
8

Planar Graph Isomorphism Is in Log-Space

SAMIR DATTA, Chennai Mathematical Institute, India

NUTAN LIMAYE, IT University of Copenhagen, Denmark

PRAJAKTA NIMBHORKAR, Chennai Mathematical Institute, India

THOMAS THIERAUF, Aalen University, Germany

FABIAN WAGNER, Ulm University, Germany

Graph Isomorphism is the prime example of a computational problem with a wide difference between the

best-known lower and upper bounds on its complexity. The gap between the known upper and lower bounds

continues to be very significant for many subclasses of graphs as well.

We bridge the gap for a natural and important class of graphs, namely, planar graphs, by presenting a

log-space upper bound that matches the known log-space hardness. In fact, we show a stronger result that

planar graph canonization is in log-space.

CCS Concepts: • Theory of computation→ Problems, reductions and completeness;

Additional Key Words and Phrases: Computational complexity, log-space, planar graph isomorphism

ACM Reference format:

Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner. 2022. Planar Graph

Isomorphism Is in Log-Space. ACM Trans. Comput. Theory 14, 2, Article 8 (September 2022), 33 pages.

https://doi.org/10.1145/3543686

1 INTRODUCTION

The graph isomorphism problem, GI, is to decide whether there is a bijection between the vertices
of two graphs that preserves the adjacency relations. The wide gap between the known lower and
upper bounds has kept alive the research interest in GI.

The problem is clearly in NP. It is also in the, intuitively weak, counting class SPP [5]. This is
the current frontier of our knowledge with respect to upper bounds.

Not much is known with respect to lower bounds. GI is unlikely to be NP-hard, because oth-
erwise, the polynomial-time hierarchy collapses to its second level. This result was proved in the
context of interactive proofs in a series of papers [6, 11, 22, 23]. Note that it is not even known
whether GI is P-hard. The best we know is that GI is hard for DET [46], the class of problems
NC1-reducible to the determinant, defined by Cook [14].

This research has been supported by DFG grants TO 200/2-2, Th 472/4, and TH 472/5-1.

Authors’ addresses: T. Thierauf, Aalen University, Germany; email: thomas.thierauf@uni-ulm.de; S. Datta and P. Nimb-

horkar, Chennai Mathematical Institute, India; emails: {sdatta, prajakta}@cmi.ac.in; N. Limaye, IT University of Copen-

hagen, Denmark; email: nuli@itu.dk; F. Wagner, Ulm University, Germany; email: wag.fab.cs@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1942-3454/2022/09-ART8 $15.00

https://doi.org/10.1145/3543686

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

https://orcid.org/0000-0003-2196-2308
https://orcid.org/0000-0002-0238-1674
https://orcid.org/0000-0002-7601-9555
https://orcid.org/0000-0002-2962-594X
https://orcid.org/0000-0002-9860-4421
https://doi.org/10.1145/3543686
mailto:permissions@acm.org
https://doi.org/10.1145/3543686
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543686&domain=pdf&date_stamp=2022-09-14

8:2 T. Thierauf et al.

Known results: While this enormous gap has motivated a study of isomorphism in general

graphs, it has also induced research in isomorphism restricted to special cases of graphs where
this gap can be reduced. We mention some of the known results.

• Tournament graphs are an example of directed graphs where the DET lower bound is pre-
served [48], while there is a quasi-polynomial time upper bound [9].
• Lindell [36] showed that tree isomorphism can be solved in log-space. It is also hard for log-

space [29]. Hence, lower and upper bounds match in this case.
• For interval graphs, the isomorphism problem is in log-space [31].
• For graphs of bounded treewidth, Bodlaender [10] showed that the isomorphism problem can

be solved in polynomial time. Grohe and Verbitsky [24] improved the bound to TC1, and Das,
Tóran, and Wagner [16] to LogCFL. Finally, Elberfeld and Schweitzer [20] showed that it is
in log-space, where it is complete.

In this article, we consider planar graph isomorphism. Weinberg [49] presented an O (n2) algo-
rithm for testing isomorphism of 3-connected planar graphs. Hopcroft and Tarjan [26] extended
this to general planar graphs, improving the time complexity toO (n logn). Hopcroft and Wong [28]
further improved this to linear time. Kukluk, Holder, and Cook [34] gave an O (n2) algorithm for
planar graph isomorphism, which is suitable for practical applications.

The parallel complexity of planar graph isomorphism was first considered by Miller and Reif [39].
They showed that it is in AC3. Then, Gazit and Reif [21] improved the upper bound to AC1; see
also Reference [47].

In the context of 3-connected planar graph isomorphism, Thierauf and Wagner [44] presented
a new upper bound of UL ∩ coUL, making use of the machinery developed for the reachability
problem [43] and specifically for planar reachability [1, 12]. They also show that the problem is L-
hard under AC0-reductions.

There have been several more recent results. The most notable one is a quasi-polynomial time
algorithm for isomorphism of all graphs by Babai [8]. Elberfeld and Kawarbayashi [19] extended
our result from planar graphs to bounded-genus graphs. An interesting result for planar graphs is
by Kiefer et al. [30], where they show that the Weisfeiler-Leman dimension of planar graphs is at
most 3. The log-space isomorphism test for interval graphs has been extended to Helly circular-arc
graphs by Köbler et al. [32]; another extension in this direction is due to Chandoo [13].

Our results: In the current work, we show that planar graph isomorphism is in log-space. This
improves and extends the result in Reference [44]. As it is known that planar graph isomorphism is
hard for log-space, our result implies that planar graph isomorphism is log-space complete. Hence,
we finally settle the complexity of the problem in terms of complexity classes. In fact, we show
a stronger result: We give a log-space algorithm for the planar graph canonization problem. That
is, we present a function f computable in log-space, which maps all planar graphs from an iso-
morphism class to one member of the class. Thereby, we also solve the canonical labeling prob-

lem in log-space, where one has to compute an isomorphism between a planar graph G and its
canon f (G).

Proof outline: Let G be the given connected planar graph we want to canonize. As a high-level
description of our algorithm, we follow Hopcroft and Tarjan [26] and decompose the graphG. The
differences come with the log-space implementation of the various steps.

In more detail, we start by computing the biconnected components ofG from which we get the
biconnected component tree of G. Then, we refine each biconnected component into triconnected
components and compute the triconnected component tree. The actual coding to get a canon for G
starts with the 3-connected components. Our algorithm uses the notion of universal exploration

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:3

sequences from References [33] and [42]. Then, we work our way up to the triconnected and bicon-
nected component trees and finally get a canonization ofG. Thereby, we adapt Lindell’s algorithm
for tree canonization. However, we have to make significant modifications to the algorithm. In
more detail, our algorithm consists of the following steps on input of a connected planar graph G.
All steps can be accomplished in log-space:

(1) Decompose G into its biconnected components and construct its biconnected component

tree ([3], cf. Reference [45]).
(2) Decompose the biconnected planar components into their triconnected components and

construct the triconnected component trees (Section 4.1).
(3) Solve the isomorphism problem for the triconnected planar components (Section 3). In fact,

we give a canonization for these graphs.
(4) Compute a canonization of biconnected planar graphs by using their triconnected compo-

nent trees and the results from the previous step (Section 4).
(5) Compute a canon for G by using the biconnected component tree and the results from the

previous step (Section 5).

In the last two steps, we adapt Lindell’s algorithm [36] for tree canonization.
Note that, without loss of generality, we can assume that the given graphG is connected [42]. If

a given graph, say H , is not connected, then we compute its connected components in log-space
and canonize each of these components with the above algorithm. Then, we put the canons of the
connected components of H in lexicographically increasing order. This obviously gives a canon
for H .

The article is organized as follows: After some preliminaries in Section 2, we start to explain the
canonization of 3-connected graphs in Section 3. In Sections 4 and 5, we push this up to biconnected
and connected graphs, respectively.

Subsequent work: The log-space bound presented here has been extended afterwards to the class
of ofK3,3-minor free graphs and the class ofK5-minor free graphs [18]. The previous known upper
bound for these classes was polynomial time [41].

2 DEFINITIONS AND NOTATION

Space bounded Turing machines and related complexity classes. A log-space bounded Turing ma-
chine is a deterministic Turing machine with a read-only input tape and a separate work tape.
On inputs of length n, the machine may use O (logn) cells of the work tape. By L, we denote the
class of languages decidable by log-space bounded Turing machines. NL is the class of languages
computable by nondeterministic log-space bounded Turing machines. UL is the subclass of NL

where the nondeterministic Turing machines have to be unambiguous, i.e., there exists at most
one accepting computation path.

We also use log-space bounded Turing machines to compute functions. Then, the machine ad-
ditionally has a write-only output tape. The output tape is not counted for the space used by the
machine. That is, the function computed by a log-space bounded Turing machine can be polyno-
mially long.

An important property of log-space computable functions is that they are closed under compo-
sition. That is, given two functions f ,д : Σ∗ → Σ∗, where Σ is an input alphabet, if f ,д ∈ L, then
f ◦ д is also in L (see Reference [35]). Our isomorphism algorithm will compose constantly many
log-space functions as a subroutine. Hence, the overall algorithm will thereby stay in log-space.

Lexicographic order and rank. Let A be a set with a total order <. Then, we extend < to tu-
ples of elements of A in a lexicographic manner. That is, for a1, . . . ,ak ,b1, . . . ,bk ∈ A, we write

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:4 T. Thierauf et al.

(a1, . . . ,ak) < (b1, . . . ,bk) if there is an i ∈ {1, . . . ,k } such that aj = bj for j = 1, . . . , i − 1, and
ai < bi .

For a list L = (x1,x2, . . . ,xn) of elements, the rank of xi is i , the position of xi in L.

Graphs. We assume some familiarity with commonly used graph theoretic notions and standard
graph theoretic arguments; see for example Reference [50]. Here, we define the notions that are
crucial for this article. We will assume that all the graphs are undirected unless stated otherwise.
A graph is regular if all vertices have the same degree. For degree d , we also say thatG is d-regular.

Two graphsG1 = (V1,E1) andG2 = (V2,E2) are said to be isomorphic,G1 � G2 for short, if there
is a bijection ϕ : V1 → V2 such that for all edges (u,v) ∈ E1

(u,v) ∈ E1 ⇐⇒ (ϕ (u),ϕ (v)) ∈ E2.

Graph isomorphism (GI) is the problem of deciding whether two given graphs are isomorphic.
Let G be a class of graphs. Let f : G → {0, 1}∗ be a function such that for all G,H ∈ G, we

have G � H ⇔ f (G) = f (H). Then, we say that f computes a complete invariant for G. In case
that f (G) is itself a graph such that G � f (G), then we call f a canonization of G, and f (G) the
canon of G.

A graph G is called planar if it can be drawn in the plane in such a way that no edges cross
each other, except at their endpoints. Such a drawing of G is called a planar embedding. A planar
embedding ofG divides the plane into regions. Each such region is called a face. For a more rigorous
definition, see for example Reference [40].

ForU ⊆ V , letG (U) be the induced subgraph ofG onU . A graphG = (V ,E) is connected if there
is a path between any two vertices in G.

Let S ⊆ V with |S | = k . We call S a k-separating set ifG (V −S) is not connected. Foru,v ∈ V ,we
say that S separates u from v in G if u ∈ S , v ∈ S , or u and v are in different components of G − S .
A k-separating set is called articulation point (or cut vertex) for k = 1, separating pair for k = 2. A
graphG on more than two vertices is k-connected if it contains no (k−1)-separating set. Hence, a 1-
connected graph is simply a connected graph. A 2-connected graph is also called biconnected. Note,
however, that triconnected will not be used as a synonym for 3-connected. Due to the outcome of
the graph decomposition algorithm, a triconnected graph will be either a 3-connected graph, a
cycle, or a 3-bond. A 3-bond is a multi-graph with two vertices that are connected by three edges.

Let S be a k-separating set in a k-connected graph G. Let G ′ be a connected component
in G (V − S). A split graph or a split component of S in G is the induced subgraph of G on
vertices V (G ′) ∪ S , where we add virtual edges between all pairs of vertices in S . Note that the
vertices of a separating set S can occur in several split graphs of G.

A crucial ingredient in many log-space graph algorithms is the reachability algorithm by
Reingold [42].

Theorem 2.1 ([42]). Undirected s-t-Connectivity is in L.

Below, we give some graph theoretic problems for which a log-space upper bound is known due
to Theorem 2.1.

(1) Graph connectivity. Given a graph G, one has to decide whether G is connected. In the enu-
meration version of the problem, one has to compute all the connected components of G.

To decide whetherG is connected, cycle through all pairs of vertices ofG and check reach-
ability for each pair. To compute the connected component of a vertexv , cycle through all the
vertices of G and output the reachable ones. Clearly, this can be implemented in log-space
with the reachability test as a subroutine.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:5

(2) Separating set. Given a graph G = (V ,E) and a set S ⊆ V , one has to decide whether S is a
separating set in G. In the enumeration version of the problem, one has to compute all the
separating sets of a fixed size k .

