quantum
state which could appear in the original proof system just

after the first turn. Hence, from the soundness property of
the original proof system,∥∥ΠaccU0U

†
1 |β〉

∥∥2 =
∥∥ΠaccV

2m+1X̃m+1V 2m · · ·
· · · X̃2V m+1(Ỹ 2)†V m · · · (Ỹ m+1)†V 1|β〉∥∥2 ≤ s

since V 1, (Ỹ m+1)†, · · · , V m, (Ỹ 2)†, V m+1,
X̃2, · · · , V 2m, X̃m+1, V 2m+1 form a legal sequence
of transformations in the original proof system.

Now, from the fact that Πacc|α〉 = |α〉, we have

F
(|α〉〈α|, U0U

†
1 |β〉〈β|U1U

†
0

)
=

∣∣〈α|U0U
†
1 |β〉

∣∣ =
∣∣〈α|ΠaccU0U

†
1 |β〉

∣∣
≤ ‖ΠaccU0U

†
1 |β〉‖ ≤ √

s.

Hence the probability pacc that W accepts x is bounded by
pacc ≤ 1

2 +
√
s

2 , which completes the proof.

Now, by repeatedly applying the construction in the
proof of Lemma 12, we can reduce the number of turns to
three. The proof is straightforward, but we need to care-
fully keep track of the efficiency of the constructed verifiers
in each application, since the construction is sequentially
applied a logarithmic number of times.

Lemma 13. For any m ≥ 4 and any c, s such that
ε = 1 − c and δ = 1 − s satisfy δ > 2(m− 1)ε,
QMIP(k,m, 1 − ε, 1 − δ) ⊆ QMIP (k, 3, 1 − ε′, 1 − δ′) ,
where ε′ = 2ε

m−1 and δ′ = δ
(m−1)2 .

Proof. Let l be such that 2l + 1 ≤ m ≤ 2l+1 + 1. Trivially,
QMIP(k,m, c, s) ⊆ QMIP(k, 2l+1 + 1, c, s). We show
QMIP(k, 2l+1+1, 1−ε, 1−δ) ⊆ QMIP(k, 3, 1− 2ε

m−1 , 1−
δ

(m−1)2 ).
Let L be a language in QMIP(k, 2l+1 + 1, 1 − ε, 1 − δ)

and let V (0) be the corresponding (2l+1 + 1)-turn quan-
tum verifier. Given a description of V (0) one can com-
pute in polynomial time a description of a (2l + 1)-turn
quantum verifier V (1) following the proof of Lemma 12.
The resulting proof system has completeness at least 1 − ε

2

and soundness at most 1
2 +

√
1−δ
2 ≤ 1 − δ

4 . Crucially, the
description of V (1) is at most some constant times the
size of the description of V (0) plus an amount bounded
by a polynomial in |x|. Hence it is obvious that, given
a description of V (0), one can compute in polynomial
time a description of a three-turn quantum verifier V (l)

by repeatedly applying the construction in the proof of
Lemma 12 l times. The resulting proof system has com-
pleteness at least 1 − ε

2l ≥ 1 − 2ε
m−1 and soundness at most

1 − δ
4l ≤ 1 − δ

(m−1)2 , as desired.

Theorem 4 now follows immediately from Theo-
rem 3 and Lemma 13: For every p ∈ poly there is an m′ ∈
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poly such that QMIP(k,m, c, s) ⊆ QMIP(k,m′, 1, 2−p)
⊆ QMIP

(
k, 3, 1, 1 − 1−2−p

(m′−1)2

)
. Now it suffices to observe

that 1−2−p

(m′−1)2 ∈ poly−1.

5 Public-Coin Systems

In this section we present the last part to complete the
proof of Theorem 1. We show how any three-turn QMIP
system with sufficiently large gap can be converted into a
two-turn QMIP system with one extra prover, in which the
gap is bounded by an inverse-polynomial. Although it is
also possible to give a direct proof of this fact, we will take a
detour by showing how (i) any three-turn QMIP system with
sufficiently large gap can be modified to a three-turn public-
coin QMIP system with inverse-polynomial gap without
changing the number of provers, and (ii) any three-turn
public-coin QMIP system can be converted into a two-turn
QMIP system without changing completeness and sound-
ness, by adding an extra prover. The added benefits of
our detour are a proof of the equivalence of public-coin
QMIP systems and general QMIP systems (Theorem 5) and
a proof that QIP and hence PSPACE has a two-prover one-
round quantum interactive proof system of perfect com-
pleteness and exponentially small soundness (Corollary 6).

5.1 Converting to Public-Coin Systems

In this subsection we prove Theorem 5 showing that any
language that has a quantum k-prover interactive proof sys-
tem with two-sided bounded error also has a public-coin
quantum k-prover interactive proof system of perfect com-
pleteness and exponentially small soundness.

We first show that any three-turn QMIP system with suf-
ficiently large gap can be modified to a three-turn public-
coin QMIP system with the same number of provers and
inverse-polynomial gap. In the single-prover case, Mar-
riott and Watrous [20] proved a similar statement. Our proof
is a generalization of their proof (Theorem 5.4 in Ref. [20])
to the multi-prover case.