Recall that S is a separating set if G − S is not connected. Hence, we have a reduction to
the connectivity problem. To solve the enumeration version for a constant k , a log-space
machine can cycle through all size k subsets of vertices and output the separating ones. In
particular, we can enumerate all articulation points and separating pairs in log-space.

Let d (u,v) be the distance between vertices u and v in G. The eccentricity ε (v) of v is the maxi-
mum distance of v to any other vertex,

ε (v) = max
u ∈V

d (v,u).

The minimum eccentricity over all the vertices inG is called the radius of G. The vertices ofG that
have the eccentricity equal to the radius of the graph form the center of G. In other words, vertices
in the center minimize the maximal distance to the other vertices in the graph. For example, ifG is
a tree of odd diameter, then the center consists of a single node, namely, the midpoint of a longest
path in the tree. Moreover, because distances in a tree can be computed in log-space, also the center
node of a tree can be computed in log-space.

Let Ev be the set of edges incident onv . A permutation ρv on Ev that has only one cycle is called
a rotation. A rotation system for a graph G is a set ρ of rotations,

ρ = { ρv | v ∈ V and ρv is a rotation on Ev }.

A rotation system ρ encodes an embedding of graph G on an orientable surface by describing a
circular ordering of the edges around each vertex. If the orientable surface has genus zero, i.e., it
is a sphere, then the rotation system is called a planar rotation system.

Conversely, a graph embedded on a plane uniquely defines a cyclic order of edges incident on
any vertex. The set of all cyclic orders gives a rotation system for the planar graph, which is a
planar rotation system by definition. All embeddings that give rise to the same rotation system
are said to be equivalent, and their equivalence class is called a combinatorial embedding; see for
example Reference [40, Section 4.1].

Allender and Mahajan [2] showed that a planar rotation system can be computed in log-space.

Theorem 2.2 ([2]). LetG be a graph. In log-space, one can check whetherG is planar and compute

a planar rotation system in this case.

Let ρ−1 be the set of inverse rotations of ρ, i.e., ρ−1 = { ρ−1
v | v ∈ V }. Note that if ρ is a planar

rotation system, then this holds for ρ−1 as well. Namely, ρ−1 corresponds to the mirror symmetric
embedding of G.

It follows from work of Whitney [51] that in the case of planar 3-connected graphs, there exist
only two planar rotation systems, namely, some planar rotation system ρ and its inverse ρ−1. This
is a crucial property in the isomorphism test of Weinberg [49] and all the other follow-up works.
We also use this property in our algorithm for planar 3-connected graphs to obtain a log-space
upper bound.

Universal Exploration Sequences (UXS). Let G = (V ,E) be a d-regular graph. The edges
around any vertex v can be numbered 0, 1, . . . ,d − 1 in an arbitrary, bijective way. A sequence
τ1τ2 · · · τk ∈ {0, 1, . . . ,d − 1}k together with a starting edge e0 = (v0,v1) ∈ E defines a walk
v0,v1, . . . ,vk in G as follows: For 1 ≤ i ≤ k , if ei−1 = (vi−1,vi) is the sth edge of vi , then let
ei = (vi ,vi+1) be the (s + τi)th edge of vi modulo d .

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:6 T. Thierauf et al.

A sequence τ1τ2 . . . τk ∈ {0, 1, . . .d −1}k is an (n,d)-universal exploration sequence (UXS) for

d-regular graphs of size ≤ n, if for every connectedd-regular graph on ≤ n vertices, any numbering
of its edges, and any starting edge, the walk obtained visits all the vertices of the graph.

Universal exploration sequence plays a crucial role in Reingold’s result that undirected reacha-
bility is in log-space. We use it in our log-space algorithm for testing isomorphism of 3-connected
planar graphs.

Theorem 2.3 ([42]). There exists a log-space algorithm that takes as input (1n , 1d) and produces

an (n,d)-universal exploration sequence.

3 CANONIZATION OF 3-CONNECTED PLANAR GRAPHS

In this section, we give a log-space algorithm for the canonization of 3-connected planar graph.
This improves the UL ∩ coUL bound given by Thierauf and Wagner [44] for 3-connected planar
graph isomorphism. Since the problem is also L-hard [44] this settles the complexity of the problem
in terms of complexity classes.

Theorem 3.1. The canonization of 3-connected planar graphs is in log-space.

The algorithm in Reference [44] constructs a canon for a given 3-connected planar graph. This
is done by first computing a spanning tree for the graph. Then, by traversing the spanning tree,
the algorithm visits all the edges in a certain order. For the computation of the spanning tree, the
algorithm computes distances between vertices of the graph. This is achieved by using the planar
reachability test of Bourke, Tewari, and Vinodchandran [12]. All parts of the algorithm work in
log-space, except for the planar reachability test, which is in UL ∩ coUL. Therefore, this is the
overall complexity bound.

In our approach, we essentially replace the spanning tree in the above algorithm by a universal
exploration sequence. Since such a sequence can be computed in log-space by Theorem 2.3, this
will put the problem in L.

Note that universal exploration sequences are defined for regular graphs. Therefore, our first
step is to transform a given graph G into a 3-regular graph in such a way that

• a planar graph stays planar and
• two graphs are isomorphic if and only if they are isomorphic after this preprocessing step.

Note that every vertex has degree ≥ 3 becauseG is 3-connected. The following standard construc-
tion 3-Regular-Color reduces the degree of vertices to exactly three. For later use, we also 2-color
the edges in the resulting graph.

Note that the resulting graphG ′ is 3-regular and planar, if G is planar. If G has n vertices andm
edges, then G ′ has 2m vertices and 3m edges.

Moreover,G ′ is also 3-connected. An easy way to see this is via Steinitz’s theorem. It states that
planar 3-connected graphs are precisely the skeletons of 3-dimensional convex polyhedra. For G ′,
we replace every vertex of the convex polyhedron for G by a (small enough) cyclic face such that
the resulting polyhedral is still convex. Therefore,G ′ is also planar and 3-connected. It follows that
also G ′ has only two possible embeddings, namely, the ones inherited from G.

In the following lemma, we give an elementary proof where we do not use planarity. For non-
planar G, we do not have a planar rotation system according to which we put the new edges. In
this case, we use an arbitrary rotation system.

Lemma 3.2. Let G be a 3-connected graph and G ′ be the 3-regular graph computed by algorithm

3-Regular-Color(G). Then, G ′ is 3-connected.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:7

ALGORITHM 3.1: 3-Regular-Color(G)

Input: A 3-connected graph G = (V ,E).
Output: A colored 3-regular graph G ′ = (V ′,E ′).

1: Replace a vertex v ∈ V of degree dv ≥ 3 by a cycle (v ′1, . . . ,v
′
dv

) on dv new vertices. This

defines vertices V ′ and part of the edges in E ′. We give color 1 to the cycle edges.
2: Fix a rotation ρv of the edges around v , for every v ∈ V . In case that G is planar, we use a

planar rotation.
3: For every edge (u,v) ∈ E,

• let u be the ith neighbor according to ρv of v in G
• let v be the jth neighbor according to ρu of u in G

Then, we put the new edge (u ′j ,v
′
i), which replaces the old edge (u,v). These edges get color 2.

This completes the definition of E ′.
4: Output the resulting graph G ′ = (V ′,E ′).

Proof. Let u,v be two vertices in G. Since G is 3-connected, there are three vertex-disjoint
paths p1,p2,p3 from u to v in G. In G ′, vertices u,v are replaced by cycles. The paths p1,p2,p3

can be transformed to vertex-disjoint paths p ′1,p
′
2,p
′
3 in G ′. These paths start in vertices u ′1,u

′
2,u
′
3

from the cycle corresponding to u and end in vertices v ′1,v
′
2,v
′
3 from the cycle corresponding to v ,

respectively.
Let u ′ and v ′ be vertices from the cycles corresponding to u and v , respectively. We show that

there are three vertex-disjoint paths from u ′ tov ′ inG ′. For this, we want to extend paths p ′1,p
′
2,p
′
3

to connect u ′ and v ′. We consider u ′. The case of v ′ is similar.

(1) If u ′ is one of u ′1,u
′
2,u
′
3, say u ′1, then we can extend p ′2,p

′
3 on the cycle to reach u ′ and stay

vertex-disjoint.
(2) If u ′ is different from u ′1,u

′
2,u
′
3, then we use the non-cycle edge that stems from G and go to

a neighbor w ′ of u ′. Vertex w ′ is on the cycle corresponding to a vertex w in G. Since G is
3-connected, there is a path p fromw to v inG. Again there is a path p ′ inG ′ corresponding
to p.

We construct a new path p̂ that starts atu ′ and goes viaw ′ to the staring point of p ′. Then,
we follow p ′ until we intersect the first time with one of p ′1,p

′
2,p
′
3, say p ′1. Then, p̂ continues

on p ′1 until we reach v ′1. When we consider paths p̂,p ′2,p
′
3 instead of p ′1,p

′
2,p
′
3, then we are in

case 1.

This shows that vertices u ′,v ′ from different cycles are connected by three vertex-disjoint paths
in G ′. In case that u ′,v ′ are on the same cycle corresponding to one vertex of G, we can use two
paths from the cycle and one path via some neighbor vertex of u ′ to v ′. �

To maintain the isomorphism property, we have to avoid potential isomorphisms that map new
edges from the cycles to the original edges. This is the reason why we also colored the edges. We
summarize:

Lemma 3.3. Given two 3-connected planar graphs G and H , let G ′ and H ′ be the colored 3-regular

graphs computed by 3-Regular-Color. ThenG � H if and only ifG ′ � H ′, where the isomorphism

between G ′ and H ′ has to respect the colors of the edges.

Note that the Lemma crucially depends on the unique embedding of the graph.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:8 T. Thierauf et al.

Before we show how to get a canon for graph G, we compute a complete invariant as an inter-
mediate step. The procedure Code(G ′, ρ,u0,v0) described in Algorithm 3.2 computes a code forG ′

with respect to a planar rotation system ρ, a starting vertex u0, and a starting edge (u0,v0).

ALGORITHM 3.2: Code(G ′, ρ,u0,v0)

Input: A 3-regular graph G ′ with N vertices and colored edges, a planar rotation system ρ,
and vertices u0 and v0 such that v0 is a neighbor of u0.

Output: A code of G ′ with respect to ρ, vertex u0 and edge (u0,v0).

1: Construct an (N , 3)-universal exploration sequence U .
2: Traverse G ′ according toU and ρ, starting from u0 along edge (u0,v0). Thereby, we construct

a list L of nodes traversed, L = (u0,v0,w0, . . .).
3: Relabel the vertices occurring in L according to their first occurrence in the sequence. Let L′

be the resulting list. For example, u0 and v0 get label 1 and 2, respectively, and therefore L′

starts as L′ = (1, 2, . . .).
4: Given L and L′, compute the relabeling function π that maps the label of a node in L′ to its

label in L. For example, π (1) = u0 and π (2) = v0.
5: Output the N ×N adjacency matrix A = (ai, j) ofG ′ with respect to the new node labels. That

is, for i, j ∈ {1, . . . ,N }, let

ai, j =
⎧⎪⎨
⎪
⎩

c, if (π (i),π (j)) is an edge in G ′ of color c,

0, otherwise.

The five steps of the algorithm can be seen as the composition of five functions. We argue that
each of these functions is in log-space. Then, it follows that the overall algorithm works in log-
space. Step 1 is in log-space by Theorem 2.3. In Step 2, we only have to store local information to
walk through G ′.

Step 3 requires to compute the rank of each vertex in the list L. For a vertex v occurring in L,
this amounts to searching in L to the left of the current position for the first occurrence ofv . Then,
we have to count the number of different vertices in L to the left of the first occurrence of v . This
can be done in log-space. A more detailed outline can be found in Reference [44].

In Step 4, we determine the position of node i in L′ and the node vi at the same position in L.
Then, π (i) = vi . Step 5 is again trivial when one has access to π .

Definition 3.4. The code σG′ of a 3-regular graphG ′ is the lexicographic minimum of the outputs
of Code(G ′, ρ,u0,v0) for the two choices of a planar rotation system ρ and all choices of u0 ∈ V
and a neighbor v0 ∈ V of u0.

The following lemma states that the code σG′ of G ′ computed so far is a complete invariant for
the class of 3-connected planar graphs.

Lemma 3.5. Let G ′ and H ′ be 3-regular planar graphs and σG′ and σH ′ be the codes of G ′ and H ′,
respectively. Then

G ′ � H ′ ⇐⇒ σG′ = σH ′ .

Proof. IfG ′ � H ′, then there is an isomorphism φ fromG ′ toH ′. Let ρG′ be the planar rotations
system, u0 a vertex, and (u0,v0) the starting edge that lead to the minimum code σG′ . Let ρH ′ be
the rotations system of H ′ induced by ρG′ and φ. Let σ = Code(H ′, ρH ′,φ (u0),φ (v0)).

We prove that σG′ = σ : Let w be a vertex that occurs at position � in the list LG′ computed in
Step 2 in Code(G ′, ρH ′,u0,v0). Then,φ (w) will occur at position � in the list LH ′ computed in Step 2

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:9

in Code(H ′, ρH ′,φ (u0),φ (v0)). This is because the oriented graphs are isomorphic, and the same
UXS is used for their traversal. Hence, when a vertex w occurs the first time LG′ , φ (w) will occur
the first time in LH ′ at the same position. Moreover, by induction, the number of different vertices
to the left ofw in LG′ will be the same as the number of different vertices to the left of φ (w) in LH ′ .
Hence, in Step 3 in Code(G ′, ρH ′,u0,v0) vertex w will get the same name, say j, as vertex φ (w) in
Step 3 in Code(H ′, ρH ′,φ (u0),φ (v0)). Therefore, in Step 4, the relabeling function for G ′ will map
πG′ (j) = w , and the relabeling function for H ′ will map πH ′ (j) = φ (w). So, we will get the same
output in Step 5. We conclude that σG′ = σ .

Clearly σ is also the minimum of all the possible codes for H ′, because otherwise, we could
switch the roles of G ′ and H ′ in the above argument and would obtain a code for G ′ smaller
than σG′ . Therefore, we have also σH ′ = σ . Hence, σG′ = σH ′ .

For the reverse direction, let σG′ = σH ′ = σ . The labels of vertices in σ are just a relabeling of
the vertices of G ′ and H ′. These relabelings are some permutations, say π1 and π2. Then, π−1

2 ◦ π1

is an isomorphism between G ′ and H ′. �

To prove Theorem 3.1, we show how to construct a canon forG from the code σG′ forG ′. Recall
that algorithm 3-Regular-Color replaces a vertexv of degree d inG by a cycle (v ′1, . . . ,v

′
d

) inG ′

and also colors the edges. In the code σG′ , each node in the cycle gets a new label. We assign to v
the minimum label among the new labels of (v ′1, . . . ,v

′
d

) in G ′. To do so, we start at one of the
vertices, say v ′1, and traverse color 1 edges until we get back to v ′1. Thereby, we can find out the
minimum label. Let π (v) be the label assigned to v .

We are not quite done yet. Recall that G ′ has 2m vertices. Hence, the labels π (v) we assign to
the vertices of G are in the range π (v) ∈ {1, 2, . . . , 2m}. But G has n vertices and we want the
assignment to map to {1, 2, . . . ,n}. To do so, we convert π into a mapping π ′ such that π ′(v) is
the rank of π (v) in the ordered π -labeling sequence. Then, we have π ′(v) ∈ {1, 2, . . . ,n}. The
construction of π and π ′ can be done in log-space.

As canon of G, we define a coding of the adjacency matrix of G, say σ , where vertices are rela-
beled according to π ′. Then, σ codes a graph that is isomorphic toG by construction. Moreover, for
every graph H isomorphic to G, we will get the same code σ for H . This is because the relabeling
functions π and π ′ depend only on the code σG′ , which is the same for H by Lemma 3.5. Hence,
our construction gives a canonization of 3-connected planar graphs. This concludes the proof of
Theorem 3.1.

4 CANONIZATION OF BICONNECTED PLANAR GRAPHS

In this section, we present an algorithm that given a planar biconnected graph outputs its canon
in log-space.

Theorem 4.1. The canonization of biconnected planar graphs is in log-space.

The proof is presented in the following five subsections. In Section 4.1, we first show how to
decompose a biconnected planar graphG into its triconnected components. From these components,
we construct the triconnected component tree of G.

In Section 4.2, we give a brief overview of a log-space algorithm for tree canonization, which
was developed by Lindell [36]. The core of Lindell’s algorithm is to come up with a total order on
trees such that two trees are isomorphic if and only if they are equal with respect to this order.

In Section 4.3, we define an isomorphism order on the triconnected component trees similar to
Lindell’s order on trees. The isomorphism order we compute has the property that two biconnected
graphs will be isomorphic if and only of they are equal with respect to the isomorphism order. This
yields an isomorphism test. We analyze its space complexity in Section 4.4.

Finally, based on the isomorphism order, we develop our canonization procedure in Section 4.5.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:10 T. Thierauf et al.

4.1 Decomposition of a Biconnected Graph into Triconnected Components

Graph decomposition goes back to Hopcroft and Tarjan [27], who presented a linear-time algo-
rithm to compute such a decomposition, and Cunningham and Edmonds [15]. These algorithms
are sequential. With respect to parallel algorithms, Miller and Ramachandran [38] presented a
decomposition algorithm on a CRCW-PRAM with O (log2 n) parallel time and using a linear num-
ber of processors. In this section, we show that a biconnected graph can be decomposed into its
triconnected components in log-space.

The algorithm presented below was developed in Reference [18].1 We present the entire algo-
rithm here for the sake of completeness.

Definition 4.2. Let G = (V ,E) be a biconnected graph. A separating pair {a,b} is called 3-

connected if there are three vertex-disjoint paths between a and b in G.
The triconnected components of G are the split graphs we obtain from G by splitting G succes-

sively along all 3-connected separating pairs, in any order. If a separating pair {a,b} is connected by
an edge inG, then we also define a 3-bond for {a,b} as a triconnected component, i.e., a multigraph
with two vertices {a,b} and three edges between them.

We decompose a biconnected graph only along separating pairs that are connected by at least
three disjoint paths. By only splitting a graph along 3-connected separating pairs, we avoid the de-
compositions of cycles. Therefore, we get three types of triconnected components of a biconnected
graph: 3-connected components, cycle components, and 3-bonds.

Definition 4.2 leads to the same triconnected components as in Reference [27]. The decompo-
sition is unique, i.e., independent of the order in which the separating pairs in the definition are
considered [37]; see also References [15, 25].

Lemma 4.3. The 3-connected separating pairs and the triconnected components of a biconnected

graph can be computed in log-space.

Proof. In Section 2, we argued that we can compute all separating pairs of G in log-space. To
determine whether a separating pair {a,b} is 3-connected, we cycle over all pairs of vertices u,v
different from a and b and check whether the removal of u,v keeps a reachable from b. Clearly,
this can be accomplished in log-space.

It remains to compute the vertices of a triconnected component. Two verticesu,v ∈ V belong to
the same 3-connected component or cycle component if no 3-connected separating pair separatesu
from v . This property can again be checked by solving several reachability problems. Hence, we
can collect the vertices of each such component in log-space. �

The triconnected components of a biconnected graph are the nodes of the triconnected compo-

nent tree.

Definition 4.4. Let G be a biconnected graph. The triconnected component tree T of G is the
following graph. There is a node for each triconnected component and for each 3-connected sep-
arating pair of G. There is an edge in T between the node for triconnected component C and the
node for a separating pair {a,b}, if a,b belong to C .

Given a triconnected component tree T , we use graph(T) to denote the corresponding bicon-
nected graph represented by it.

Note that graphT is connected, becauseG is biconnected and acyclic. This also implies thatT is
a tree. Each path in T is an alternating path of separating pairs and triconnected components. All

1The first log-space version of this problem appeared in the conference version of the current work [17]. This was subse-

quently simplified in the work of Reference [18].

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:11

the leaves of T are triconnected components. Hence, a path between two leaves always contains
an odd number of nodes and therefore T has a unique center node.

By Lemma 4.3, we can compute the nodes of the component tree in log-space. We show that we
can also traverse the component tree in log-space. Here, by traversal, we mean a way of system-
atically visiting every vertex of the tree. For example, in classical graph theory, we study many
different tree traversals such as preorder, inorder, and postorder traversals. It is known that tree
traversal can be performed in log-space. Unlike in a tree, the nodes of the component tress are
themselves graphs. We show that, in spite of this, we can perform its traversal in log-space.

Lemma 4.5. The triconnected component tree of a biconnected graph G can be computed and tra-

versed in log-space.

Proof. The traversal proceeds as a depth-first search. Assume that a separating pair is fixed
as the root node of the component tree, We show how to navigate locally in the component tree,
i.e., for a current node how to compute its parent, first child, and next sibling. We explore the tree
starting at the root. Thereby, we store the following information on the tape:

• We always store the root node, i.e., the two vertices of the root separating pair.
• When the current node is separating pair {a0,b0}, we just store it.
• When the current node is a 3-connected component C with parent separating pair {a0,b0},

then we store a0,b0 and an arbitrary vertex v � a0,b0 from C .

In the last item, the vertex v that we store serves as a representative for C . As a choice for v, take
the first vertex of C that is computed by the construction algorithm of Lemma 4.3. Note that v
and a0,b0 together with the root node identify C uniquely.

The traversal continues by exploring the subtrees at the separating pairs in C , different
from {a0,b0}. Let {a1,b1} be the current separating pair in C . We compute a representative ver-
tex for the first 3-connected split component of {a1,b1} different from C . Then, we erase {a0,b0}
and the representative vertex for C from the tape and recursively traverse the subtrees at {a1,b1}.

When we return from the subtrees at {a1,b1}, we recompute {a0,b0} andC , the parent of {a1,b1}.
This is done by computing the path from the root node to C in the component tree. That is, we
start at the root node and look for the child component that contains C via reachability queries.
Then, we iterate the search until we reach C , where we always store the current parent node.

The tree traversal continues with the next sibling ofC in the tree. That is, we compute the next
articulation point in C after {a1,b1} with respect to the order on the separating pairs. Then, we
delete {a1,b1} from the work tape. If C does not have a next sibling, then we return to the parent
of C . �

4.2 Overview of Lindell’s Algorithm for Tree Canonization

We summarize the crucial ingredients of Lindell [36] log-space algorithm for tree canonization.
We will then adapt Lindell’s technique to triconnected component trees.

Lindell’s algorithm is based on an order relation ≤ for rooted trees defined below. The order
relation has the property that two trees S and T are isomorphic if and only if they are equal with
respect to the order, denoted by S ≡ T . Because of this property it is called a canonical order. Clearly,
an algorithm that decides the order can be used as an isomorphism test. Lindell showed how to
extend such an algorithm to compute a canon for a tree in log-space.

The order < on rooted trees is defined as follows:

Definition 4.6. Let S and T be two trees with root s and t , and let #s and #t be the number of
children of s and t , respectively. Then, S < T if

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:12 T. Thierauf et al.

(1) |S | < |T |, or
(2) |S | = |T | but #s < #t , or
(3) |S | = |T | and #s = #t = k , but (S1, . . . , Sk) < (T1, . . . ,Tk) lexicographically, where it is

inductively assumed that S1 ≤ · · · ≤ Sk and T1 ≤ · · · ≤ Tk are the ordered subtrees of S and
T rooted at the k children of s and t , respectively.

The comparisons in Steps 1 and 2 can be made in log-space. Lindell proved that even the third
step can be performed in log-space using two-pronged depth-first search, and cross-comparing only
a child of S with a child of T . This is briefly described below:

• Partition the k children of s in S into blocks according to their sizes, i.e., the number of nodes
in the subtree rooted at the child. Let N1 < N2 < · · · < N� be the occurring sizes, for some
� ≤ k , and let ki be the number of children in block i , i.e., that have size Ni . It follows that∑

i ki = k and
∑

i kiNi = n − 1.
Doing the same for t in T , we get corresponding numbers N ′1 < N ′2 < · · ·N ′�′ and

k ′1, k
′
2, . . . ,k

′
�′ . If � � �′, then we know that the two are not isomorphic. Otherwise, we

compare the two block structures as follows:
– If N1 < N ′1, then S < T .
– If N1 > N ′1, then S > T .
– If N1 = N ′1 and k1 > k ′1, then S < T .
– If N1 = N ′1 and k1 > k ′1, then S > T .

If N1 = N ′1 and k1 = k ′1, then we consider the next blocks similarly. This process is con-
tinued until a difference in the block structure is detected or all the children of s and t are
exhausted.
• Let the children of s and t have the same block structure. Then, compare the children in each

block recursively as follows:

Case 1: k = 0. Hence, s and t have no children. They are isomorphic as all one-node trees
are isomorphic. We conclude that S ≡ T .
Case 2: k = 1. Recursively consider the grand-children of s and t .
Case 3: k ≥ 2. For each of the subtrees S j compute its order profile. The order profile consists
of three counters, c< , c>, and c=. These counters indicate the number of subtrees in the
block of S j that are, respectively, smaller than, greater than, or equal to S j . The counters are
computed by making pairwise cross-comparisons.

Note that isomorphic subtrees in corresponding blocks have the same order profile. There-
fore, it suffices to check that each such order profile occurs the same number of times in each
block in S and T . To perform this check, compare the different order profiles of every block
in lexicographic order. The subtrees in the block i of S and T , which is currently being con-
sidered, with a count c< = 0 form the first isomorphism class. The size of this isomorphism
class is compared across the trees by comparing the values of the c=-variables. If these values
match, then both trees have the same number of minimal children. Note that the lexicograph-
ical next larger order profile has the current value of c< + c= as its value for the c<-counter.