Lemma 14. For any c, s satisfying c2 > s,
QMIP(k, 3, c, s) ⊆ QMIPpub(k, 3, 1+c

2 , 1+
√
s

2 ). More-
over, the message from the verifier to each prover in the
public-coin system consists of only one classical bit.

Proof. Let L be a language in QMIP(k, 3, c, s) and let V
be the corresponding three-turn quantum verifier. We con-
struct a new verifier W for the public-coin system. The
idea is that in the first turn W receives the reduced state
in the original register V of the snapshot state just after the
second turn (i.e., just after the first transformation of V )
in the original proof system. W then flips a fair classi-
cal coin b ∈ {0, 1} and broadcasts b to the provers. At

the third turn the ith prover is requested to send the reg-
ister Mi of the original proof system, for 1 ≤ i ≤ k. If
b = 0 the qubits in (V,M1, . . . ,Mk) should form the quan-
tum state the original verifier V would possess just after the
third turn of the original proof system. Now W applies V 2

to the qubits in (V,M1, . . . ,Mk) and accepts if and only
if the content of (V,M1, . . . ,Mk) is an accepting state of
the original proof system. On the other hand, if b = 1, the
qubits in (V,M1, . . . ,Mk) should form the quantum state
the original verifier V would possess just after the second
turn of the original proof system. Now W applies (V 1)†

to the qubits in (V,M1, . . . ,Mk) and accepts if and only if
all the qubits in V are in state |0〉. The analysis of com-
pleteness and soundness of the constructed proof system is
nearly identical to the one in Lemma 12, and is relegated to
the full version of this paper [16].

Theorem 5 now follows directly from Theo-
rem 4 and Lemma 14 together with sequential repetition:
Theorem 4 and Lemma 14 imply that there is a p′ ∈ poly
such that

QMIP(k,m, c, s) ⊆ QMIP
(
k, 3, 1, 1 − 1

p′
)

⊆ QMIPpub

(
k, 3, 1, 1 − 1

4p′
)

since 1
2

(
1 +

√
1 − 1

p′

)
≤ 1 − 1

4p′ . Fi-

nally, sequential repetition gives that for all
p ∈ poly there exists an m′ ∈ poly such that
QMIPpub

(
k, 3, 1, 1 − 1

4p′
) ⊆ QMIPpub(k,m′, 1, 2−p).

5.2 Parallelizing to Two Turns

Finally, we prove the last piece of Theorem 1 by show-
ing that any three-turn public-coin quantum k-prover inter-
active proof system can be converted into a two-turn (i.e.,
one-round) (k + 1)-prover system without changing com-
pleteness and soundness. The idea of the proof is to send
questions only to the first k provers to request the original
second messages from the k provers in the original system
and to receive from the (k + 1)-st prover the original first
messages of the k provers in the original system without
asking him any question.

Lemma 15. QMIPpub(k, 3, c, s) ⊆ QMIP(k + 1, 2, c, s).

Proof. Let L be a language in QMIPpub(k,m, c, s) and let
V be the corresponding verifier.

The protocol can be viewed as follows: At the first turn,
V first receives a quantum register Mi from the ith prover,
for each 1 ≤ i ≤ k. V flips a fair classical coin qM times
to generate a random string r of length qM, and broad-
casts r to all the provers. V also stores r in a quantum
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register Q in his private space. Finally, at the third turn,
V receives a quantum register Ni from the ith prover, for
each 1 ≤ i ≤ k. V then prepares a quantum register V for
his work space, where all the qubits in V are initialized
to state |0〉, applies the transformation V final to the qubits
in (Q,V,M1, . . . ,Mk,N1, . . . ,Nk), and performs the mea-
surement Π = {Πacc,Πrej} to decide acceptance or rejec-
tion. We construct a two-turn quantum verifier W for the
new quantum (k + 1)-prover interactive proof system for
L. The constructed prover W starts with generating a ran-
dom string r of length qM in the first turn, and sends r to
the first k provers. W does not send any question to the
last prover. In the second turn W receives Ni from the ith
prover expecting the original second message from the orig-
inal ith prover, for 1 ≤ i ≤ k. From the (k + 1)-st prover
W receives k quantum registers M1, . . . ,Mk, expecting the
original first messages of the original k provers. W then
proceeds like V would. The details and the analysis are
relegated to the full version of this paper [16].

Now Theorem 1 follows from Theorem 4
and Lemmas 14 and 15. Corollary 6, claiming
QIP ⊆ QMIP(2, 2, 1, 2−p) for any p ∈ poly follows
directly from Lemma 15 and the fact shown by Mar-
riott and Watrous [20] that any language in QIP can be
verified by a three-message public-coin quantum interactive
proof system of perfect completeness with exponentially
small error in soundness (i.e., QIP ⊆ QMAM(1, 2−p) for
any p ∈ poly).
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