This way, one can loop through all the order profiles. If a difference in the order profiles
of the subtrees of S andT is found, then the lexicographical smaller order profile defines the
smaller tree.

The last order profile considered is the one with c< + c= = k for the current counters. If
this point is passed without uncovering an inequality, then the trees must be isomorphic and
it follows that S ≡ T .

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:13

Fig. 4.1. The decomposition of a biconnected planar graph Ĝ. Its triconnected components are G1, . . . ,G4

and the corresponding triconnected component tree is T . In Ĝ, the pairs {a,b} and {c,d } are 3-connected

separating pairs. The inseparable triples are {a,b, c}, {b, c,d }, {a, c,d }, {a,b,d }, {a,b, f }, and {c,d, e}. Hence,

the triconnected components are the induced graphs G1 on {a,b, f }, G2 on {a,b, c,d }, and G4 on {c,d, e}.
Since the 3-connected separating pair {c,d } is connected by an edge in Ĝ, we also get {c,d } as triple-bondG3.

The virtual edges corresponding to the 3-connected separating pairs are drawn with dashed lines.

We analyze the space complexity. Note that in case 2 with just one child, we need no space for the
recursive call. In case 3, for each new block, the work-tape allocated for the former computations
can be reused. Since

∑
i kiNi ≤ n, the following recursion equation for the space complexity S (n)

holds,

S (n) = max
i
{S (Ni) +O (logki)} ≤ max

i

{
S

(
n

ki

)
+O (logki)

}
,

where ki ≥ 2 for all i . It follows that S (n) = O (logn).
Lindell defines the canon of a rooted tree T as the infix coding of the tree over the three-letter

alphabet {∗, [,]}, which in turn can be coded over {0, 1}. The canon of a treeT with just one vertex
is c (T) = ∗. The canon of a tree T with subtrees T1 ≤ T2 ≤ · · · ≤ Tk is c (T) = [c (T1)c (T2) · · · c (Tk)].

If we have given a tree T without a specified root, then we try all the vertices of T as the root.
The vertex that leads the smallest tree with respect to the order on rooted trees is used as the root
to define the canon of T .

4.3 Isomorphism Order of Triconnected Component Trees

In this section, we start with two triconnected component trees and give a log-space test for iso-
morphism of the biconnected graphs represented by them. Recall from Definition 4.4 that a tricon-
nected component treeT that represents a biconnected graphG consists of nodes corresponding to
the triconnected components and 3-connected separating pairs ofG. See Figure 4.1 for an example.

The rough idea is to come up with an order on the triconnected component trees, as in Lindell’s
algorithm for isomorphism of trees. Clearly, a major difference to Lindell’s setting is that the nodes
of the trees are now separating pairs or triconnected components. By using Lindell’s algorithm in
conjunction with the algorithm from Section 3, we canonize the 3-connected component nodes of
the tree. We call this the isomorphism order. We ensure that the isomorphism order has the property
that two triconnected component trees have the same order if and only if the biconnected graphs
represented by them are isomorphic.

To define the order, we also compare the size of the tree. We first define the size of a triconnected
component tree.

Definition 4.7. For a triconnected component tree T , the size of an individual component node C
ofT is the number nC of vertices inC . The size of the tree T , denoted by |T |, is the sum of the sizes
of its component nodes.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:14 T. Thierauf et al.

Fig. 4.2. Triconnected component trees.

Note that the vertices of a separating pair are counted in every component where they occur.
Therefore, the size of T is at least as large as the number of vertices in graph(T), the graph corre-
sponding to the triconnected component tree T .

We describe a procedure for computing an isomorphism order given two triconnected compo-
nent trees S and T of two biconnected planar graphs G and H , respectively. We root S and T at
separating pair nodes s = {a,b} and t = {a′,b ′}, respectively, which are chosen arbitrarily. As
Lindell, we define the final order ofG and H based on the separating pairs as roots that lead to the
smallest trees. The rooted trees are denoted as S {a,b } andT{a′,b′ } . They have separating pair nodes
at odd levels and triconnected component nodes at even levels. Figure 4.2 shows two trees to be
compared.

We define the isomorphism order <T for S {a,b } and T{a′,b′ } by first comparing their sizes, then
the number of children of the root nodes s and t . These two steps are similar to Lindell’s algorithm.
If we find equality in the first two steps, then, in the third step, we make recursive comparisons of
the subtrees of S {a,b } andT{a′,b′ } . However, here it does not suffice to compare the order profiles of
the subtrees in the different size classes as in Lindell’s algorithm. We need a further comparison
step to ensure that G and H are indeed isomorphic.

To see this, assume that s and t have two children each, G1, G2 and H1, H2 such that G1 � H1

andG2 � H2. Still, we cannot conclude thatG and H are isomorphic, because it is possible that the
isomorphism betweenG1 and H1 maps a to a′ and b to b ′, but the isomorphism betweenG2 and H2

maps a to b ′ and b to a′. Then, these two isomorphisms cannot be extended to an isomorphism
between G and H . For an example, see Figure 4.3.

To handle this, we use the notion of an orientation of a separating pair. A separating pair gets
an orientation from subtrees rooted at its children. Also, every subtree rooted at a triconnected
component node gives an orientation to the parent separating pair. If the orientation is consis-
tent, then we define S {a,b } ≡T T{a′,b′ } and we will show that G and H are isomorphic in this
case.

The sequential algorithm by Hopcroft and Tarjan [27] uses depth-first-search for the decompo-
sition. They also consider the direction in which an edge is traversed by the search. Thereby, the
orientation issue is handled implicitly.

In the following two subsections, we give the details of the isomorphism order between two
triconnected component trees depending on the type of the root node.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:15

Fig. 4.3. The graphsG and H have the same triconnected component trees but are not isomorphic. In S {a,b } ,
the 3-bonds form one isomorphism class I1 and the other two components form the second isomorphism

class I2, as they all are pairwise-isomorphic. The non-isomorphism is detected by comparing the directions

given to the parent separating pair. We have p = 2 isomorphism classes, and for the orientation counters, we

haveO1 = O
′
1 = (0, 0), whereasO2 = (2, 0) andO ′2 = (1, 1) and henceO ′2 is lexicographically smaller thanO2.

Therefore, we have T{a′,b′ } <T S {a,b } .

4.3.1 Isomorphism Order of Two Subtrees Rooted at Triconnected Components. We consider the
isomorphism order of two subtrees SGi

andTHj
rooted at triconnected component nodesGi andHj ,

respectively. We first consider the easy cases.

• Gi and Hj are of different types. Gi and Hj can be either 3-bonds or cycles or 3-connected
components. If the types of Gi and Hj are different, then we immediately detect an inequal-
ity. We define a canonical order among subtrees rooted at triconnected components in this
ascending order: 3-bond, cycle, 3-connected component, such that, e.g., SGi

<T THj
ifGi is a

3-bond and Hj is a cycle.
• Gi and Hj are 3-bonds. In this case, SGi

andTHj
are leaves, since they cannot be decomposed

further into smaller components, and we define SGi
≡T THj

.

In case where Gi and Hj are cycles or 3-connected components, we construct the canons of Gi

and Hj and compare them lexicographically.

• To canonize a cycle, we traverse it starting from the virtual edge that corresponds to its
parent and then traverse the entire cycle along the edges encountered. There are two possible
traversals, depending on which direction of the starting edge is chosen. Thus, a cycle has
two candidates for a canon.
• To canonize a 3-connected component Gi , we use the log-space algorithm from Section 3.

BesidesGi , the algorithm gets as input a starting edge and a combinatorial embedding ρ ofGi .
We always take the virtual edge {a,b} corresponding toGi ’s parent as the starting edge. Then,
there are two choices for the direction of this edge, (a,b) or (b,a). Further, a 3-connected
graph has two planar rotation systems [51]. Hence, there are four possible candidates for
the canon of Gi .

In the latter two cases, we start the canonization of Gi and Hj in all the possible ways (two, if
they are cycles, and four, if they are 3-connected components) and compare these canons bit-by-
bit. Let Cд and Ch be two candidate canons to be compared. The base case is that Gi and Hj are
leaf nodes and therefore contain no further virtual edges. In this case, we use the lexicographic
order between Cд and Ch . (For instance, if the whole graph is simply a cycle or a 3-connected

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:16 T. Thierauf et al.

component, then the algorithm terminates here.) If Gi and Hj contain virtual edges, then these
edges are specially treated in the bitwise comparison of Cд and Ch :

• If a virtual edge is traversed in the construction of one of the canonsCд orCh but not in the
other, then we define the one without the virtual edge to be the smaller canon.
• IfCд andCh encounter virtual edges {u,v} and {u ′,v ′} corresponding to a child ofGi and Hj ,

respectively, then we need to recursively compare the subtrees rooted at {u,v} and {u ′,v ′}.
– If we find in the recursion that one of the subtrees is smaller than the other, then the canon

with the smaller subtree is defined to be the smaller canon.
– If we find that the canons of the subtrees rooted at {u,v} and {u ′,v ′} are equal, then we look

at the orientations given to {u,v} and {u ′,v ′} by their children. This orientation, called the
reference orientation, is defined below in Section 4.3.2. If one of the canons traverses the
virtual edge in the direction of its reference orientation but the other one not, then the one
with the reference direction is defined to be the smaller canon.

We eliminate the candidate canons that were found to be the larger in at least one of the compar-
isons. In the end, the candidate that is not eliminated is the canon. If we have the same canons for
bothGi and Hj , then we define SGi

≡T THj
. The construction of the canons also defines an isomor-

phism between the subgraphs described by SGi
andTHj

, i.e., graph(SGi
) � graph(THj

). For a single
triconnected component, this follows from the algorithm of Section 3. If the trees contain several
components, then our definition of SGi

≡T THj
guarantees that we can combine the isomorphisms

of the components to an isomorphism between graph(SGi
) and graph(THj

).
Observe that we do not need to compare the sizes and the degree of the root nodes of SGi

andTHj

in an intermediate step, as it is done in Lindell’s algorithm for subtrees. This is because the degree
of the root node Gi is encoded as the number of virtual edges in Gi . The size of SGi

is checked by
the length of the minimal canons forGi and when we compare the sizes of the children of the root
node Gi with those of Hj .

4.3.2 Isomorphism Order of Two Subtrees Rooted at Separating Pairs. We consider the isomor-
phism order of two subtrees S {a,b } andT{a′,b′ } rooted at separating pairs {a,b} and {a′,b ′}, respec-
tively. Let (G1, . . . ,Gk) be the children of the root {a,b} of S {a,b } , and (SG1 , . . . , SGk

) be the subtrees
rooted at (G1, . . . ,Gk). Similarly, let (H1, . . . ,Hk) be the children of the root {a′,b ′} ofT{a′,b′ } and
(TH1 , . . . ,THk

) be the subtrees rooted at (H1, . . . ,Hk).
The first three steps of the isomorphism order are performed similar to that of Lindell [36]

maintaining the order profiles. We first order the subtrees, say SG1 ≤T · · · ≤T SGk
and TH1

≤T · · · ≤T THk
, and verify that SGi

≡T THi
for all i . If we find an inequality, then the one with the

smallest index i defines the order between S {a,b } andT{a′,b′ } . Now assume that SGi
≡T THi

for all i .
Inductively, the corresponding split components are isomorphic, i.e., graph(SGi

) � graph(THi
) for

all i .
An additional step involves a comparison of the orientations given by the subtrees SGi

and THi

to {a,b} and {a′,b ′}, respectively.

Definition 4.8 (Orientation). The orientation given to the parent separating pair {a,b} of S (Gi) is
the direction {a,b} that leads to the canon of S (Gi), respectively. If the canons are obtained for both
choices of directions of the edge, then we say that SGi

is symmetric about their parent separating

pair and thus does not give an orientation.

The orientation given to {a,b} by two subtrees might be different. Our next step is to extract
one orientation from the orientations of all subtrees as the reference orientation for separating pair
{a,b}.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:17

Definition 4.9 (Reference Orientation). Let I1 <T · · · <T Ip be a partition of (SG1 , . . . , SGk
) into

classes of ≡T-equal subtrees, for some p ≤ k .

• For each isomorphism class Ij , the orientation counter is a pair O j = (c→j , c
←
j), where c→j is

the number of subtrees of Ij that gives one orientation, say (a,b), and c←j is the number of

subtrees from Ij that give the other orientation, (b,a). The counters are ordered such that
c→j ≥ c←j . Then, the orientation given to {a,b} by isomorphism class Ij is the one from the

larger counter, i.e. c→j , if c→j � c
←
j .

If c→j = c←j , that is, if each component in this class is symmetric about {a,b}, then no

orientation is given to {a,b} by this class, and the class is said to be symmetric about {a,b}.
Note that in an isomorphism class, either all or none of the components are symmetric about
the parent.
• The reference orientation of {a,b} is defined as the orientation given to {a,b} by the smallest

non-symmetric isomorphism class. If all isomorphism classes are symmetric about {a,b},
then we say that {a,b} has no reference orientation.

For T{a′,b′ } we similarly partition (TH1 , . . . ,THk
) into isomorphism classes I ′1 <T · · · <T I ′p . It

follows that Ij and I ′j contain the same number of subtrees for every j. Let O ′j = (d→j ,d
←
j) be the

corresponding orientation counters for the isomorphism classes I ′j .

Now, we compare the orientation counters O j and O ′j for j = 1, . . . ,p. If they are all pairwise-

equal, then the graphsG and H are isomorphic and we define S {a,b } ≡T T{a′,b′ } . Otherwise, let j be
the smallest index such that O j � O ′j . Then, we define S {a,b } <T T{a′,b′ } if O j is lexicographically

smaller than O ′j , and T{a′,b′ } <T S {a,b } otherwise. For an example, see Figure 4.3.

4.3.3 Summary and Correctness. We summarize the isomorphism order of two triconnected
component trees S and T defined in the previous subsections. Let s = {a,b} and t = {a′,b ′} be the
roots of S andT , and let #s and #t be the number of children of s and t , respectively. Then, we have
S <T T if:

(1) |S | < |T |, or
(2) |S | = |T | but #s < #t , or
(3) |S | = |T |, #s = #t = k , but (SG1 , . . . , SGk

) <T (TH1 , . . . ,THk
) lexicographically, where we

assume that SG1 ≤T · · · ≤T SGk
and TH1 ≤T · · · ≤T THk

are the ordered subtrees of S
and T , respectively. To compute the order between the subtrees SGi

and THi
, we compare

lexicographically the canons ofGi and Hi and recursively the subtrees rooted at the children
of Gi and Hi . Note that these children are again separating pair nodes.

(4) |S | = |T |, #s = #t = k , (SG1 , . . . , SGk
) ≡T (TH1 , . . . ,THk

), but (O1, . . . ,Op) < (O ′1, . . . ,O
′
p) lex-

icographically, whereO j andO ′j are the orientation counters of the jth isomorphism classes Ij
and I ′j of all the SGi

’s and the THi
’s.

We say that S and T are equal according to the isomorphism order , denoted by S ≡T T , if neither
S <T T nor T <T S holds.

The following theorem shows the correctness of the isomorphism order: two trees are ≡T-equal,
precisely when the underlying graphs are isomorphic.

Theorem 4.10. Let G and H be biconnected planar graphs with triconnected component trees S
and T , respectively. Then, G and H are isomorphic if and only if there is a choice of separating pairs

s, t in G and H such that S ≡T T when rooted at s and t , respectively.

Proof. Assume that S ≡T T . The argument is an induction on the depth of the trees that follows
the inductive definition of the isomorphism order. The induction goes from depth d + 2 to d . If the

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:18 T. Thierauf et al.

grandchildren of separating pairs, say s and t , are ≡T-equal up to Step 4, then we compare the
children of s and t . If they are equal, then we can extend the ≡T-equality to the separating pairs s
and t .

When subtrees are rooted at separating pair nodes, the comparison describes an order on the
subtrees that correspond to split components of the separating pairs. The order describes an iso-
morphism among the split components.

When subtrees are rooted at triconnected component nodes, say Gi and Hj , the comparison
states equality if the components have the same canon, i.e., are isomorphic. By the induction hy-
pothesis, we know that the children rooted at virtual edges of Gi and Hj are isomorphic. The
equality in the comparisons inductively describes an isomorphism between the vertices in the
children of the root nodes.

Hence, the isomorphism between the children at any level can be extended to an isomorphism
between the corresponding subgraphs in G and H and therefore to G and H itself.

The reverse direction holds easily as well. Suppose G and H are isomorphic and there is an
isomorphism that maps the separating pair {a,b} of G to the separating pair {a′,b ′} of H . One
needs to prove that S {a,b } ≡T T{a′,b′ } where these two are S and T rooted at {a,b} and {a′,b ′},
respectively. One can prove this by induction on the depth of S {a,b } andT{a′,b′ } . Note that such an
isomorphism maps separating pairs of G onto separating pairs of H . This isomorphism describes
a permutation on the split components of separating pairs, which means we have a permutation
on triconnected components, the children of the separating pairs. By induction hypothesis, the
children at depth d + 2 of two such triconnected components are isomorphic and equal according
to ≡T. One can combine this with the isomorphism of the triconnected components themselves
and the definition of ≡T to conclude the proof of the reverse direction and of the theorem. �

4.4 Space Complexity of the Isomorphism Order Algorithm

We analyze the space complexity of the isomorphism order algorithm. The first two steps of the
isomorphism order algorithm can be computed in log-space as in Lindell’s algorithm [36]. We show
that Steps 3 and 4 can also be performed in log-space.

We use the algorithm from Section 3 to canonize a 3-connected component Gi of size nGi
in

space O (lognGi
). If the component is a 3-bond or a cycle, then we use the ideas presented in

Section 4.3.1 to canonize them again using O (lognGi
) space.

Comparing two subtrees rooted at triconnected components. For this, we consider two subtrees SGi

and THj
with |SGi

| = |THj
| = N rooted at triconnected component nodes Gi and Hj , respectively.

The cases thatGi andHj are of different types or are both 3-bonds are easy to handle. Assume now
that both are cycles or 3-connected components. Then, we start constructing and comparing all
the possible canons of Gi and Hj . We eliminate the larger ones and make recursive comparisons
whenever the canons encounter virtual edges simultaneously. We can keep track of the canons,
which are not eliminated, in constant space.

Suppose we construct and compare two canons Cд and Ch and consider the moment when we
encounter virtual edges {a,b} and {a′,b ′} inCд andCh , respectively. Now, we recursively compare
the subtrees rooted at the separating pair nodes {a,b} and {a′,b ′}. Note that we cannot afford to
store the entire work-tape content. It suffices to store the information of

• the canons that are not eliminated,
• which canons encountered the virtual edges corresponding to {a,b} and {a′,b ′}, and
• the direction in which the virtual edges {a,b} and {a′,b ′} were encountered.

This takes altogether O (1) space.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:19

When a recursive call is completed, we look at the work-tape and compute the canonsCд andCh .
Therefore, recompute the parent separating pair of the component, where the virtual edge {a,b}
is contained. With a look on the bits stored on the work-tape, we can recompute the canons Cд

and Ch . Recompute for them, where {a,b} and {a′,b ′} are encountered in the correct direction of
the edges and resume the computation from that point.

Although we only need O (1) space per recursion level, we cannot guarantee yet that the imple-
mentation of the algorithm described so far works in log-space. The problem is that the subtrees
where we go into recursion might be of size > N /2 and in this case the recursion depth can get too
large. To get around this problem, we check whether Gi and Hj have a large child, before starting
the construction and comparison of their canons. A large child is a child that has size > N /2. If we
find a large child of Gi and Hj , then we compare them a priori and store the result of their recur-
sive comparison. Because Gi and Hj can have at most one large child each, this needs only O (1)
additional bits. Now, whenever the virtual edges corresponding to the large children from SGi

and THj
are encountered simultaneously in a canon of Gi and Hj , the stored result can be used,

thus avoiding a recursive call.

Comparing two subtrees rooted at separating pairs. Consider two subtrees S {a,b } and T{a′,b′ } of
size N , rooted at separating pair nodes {a,b} and {a′,b ′}, respectively. We start comparing all the
subtrees SGi

and THj
of S {a,b } and T{a′,b′ } , respectively. These subtrees are rooted at triconnected

components, and we can use the implementation described above. Therefore, we store on the work-
tape the counters c<, c=, c> . If they turn out to be pairwise equal, then we compute the orientation
counters O j and O ′j of the isomorphism classes Ij and I ′j , for all j. The isomorphism classes are

computed via the order profiles of the subtrees, as in Lindell’s algorithm.
When we return from recursion, it is an easy task to find {a,b} and {a′,b ′} again, since a tricon-

nected component has a unique parent, which always is a separating pair node. Since we have the
counters c<, c=, c> and the orientation counters on the work-tape, we can proceed with the next
comparison.

Let kj be the number of subtrees in Ij . The counters c<, c=, c> and the orientation counters
need altogether at most O (logkj) space. From the orientation counters, we also get the reference
orientation of {a,b}. Let Nj be the size of the subtrees in Ij . Then, we have Nj ≤ N /kj . This would
lead to a log-space implementation as in Lindell’s algorithm except for the case that Nj is large,
i.e., Nj > N /2.

We handle the case of large children as above: We recurse on large children a priori and store
the result in O (1) bits. Then, we process the other subtrees of S {a,b } and T{a′,b′ } . When we reach
the size-class of the large child, we know the reference orientation, if any. Now, we use the stored
result to compare the orientations given by the large children to their respective parent and return
the result accordingly.

As seen above, while comparing two trees of size N , the algorithm uses no space for making a
recursive call for a subtree of size larger than N /2, and it usesO (logkj) space if the subtrees are of
size at most N /kj , where kj ≥ 2. Hence, we get the same recurrence for the space S (N) as Lindell:

S (N) ≤ max
j
S

(
N

kj

)
+O (logkj),

where kj ≥ 2 for all j. Thus, S (N) = O (logN). Note that the number n of nodes of G is in general
smaller than N , because the separating pair nodes occur in all components split off by this pair.
But we certainly have n ≤ N ≤ O (n2) [27]. This proves the following theorem.

Theorem 4.11. The isomorphism order between two triconnected component trees of biconnected

planar graphs can be computed in log-space.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:20 T. Thierauf et al.

4.5 The Canon of a Biconnected Planar Graph

Once we know the order among the subtrees, it is straightforward to canonize the triconnected
component tree S . We traverse S in the tree isomorphism order as in Lindell’s algorithm, outputting
the canon of each of the nodes along with virtual edges and delimiters. That is, we output a “[”
while going down a subtree and “]” while going up a subtree. We call this list of delimiters and
canons of components a canonical list of S .

We need to choose a separating pair as root for the tree. Since there is no distinguished separat-
ing pair, we simply cycle through all of them. Since there are less than n2 many separating pairs,
a log-space transducer can cycle through all of them and can determine the separating pair that,
when chosen as the root, leads to the lexicographically minimum canonical list of S . We call this
the tree-canon of S . We describe the canonization procedure for a fixed root, say {a,b}.

The canonization procedure has two steps. In the first step, we compute the canonical list
for S {a,b } . In the second step, we compute the canon for the biconnected planar graph from the
canonical list.

Canonical list of a subtree rooted at a separating pair. Consider a subtree S {a,b } rooted at the
separating pair node {a,b}. We start with computing the reference orientation of {a,b} and output
the edge in this direction. This can be done by comparing the children of the separating pair
node {a,b} according to their isomorphism order with the help of the oracle. Then, we recursively
output the canonical lists of the subtrees of {a,b} according to the increasing isomorphism order.
Among isomorphic siblings, those that give the reference orientation to the parent are considered
before those that give the reverse orientation. We denote this canonical list of edges l (S,a,b). If
the subtree rooted at {a,b} does not give any orientation to {a,b}, then take that orientation for
{a,b}, in which it is encountered during the construction of the above canon of its parent.

Assume now the parent of S {a,b } is a triconnected component. In the symmetric case, S {a,b } does
not give an orientation of {a,b} to its parent. Then, take the reference orientation that is given to
the parent of all siblings.

Canonical list of a subtree rooted at a triconnected component. Consider the subtree SGi
rooted at

the triconnected component nodeGi . Let {a,b} be the parent separating pair of SGi
with reference

orientation (a,b). IfGi is a 3-bond, then output its canonical list l (Gi ,a,b) as (a,b). IfGi is a cycle,
then it has a unique canonical list with respect to the orientation (a,b), that is l (Gi ,a,b).

Now, we consider the case thatGi is a 3-connected component. Then,Gi has two possible canons
with respect to the orientation (a,b), one for each of the two embeddings. Query the oracle for
the embedding that leads to the lexicographically smaller canonical list and output it as l (Gi ,a,b).
If we encounter a virtual edge {c,d } during the construction, then we determine its reference
orientation with the help of the oracle and output it in this direction. If the children of the virtual
edge do not give an orientation, we output {c,d } in the direction in which it is encountered during
the construction of the canon for Gi . Finally, the children rooted at separating pair node {c,d } are
ordered with the canonical order procedure.

We give now an example. Consider the canonical list l (S,a,b) of edges for the tree S {a,b } of
Figure 4.2. Let si be the edge connecting the vertices ai with bi . We also write for short l ′(Si , si),
which is one of l (Si ,ai ,bi) or l (Si ,bi ,ai). The direction of si is as described above.

l (S,a,b) = [(a,b) l (SG1 ,a,b) . . . l (SGk
,a,b)], where

l (SG1 ,a,b) = [l (G1,a,b) l ′(S1, s1) . . . l ′(Sl1
, sl1

)]

...

l (SGk
,a,b) = [l (Gk ,a,b) l ′(Slk

, slk
)].

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:21

Canon for the biconnected planar graph. This list is now almost the canon, except that the names
of the vertices are still the ones they have inG. Clearly, a canon must be independent of the original
names of the vertices. The final canon for S {a,b } can be obtained by a log-space transducer that
relabels the vertices in the order of their first occurrence in this canonical list and outputs the list
using these new labels.

Note that the canonical list of edges contains virtual edges as well, which are not a part of G.
However, this is not a problem, as the virtual edges can be distinguished from real edges because
of the presence of 3-bonds. To get the canon for G, remove these virtual edges and the delimiters
“[” and “]” in the canon for S {a,b } . This is sufficient, because we describe here a bijective function
f that transforms an automorphism ϕ of S {a,b } into an automorphism f (ϕ) for G with {a,b} fixed.
This completes the proof of Theorem 4.1.

5 CANONIZATION OF PLANAR GRAPHS

In this section, we use all the machinery built so far to obtain our main result.

Theorem 5.1. The canonization of planar graphs is in log-space.

The proof of this is presented in the following subsections. In Section 5.1, we first define the bi-

connected component tree of a connected planar graph and list some of its properties. In Section 5.2,
we define an isomorphism order for biconnected component trees. Two trees will have the same
order if and only if the planar graphs represented by them are isomorphic. The computation of
such an order gives a test for isomorphism of planar graphs. In Section 5.3, we do a space analysis
of our algorithm and show that isomorphism testing can be done in log-space for planar graphs.
Finally, in Section 5.4, we give a log-space canonization algorithm. This proves Theorem 5.1.

5.1 Biconnected Component Tree of a Planar Graph

Biconnected component trees are defined analogously to triconnected component trees. Recall
from Section 2 that when a graph is split along an articulation point a, each biconnected split
component contains a copy of a.

Definition 5.2. Let G be a connected graph. The biconnected component tree T of G is the fol-
lowing graph. There is a node for each biconnected component and for each articulation point
of G. There is an edge in T between the node for biconnected component B and the node for an
articulation point a, if a occurs in B.

It is easy to see that the graph T obtained in Definition 5.2 is in fact a tree. This tree is unique,
i.e., independent of the order in which the articulation points are chosen to split graph G. The
biconnected component tree can be constructed in log-space: Articulation points can be computed
in log-space, as explained in Section 2. Two vertices are in the same biconnected component if they
are not separated by an articulation point.

In the discussion below, we refer to a copy of an articulation point in a biconnected component B
as an articulation point in B. Although an articulation point a has at most one copy in each of the
biconnected components, the corresponding triconnected component trees can have many copies
of a, in case it belongs to a separating pair in the biconnected component.

Given a planar graphG, we root its biconnected component tree at an articulation point. During
the isomorphism ordering of two such trees S andT , we can fix the root of S arbitrarily and make
an equality test for all choices of roots forT , as in Lindell’s algorithm and as in Section 4.3. As there
are ≤n articulation points, a log-space transducer can cycle through all of them for the choice of
the root for T . We state some properties of biconnected component trees.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:22 T. Thierauf et al.

Lemma 5.3. Let B be a biconnected component in the biconnected component tree S and let T (B)
be its triconnected component tree. Then, the following holds:

(1) S has a unique center.

(2) If an articulation point a of S appears in a separating pair node s in T (B), then it appears in

all the triconnected component nodes that are adjacent to s in T (B).
(3) If an articulation point a appears in two nodes C and D in T (B), then it appears in all the

nodes that lie on the path between C and D in T (B). Hence, there is a unique node A in T (B)
that contains a that is nearest to the center of T (B). We call A the triconnected component

associated with a.

The proofs of the above properties follow easily through folklore graph theoretic arguments
and are omitted here.

5.2 Isomorphism Order for Biconnected Component Trees

In this section, we start with two biconnected component trees of connected planar graphs and
give a log-space test for isomorphism of the planar graphs represented by them. The idea is again
to come up with an order on the biconnected component trees, similar to the case of triconnected
component trees. We call the resulting order the isomorphism order for biconnected component trees.
We ensure that two biconnected component trees are equal with respect to this order if and only
if the planar graphs represented by them are isomorphic.

The size of a triconnected component tree was defined in Definition 4.7. Here, we extend the
definition to biconnected component trees.

Definition 5.4. Let B be a biconnected component node in a biconnected component tree S , and
let T (B) be the triconnected component tree of B. The size of B is defined as |T (B) |. The size of
an articulation point node in S is defined as 1. The size of S , denoted by |S |, is the sum of the sizes
of its component nodes.

Note that the articulation points in the definition may be counted several times, namely, in every
component they occur.

Let S and T be two biconnected component trees rooted at nodes s and t corresponding to
articulation points a and a′, and let #s and #t be the number of children of s and t , respectively. We
define S <B T if:

(1) |S | < |T | or
(2) |S | = |T | but #s < #t or
(3) |S | = |T |, #s = #t = k , but (SB1 , . . . , SBk

) <B (TB′1
, . . . ,TB′

k
) lexicographically, where we

assume that SB1 ≤B · · · ≤B SBk
and TB′1

≤B · · · ≤B TB′
k

are the ordered subtrees of S and T ,

respectively.

We postpone the definition of the order between the subtrees SBi
andTB′j

in Step 3 to Section 5.2.1

below.
We say that two biconnected component trees are equal according to the isomorphism order,

denoted by S ≡B T , if neither of S <B T and T <B S holds.
Figure 5.1 illustrates the definition.

5.2.1 Outline of the Algorithm for Computing the Isomorphism Order. The Steps 1 and 2 above
are easy to implement in log-space, as done before. We now give the details for Step 3.

Assume that equality is found in Step 1 and 2. The inductive ordering of the subtrees of S andT
proceeds exactly as in Lindell’s algorithm, by partitioning them into size-classes and comparing
the children in the same size-class recursively. The book-keeping required (e.g., the order profile

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:23

Fig. 5.1. Comparison of the biconnected component trees Sa andTa′ rooted at nodes for articulation points a
and a′. If the root nodes have the same number k of children, then we compare the nodes B1, . . . ,Bk of Sa

with the nodes B′1, . . . ,B
′
k

ofTa′ . Thereby, we recursively compare the subtrees at the articulation nodes we

find in these components.

Fig. 5.2. A biconnected component tree SB rooted at biconnected component B that has an articulation

point a as child, which occurs several times in the triconnected component tree T (B) of B. In A and the

other triconnected components, the dashed edges are separating pairs.

of a node, the number of nodes in a size-class that have been compared so far) is similar to that in
Lindell’s algorithm.

To compare two subtrees SB and TB′ , rooted at biconnected component nodes B and B′, re-
spectively, we start by constructing and comparing the canons of their triconnected component
trees T (B) and T (B′). To do so, we have to choose a separating pair as root in each of T (B)
and T (B′).

For notation, we call it the outer algorithm when we do comparisons for the biconnected compo-
nent trees SB andTB′ . The outer algorithm at this point invokes the inner algorithm, the recursive
comparison algorithm for T (B) and T (B′).

The inner algorithm may encounter several copies of articulation points a,a′, inside T (B)
and T (B′), respectively. Figure 5.2 shows an example. We want to choose one of them where
we go into recursion.

Definition 5.5. The reference copy of an articulation point a in the rooted triconnected compo-
nent tree T (B) is the copy of point a that is closest to the root of T (B).

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:24 T. Thierauf et al.

By Lemma 5.3, the reference copy is defined uniquely.
All but the reference copies of these articulation points are ignored by this algorithm. For the

reference copies, the current order profiles computed by the inner algorithm so far are stored in
the memory and the outer algorithm takes over for recursively comparing subtrees of a,a′. This
switch between inner and outer algorithm thus causes some bits of storage in the memory. The
main task is to limit the number of things that are stored to get an overall log-space bound.

To bound the space, it is crucial to limit the choices of separating pair nodes of T (B) and T (B′),
which can be used as roots for these trees. For now, we will assume that the number of choices for
the root is at most κ and proceed with the description of the inner and outer algorithms. We will
give appropriate bounds on κ in Section 5.2.2 below.

• For κ possibilities of roots, one is fixed for T (B) and the canonical ordering of it is compared
with that ofT (B′) according to <T, for all choices ofκ roots. This is then done for each choice
of the root of T (B). The aim is to compare the minimum canonical codes of T (B) and T (B′)
and return the result.
• The comparison of T (B) and T (B′) for some choices of roots is now carried out using

the isomorphism order procedure for triconnected component trees. During the comparison
of T (B) and T (B′), if a copy of an articulation point is encountered in a canonical code
of a triconnected component node C of T (B), but not in that of the corresponding node C ′

in T (B′), then that canonical code forC is considered to be larger and is eliminated. If copies
of articulation points u and u ′ are encountered simultaneously in nodes C and C ′, and if
they are their reference copies, then a recursive call to the isomorphism order procedure for
biconnected component trees (outer algorithm) is made to compare the subtrees of SB andT ′B
rooted at u and u ′. If the copies encountered are not the reference copies, then equality is
assumed and the inner algorithm proceeds. While making the recursive call, the current
order profile of C or C ′ is stored along with the bit-vector for already eliminated canonical
codes.

5.2.2 Limiting the Number of Possible Choices for the Root Separating Pair. Here, we prove that
the choices for the root nodes in triconnected component trees can be bounded effectively.

Besides the parent a, let B have articulation points a1, . . . ,al for some integer l ≥ 0, such that aj

is the root node of the subtree Saj
of Sa (see Figure 5.1). We partition the subtrees Sa1 , . . . , Sal

into classes E1, . . . ,Ep of equal size subtrees, where size is according to Definition 5.4. Let kj =

|Ej | be the number of subtrees in Ej . Let the order of the size classes be such that k1 ≤ k2 ≤
· · · ≤ kp . All articulation points with their subtrees in size class Ej are colored with color j. Recall
from Lemma 5.3 that articulation point a is associated with the unique component A in T (B) that
contains a and is nearest to the center C0 of T (B).

To limit the number of potential root nodes for T (B), we do a case analysis according to prop-
erties of the centerC0 of T (B). In some of the cases, we succeed directly to give the desired bound.
In the remaining cases, we will show that the number of automorphisms of the center C0 is small.
This suffices for our purpose: In this case, for every edge as starting edge, we canonize the compo-
nentC0 separately, i.e., without going into recursion on the separating pairs and articulation points
ofC0. Thereby, we construct the set of starting edges, say E0, that lead to the minimum canon forC0.
Although there are polynomially many possible candidates for the canon, the minimum ones are
bounded by the number of automorphisms of C0, which is small.

Now, we take the first separating pair encountered in each of the candidate canons obtained
when starting from edges in S . We take this set of separating pairs as the potential root nodes
for T (B), and hence, its cardinality is bounded by the number of automorphisms of C0.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:25

If B contains no separating pairs, i.e., B = C0, then we cycle through the edges in S to compute
the canon of B.

We start our case analysis. Recall that articulation point a is the parent of B andC0 is the center
of the triconnected component tree T (B).

• The center C0 of T (B) is a separating pair. We choose this separating pair as the root
of T (B). Thus, we have only one choice for the root.
• C0 is a triconnected component and a is not associated with C0. Let a be associated

with a triconnected component A in T (B). We find the path from A to C0 in T (B) and find
the separating pair closest to C0 on this path. This serves as the unique choice for the root
of T (B).
• C0 is a cycle and a is associated withC0. Consider the virtual edges closest to a on cycleC0.

There are at most two of them. We choose the separating pairs corresponding to these virtual
edges as the root candidates of T (B). Thus, we get at most two choices for the root of T (B).
• C0 is a 3-connected component and a is associated with C0. We proceed with a case

analysis according to the number l of articulation points in B besides a.

Case I: l = 0. B is a leaf node in Sa , it contains no articulation points besides a. We color a
with a distinct color. In this case, we can cycle through all separating pairs as root for T (B).
Case II: l = 1. If B has exactly one articulation point besides a, say a1, then we process this
child a priori and store the result. We color a and a1 with distinct colors and proceed with B
as in case of a leaf node.
Case III: l ≥ 2. We distinguish two sub-cases.

(1) Some articulation point aj in class E1 is not associated with C0. Let aj be associated
with a triconnected component D � C0. Find the path from D toC0 in T (B) and select the
separating pair node closest toC0 on this path. Thus aj uniquely defines a separating pair.
In the worst case, this may happen for every aj in E1. Therefore, we get up to k1 separating
pairs as candidates for the root.

(2) All articulation points in E1 are associated with C0. We distinguish sub-cases accord-
ing to the size of E1.

(a) If k1 ≥ 2, then by Lemma 5.8 below, C0 can have at most 2k1 automorphisms. Thus, we
have at most 2k1 ways of choosing the root of T (B).

(b) If k1 = 1, then we consider the next larger class of subtrees, E2. We handle the cases
for E2 exactly as for E1. However, we do not need to proceed to E3, because we can
handle the case k1 = k2 = 1 directly.

(i) Some articulation point aj in E2 is not associated withC0. We do the same with aj

as in sub-case III (1). We get up to k2 separating pairs as candidates for the root.
(ii) All articulation points in E2 are associated with C0.

If k2 ≥ 2, then we process the child in E1 a priori and store the result. Similar as in
sub-case III (2a), we have at most 2k2 ways of choosing the root of T (B).

If k2 = 1, then C has at least three vertices that are fixed by all its automorphisms
i.e., a and the articulation point with its subtree in E1 and that in E2. We will show
in Corollary 5.7 below that C0 has at most one non-trivial automorphism in this case.
Thus, we have at most two ways of choosing the root of T (B).

Let N = |SB |. We assume that all subtrees are of size ≤ N /2, because otherwise such a subtree is
considered as large and processed a priori by the algorithm as opposed to going into the recursion
for it (see the paragraph on large children below).

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:26 T. Thierauf et al.

It remains to prove the bounds claimed above on the number of automorphism of the
3-connected components. We use the following lemma that provides an automorphism preserv-
ing embedding of a 3-connected planar graph on the 2-sphere.

Lemma 5.6 ([7] (P. Mani)). Every 3-connected planar graphG can be embedded on the 2-sphere as

a convex polytope P such that the automorphism group of G is induced by the automorphism group

of the convex polytope P formed by the embedding.

The following corollary of the lemma justifies sub-case III (2b ii).

Corollary 5.7. Let G be a 3-connected planar graph with at least 3 colored vertices, each having

a distinct color. Then, G has at most one non-trivial automorphism.

Proof. An automorphism of G has to fix all the colored vertices. Consider the embedding of G
on a 2-sphere from Lemma 5.6. The only possible symmetry is a reflection about the plane con-
taining the colored vertices, which leads to exactly one non-trivial automorphism. �

The following lemma gives a relation between the size of the smallest color class and the number
of automorphisms for a 3-connected planar graph with one distinctly colored vertex when the size
of the second largest color class is at least 2 as considered in subcase III (2a).

Lemma 5.8. LetG be a 3-connected planar graph with colors on its vertices such that one vertex a is

colored distinctly, and let k ≥ 2 be the size of the smallest color class apart from the one that contains a.

Then, G has ≤ 2k automorphisms.

Proof. Point a is fixed, therefore the orientation preserving part of the automorphism group is
cyclic (see, e.g., Lemma 3 in Reference [4]) and extends as rotations to the sphere. By Lemma 5.6,
this implies that there are at most k such rotations. Thus, if we add the rotation reversing part,
then we get an upper bound of 2k on the order of the automorphism group. �

5.2.3 Summary and Correctness of the Isomorphism Order. We argue that two biconnected com-
ponent trees are equal for the isomorphism order for some choice of the root if and only if the
corresponding graphs are isomorphic.

Theorem 5.9. Given two connected planar graphsG andH and their biconnected component trees S
and T , then G � H if and only if there is a choice of articulation points a,a′ in G and H such

that Sa ≡B Ta′ .

Proof. Assume that Sa ≡B Ta′ . The argument is an induction on the depth of the trees that
follows the inductive definition of the isomorphism order. The induction goes from depth d + 2
to d . If the grandchildren of articulation points, say s and t , are ≡B-equal up to Step 3, then we
compare the children of s and t . If they are equal, then we can extend the ≡B-equality to the
articulation points s and t .

When subtrees are rooted at articulation point nodes, the comparison describes an order on the
subgraphs that correspond to split components of the articulation points. The order describes an
isomorphism among the split components.

When subtrees are rooted at biconnected component nodes, say Bi and B′j , the comparison states

equality if the components have the same canon, i.e., are isomorphic (cf. Theorem 4.10) and by
induction hypothesis, we know that the children rooted at articulation points of Bi and B′j are

isomorphic. The equality in the comparisons inductively describes an isomorphism between the
vertices in the children of the root nodes.

Hence, the isomorphism between the children at any level can be extended to an isomorphism
between the corresponding subgraphs in G and H and therefore to G and H itself.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:27

The reverse direction holds easily as well. Suppose G and H are isomorphic and there is an
isomorphism between G and H that maps the articulation point a of G to the articulation point a′

of H . One needs to prove that the biconnected component trees Sa of G and Ta′ of H rooted,
respectively, at a and a′ will be ≡B. Again, we proceed by induction on the depth of Sa andTa′ . An
isomorphism maps articulation points of G to articulation points of H . Further, this isomorphism
describes a permutation of the split components of the articulation points. By induction hypothesis,
the children at depthd+2 of two such biconnected components are isomorphic and equal according
to ≡B. Thus, combined with the isomorphism of corresponding biconnected components and the
definition of ≡B, this yields the reverse direction and completes the proof. �

5.3 Space Complexity of the Isomorphism Order Algorithm

The space analysis of the isomorphism order algorithm is similar to that of Lindell’s algorithm. We
highlight the differences needed in the analysis first.

When we compare biconnected components B and B′ in the biconnected component tree, then
a typical query is of the form (s, r), where s is the chosen root of the triconnected component tree
and r is the index of the edge in the canon, which is to be retrieved. If there are k choices for the
root for the triconnected component trees of B and B′, then the base machine cycles through all
of them one-by-one, keeping track of the minimum canon. This takes O (logk) space. From the
discussion above, we know that the possible choices for the root can be restricted toO (k) and that
the subtrees rooted at the children of B have size ≤ |SB |/k , when k ≥ 2. Hence, the comparison
of B and B′ can be done in log-space in this case.

We compare the triconnected component trees T (B) and T (B′) according to B and B′. When
we compare triconnected components in T (B) and T (B′), then the algorithm asks oracle queries
to the triconnected planar graph canonization algorithm. The base machine retrieves edges in
these canons one-by-one from the oracle and compares them. Two edges (a,b) and (a′,b ′) are
compared by first comparing a and a′. If both are articulation points, then we check whether we
reach them for the first time, i.e., whether we are at the reference copies of a and a′. In this case,
we compare the biconnected subtrees Sa and Sa′ rooted at a and a′. If these are equal, then we look,
whether (a,b) and (a′,b ′) are separating pairs. If so, then we compare their triconnected subtrees.
If these are equal, then we proceed with the next edge, e.g., (b, c), and continue in the same way.

Next, we show that the position of the reference copy of an articulation point, i.e., the compo-
nent A and the position in the canon for A, can be found again after recursion without storing any
extra information on the work-tape.

Lemma 5.10. The reference copy of an articulation point a in T (B) and a′ in T (B′) for the com-

parison of triconnected component trees T (B) with T (B′) can be found in log-space.

Proof. To prove the lemma, we distinguish three cases for a in T (B). Assume that we have
the same situation for a′ in T (B′). If not, then we found an inequality. We define now a unique
component A, where a is contained. We distinguish the following cases:

• Articulation point a occurs in the root separating pair of T (B). That is, a occurs already at
the beginning of the comparisons for T (B). Then, we define A as the root separating pair.
• Articulation point a occurs in separating pairs other than the root of T (B). Then, a occurs

in all the component nodes, which contain such a separating pair. By the construction of the
tree, these nodes form a connected subtree of T (B). Hence, one of these component nodes
is the closest to the root of T (B). This component is always a triconnected component node.
LetA be this component. Note that the comparison first comparesa witha′ before comparing
the biconnected or triconnected subtrees, so we reach these copies first in the comparison.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:28 T. Thierauf et al.

• Articulation point a does not occur in a separating pair. Then, a occurs in only one tricon-
nected component node in T (B). Let A be this component.

In all except the first case, we find a in a triconnected component node A first. Let a′ be found
first in component node A′, accordingly. Assume that we start the comparison of A and A′. More
precisely, we start to compare the canons C of A and C ′ of A′ bit-for-bit. We go into recursion if
and only if we reach the first edge in the canons that contain a and a′. Note that C can contain
more than one edge with endpoint a. On all the other edges in C and C ′, we do not go again into
recursion. It is easy to see that we can recompute the first occurrence of A and A′. �

Comparing two subtrees rooted at separating pairs or triconnected components. We go into re-
cursion at separating pairs and triconnected components in T (B) and T (B′). When we reach a
reference copy of an articulation point in both trees, then we interrupt the comparison of B with B′

and go into recursion as described before, i.e., we compare the corresponding articulation point
nodes, the children of B and B′. When we return from recursion, we proceed with the comparison
of T (B) and T (B′).

In this part, we concentrate on the comparison of T (B) and T (B′). We give an overview of
what is stored on the work-tape when we go into recursion at separating pairs and triconnected
components. Basically, the comparison is similar to that in Section 4.4. We summarize the changes.

• We use the size function according to Definition 5.4. That is, the size of a triconnected subtree
rooted at a node C in T (B) also includes the sizes of the biconnected subtrees rooted at the
reference articulation points that appear in the subtree of T (B) rooted at C .
• For a root separating pair node, we store at most O (logk) bits on the work-tape when we

have k candidates as root separating pairs for T (B). Hence, whenever we make recomputa-
tions in T (B), we have to find the root separating pair node first. For this, we compute T (B)
in log-space and with the rules described above, we find the candidate edges in log-space.
With the bits on the work-tape, we know which of these candidate edges is the current root
separating pair. We proceed as in the case of non-root separating pair nodes described next.
• For a non-root separating pair node and triconnected component nodes, we store the same

on the work-tape as described in Section 4.4, i.e., the counters c<, c=, c> , orientation coun-
ters for separating pair nodes and the information of the current canon for triconnected
component nodes. First, recompute the root separating pair node, then we can determine
the parent component node. With the information on the work-tape, we can proceed with
the computations as described in Section 4.4.

For the triconnected component trees T (B) and T (B′), we get the same space-bounds as in
the previous section. That is, for the cross-comparison of the children of separating pair nodes s
of T (B) and t of T (B′), we use O (logkj) space when we go into recursion on subtrees of size ≤
N /kj , where N is the size of the subtree rooted at s and kj is the cardinality of the jth isomorphism
class. For each such child (a triconnected component node), we use O (1) bits, when we go into
recursion. In the case, we have large children (of size ≥ N /2), and we treat them a priori. We will
discuss this below.

When we consider the trees Sa and Sa′ rooted at articulation points a and a′, then we have
for the cross comparison of their children, say B1, . . . ,Bk and B′1, . . . ,B

′
k

, respectively, a similar
space analysis as in the case of separating pair nodes. That is, we use O (logkj) space when we
go into recursion on subtrees of size ≤ N /kj , where N = |Sa | and kj is the cardinality of the jth
isomorphism class. Large children (of size ≥ N /2) are treated a priori. We will discuss this below.

When we compare biconnected components Bi and B′i , then we compute T (Bi) and T (B′i). We
have a set of separating pairs as candidates for the root of T (Bi). Recall that for Bi , its children are

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:29

partitioned into size classes. Let ki be the number of elements of the smallest size class with ki ≥ 2,
there are O (ki) separating pairs as roots for T (Bi). Except for the trivial cases, the algorithm
uses O (logki) space when it starts to compare the trees T (Bi) and T (B′i).

Assume now that we compare T (Bi) and T (B′i). In particular, assume we compare triconnected
components A and A′ of these trees. We follow the canons of A and A′ as described above, until
we reach articulation points, say a and a′. First, we recompute whether a and a′ already occurred
in the parent node. If not, then we recompute the canons of A and A′ and check whether a and a′

occur for the first time. If so, then we store nothing and go into recursion.
When we return from recursion, we recompute the components A and A′ in T (B) and T (B′).

On the work-tape, there is information about which are the current and the unerased canons. We
run through the current canons and find the first occurrence of a and a′.

Large children. As in the case of biconnected graphs in Section 4.1, we deviate from the algorithm
described so far in the case that the recursion would lead to a large child. Large subtrees are again
treated a priori.

However, the notion of a large child is somewhat subtle here. We already defined the size of
biconnected component trees Sa and SB with an articulation point a or a biconnected component B
as root. A large child of such a tree of size N is a child of size ≥ N /2.

Now consider T (B), the triconnected component tree of B. Let A be a triconnected component
and {u,v} be a separating pair in T (B). We have not yet defined the subtrees SA and S {u,v } rooted
at A and {u,v}, respectively, and this has to be done quite carefully.

Definition 5.11. Let B be a biconnected component and T (B) its triconnected component tree.
LetC be a node in T (B), i.e., a triconnected component node or a separating pair node. The tree S∗C
rooted at C consists of the subtree of T (B) rooted atC (with respect to the root of T (B)) and of the
subtrees Sa for all articulation points a that have a reference copy in the subtree of T (B) rooted
at C , except those Sa that are a large child of SB . The size of S∗C is the sum of the sizes of its
components.

Let N be the size of S∗C . A large child of S∗C is a subtree of C of size ≥ N /2.

We already described above that an articulation point a may occur in several components of
a triconnected component tree. We said that we go into recursion to the biconnected component
tree Sa only once, namely, either when we reach the reference copy of a or even before in the
following case: Let a be an articulation point in the biconnected component B and letC be the node
in T (B) that contains the reference copy of a. Then, it might be the case that Sa is a large child
of SB and of S∗C . In this case, we visit Sa when we reach B, i.e., before we start to compute the root
for T (B). Then, when we reach the reference copy of a in C , we first check whether we already
visited Sa . In this case the comparison result (with some large child Sa′ of B′) is already stored on
the work-tape and we do not visit Sa a second time. Note, if we would go into recursion at the
reference copy a second time, then we cannot guarantee the log-space bound of the transducer,
because we already have written bits on the work-tape for B when we traverse the child, the
biconnected subtree Sa for the second time. Otherwise, we visit Sa at the reference copy of a.

Consequently, we consider Sa as a subtree only at the place where we go into recursion to Sa .
Recall that this is not a static property, because for example the position of the reference copy
depends on the chosen root of the tree, and we try several possibilities for the root. Figure 5.3
shows an example.

We summarize, the algorithm reaches a componenta,B, orC as above, it first checks whether the
corresponding tree Sa , SB , or S∗C has a large child and treats it a priori. The result is stored withO (1)

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

8:30 T. Thierauf et al.

Fig. 5.3. The triconnected component tree T (B) of the biconnected component B. The triconnected compo-

nent A contains the reference copy of articulation point a. If Sa is not a large child of B, then the subtree SA

consists of the subtree of T (B) rooted atA and the subtree Sa . In contrast, Sa is not part of the subtree S {a,b } ,
because it does not contain the reference copy of a.

bits. In the case of triconnected components, we also store the orientation. We distinguish large
children as follows:

• Large children with respect to the biconnected component tree. These are children of node a
in Sa or B in SB . These children are biconnected component nodes or articulation point nodes.
When comparing SB with SB′ , then we go for large children into recursion before computing
the trees T (B) and T (B′).
• Large children with respect to the triconnected component tree. These are children of nodeC

in S∗C . These children are separating pair nodes, triconnected component nodes.
• Large children with respect to S∗C , where C is a node in T (B). These are children of node
B in SB , which are not large children of B. These children are articulation point nodes that
have a reference copy in C .

We analyze the comparison algorithm when it compares subtrees rooted at separating pairs and
subtrees rooted at articulation points. For the analysis, the recursion goes here from depthd tod+2
of the trees. Observe that large children are handled a priori at any level of the trees. We set up
the following recursion equation for the space requirement of our algorithm.

S (N) = max
j
S

(
N

kj

)
+O (logkj),

where kj ≥ 2 (for all j) are the values mentioned above in the corresponding cases. Hence, S (N) =
O (logN).

For the explanation of the recursion equation, it is helpful to imagine that we have two work-
tapes. We use the first work-tape when we go into recursion at articulation point nodes and the
second work-tape when we go into recursion at separating pair nodes. The total space needed is
the sum of the space of the two work-tapes.

• At an articulation point node, the value kj is the number of elements in the jth size class
among the children B1, . . . ,Bk of the articulation point node. We store O (logkj) bits and
recursively consider subtrees of size ≤ N /kj .

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

Planar Graph Isomorphism Is in Log-Space 8:31

• At a separating pair node the value kj is the number of elements in the jth isomorphism
class among the childrenG1, . . . ,Gk of the separating pair node. We storeO (logkj) bits and
recursively consider subtrees of size ≤ N /kj .

This finishes the complexity analysis. We get the following theorem:

Theorem 5.12. The isomorphism order between two planar graphs can be computed in log-space.

5.4 The Canon of a Planar Graph

From Theorem 5.12, we know that the isomorphism order of biconnected component trees can be
computed in log-space. Using this algorithm, we show that the canon of a planar graph can be
output in log-space.

The canonization of planar graphs proceeds exactly as in the case of biconnected planar graphs.
A log-space procedure traverses the biconnected component tree and makes oracle queries to the
isomorphism order algorithm and outputs a canonical list of edges, along with delimiters to sepa-
rate the lists for siblings.

For an example, consider the canonical list l (S,a) of edges for the tree Sa of Figure 5.1. Let l (Bi ,a)
be the canonical list of edges of the biconnected component Bi , i.e., the canonical list of T (Bi)
with a the parent articulation point. Let a1, . . . ,al1

be the order of the reference copies of articula-
tion points as they occur in the canon of T (Bi). Then, we get the following canonical list for Sa :

l (S,a) = [(a) l (SB1 ,a) . . . l (SBk
,a)], where

l (SB1 ,a) = [l (B1,a) l (Sa1 ,a1) . . . l (Sal1
,al1

)]

...

l (SBk
,a) = [l (Bk ,a) l (Salk

,alk
)].

A log-space transducer then renames the vertices according to their first occurrence in this list
to get the final canon for the biconnected component tree. This canon depends upon the choice
of the root of the biconnected component tree. Further log-space transducers cycle through all
the articulation points as roots to find the minimum canon among them, then rename the vertices
according to their first occurrence in the canon and, finally, remove the virtual edges and delimiters
to obtain a canon for the planar graph. This proves Theorem 5.1.

6 CONCLUSION

In this article, we improve the known upper bound for isomorphism and canonization of planar
graphs from AC1 to L. This implies L-completeness for this problem, thereby settling its complexity.
An interesting question is to extend it to other important classes of graphs.

ACKNOWLEDGMENTS

We thank Stefan Arnold, V. Arvind, Bireswar Das, Raghav Kulkarni, Meena Mahajan, Jacobo Torán,
and the anonymous referees for helpful comments and discussions.

REFERENCES

[1] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha Roy. 2009. Planar and

grid graph reachability problems. Theor. Comput. Syst. 45, 4 (2009), 675–723. DOI: https://doi.org/10.1007/s00224-009-

9172-z

[2] Eric Allender and Meena Mahajan. 2004. The complexity of planarity testing. Inf. Computat. 189, 1 (2004), 117–134.

DOI: https://doi.org/10.1016/j.ic.2003.09.002

[3] V. Arvind, Bireswar Das, and Johannes Köbler. 2008. A logspace algorithm for partial 2-tree canonization. In Computer

Science Symposium in Russia (CSR). Springer, 40–51.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

https://doi.org/10.1007/s00224-009-9172-z
https://doi.org/10.1016/j.ic.2003.09.002

8:32 T. Thierauf et al.

[4] V. Arvind and Nikhil Devanur. 2004. Symmetry breaking in trees and planar graphs by vertex coloring. In the Nordic

Combinatorial Conference (NORCOM). Department of Mathematical Sciences.

[5] V. Arvind and Piyush P. Kurur. 2006. Graph isomorphism is in SPP. Inf. Computat. 204, 5 (2006), 835–852.

[6] L. Babai. 1985. Trading group theory for randomness. In 17th ACM Symposium on Theory of Computing (STOC). ACM

Press, 421–429.

[7] László Babai. 1995. Automorphism groups, isomorphism, reconstruction. Handb. Combinat. 2 (1995), 1447–1540.

[8] László Babai. 2016. Graph isomorphism in quasipolynomial time [extended abstract]. In 48th ACM Symposium on

Theory of Computing, (STOC). ACM Press, 684–697.

[9] László Babai and Eugene M. Luks. 1983. Canonical labeling of graphs. In 15th ACM Symposium on Theory of Computing

(STOC). ACM Press, 171–183.

[10] H. L. Bodlaender. 1990. Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. J. Algor.

11 (1990), 631–643.

[11] Ravi B. Boppana, Johan Hastad, and Stathis Zachos. 1987. Does co-NP have short interactive proofs? Inform. Process.

Lett. 25, 2 (1987), 127–132.

[12] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. 2009. Directed planar reachability is in unambiguous

Log-Space. ACM Trans. Computat. Theor. 1, 1 (2009), 4:1–4:17. DOI: https://doi.org/10.1145/1490270.1490274

[13] Maurice Chandoo. 2016. Deciding circular-arc graph isomorphism in parameterized logspace. In 33rd Symposium on

Theoretical Aspects of Computer Science (STACS) (LIPIcs, Vol. 47). Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[14] Stephen A. Cook. 1985. A taxonomy of problems with fast parallel algorithms. Inf. Contr. 64, 1-3 (1985), 2–22.

[15] William H. Cunningham and Jack Edmonds. 1980. A combinatorial decomposition theory. Canad. J. Math. 32 (1980),

734–765.

[16] Bireswar Das, Jacobo Torán, and Fabian Wagner. 2012. Restricted space algorithms for isomorphism on bounded

treewidth graphs. Inf. Computat. 217 (2012), 71–83.

[17] Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner. 2009. Planar graph isomor-

phism is in Log-Space. In IEEE Conference on Computational Complexity (CCC). IEEE Computer Society, 203–214.

[18] Samir Datta, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner. 2009. Isomorphism for K3,3-free and K5-

free graphs is in Log-Space. In 29th Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 145–156.

[19] Michael Elberfeld and Ken-ichi Kawarabayashi. 2014. Embedding and canonizing graphs of bounded genus in Log-

Space. In Symposium on Theory of Computing (STOC). ACM Press, 383–392.

[20] Michael Elberfeld and Pascal Schweitzer. 2017. Canonizing graphs of bounded tree width in Log-Space. ACM Trans.

Computat. Theor. 9, 3 (2017). DOI: https://doi.org/10.1145/3132720

[21] Hillel Gazit and John H. Reif. 1998. A randomized parallel algorithm for planar graph isomorphism. J. Algor. 28,

2 (1998), 290–314.

[22] O. Goldreich, S. Micali, and A. Wigderson. 1991. Proofs that yield nothing but their validity or all languages in NP

have zero-knowledge proof systems. J. ACM 38 (1991), 691–729.

[23] S. Goldwasser and M. Sipser. 1989. Private coins versus public coins in interactive proof systems. Adv. Comput. Res.

5 (1989), 73–90.

[24] M. Grohe and O. Verbitsky. 2006. Testing graph isomorphism in parallel by playing a game. In 33rd International

Colloquium on Automata, Languages and Programming (ICALP) (Lecture Notes in Computer Science, Vol. 4051). Springer-

Verlag, 3–14.

[25] John E. Hopcroft and Robert E. Tarjan. 1972. Finding the Triconnected Components of a Graph. Technical Report 72-140.

Cornell University.

[26] John E. Hopcroft and Robert Endre Tarjan. 1972. Isomorphism of planar graphs. In Complexity of Computer Compu-

tations (The IBM Research Symposia Series). Plenum Press, New York, 131–152.

[27] John E. Hopcroft and Robert E. Tarjan. 1973. Dividing a graph into triconnected components. SIAM J. Comput. 2,

3 (1973), 135–158.

[28] John E. Hopcroft and J. K. Wong. 1974. Linear time algorithm for isomorphism of planar graphs (preliminary report).

In 6th ACM Symposium on Theory of Computing (STOC). ACM Press, 172–184.

[29] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. 2003. Completeness results for graph isomorphism.

J. Comput. Syst. Sci. 66, 3 (2003), 549–566.

[30] Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. 2017. The Weisfeiler-Leman dimension of planar graphs is

at most 3. In 32nd ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society, 1–12.

[31] Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky. 2011. Interval graphs: Canonical represen-

tations in logspace. SIAM J. Comput. 40, 5 (2011), 1292–1315.

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

https://doi.org/10.1145/1490270.1490274
https://doi.org/10.1145/3132720

Planar Graph Isomorphism Is in Log-Space 8:33

[32] Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky. 2013. Helly circular-arc graph isomorphism is in logspace.

In 38th Symposium on Mathematical Foundations of Computer Science (MFCS) (Lecture Notes in Computer Science,

Vol. 8087). Springer, 631–642.

[33] Michal Koucký. 2002. Universal traversal sequences with backtracking. J. Comput. Syst. Sci. 65, 4 (2002), 717–726.

[34] Jacek P. Kukluk, Lawrence B. Holder, and Diane J. Cook. 2004. Algorithm and experiments in testing planar graphs

for isomorphism. J. Graph Algor. Applic. 8, 2 (2004), 313–356.

[35] John Lind and Albert R. Meyer. 1973. A characterization of log-space computable functions. SIGACT News 5, 3 (July

1973), 26–29. DOI: https://doi.org/10.1145/1008293.1008295

[36] Steven Lindell. 1992. A logspace algorithm for tree canonization (extended abstract). In 24th ACM Symposium on

Theory of Computing (STOC). ACM Press, 400–404.

[37] Saunders Maclane. 1937. A structural characterization of planar combinatorial graphs. Duke Math. J. 3 (1937), 460–472.

[38] Gary L. Miller and Vijai Ramachandran. 1992. A new graph triconnectivity algorithm and its parallelization. Combi-

natorica 12 (1992), 53–76.

[39] Gary L. Miller and John H. Reif. 1991. Parallel tree contraction part 2: Further applications. SIAM J. Comput. 20,

6 (1991), 1128–1147.

[40] Bojan Mohar and Carsten Thomassen. 2001. Graphs on Surfaces. Johns Hopkins University Press, Baltimore (MD),

London. Retrieved from http://opac.inria.fr/record=b1131924.

[41] Ilia N. Ponomarenko. 1991. The isomorphism problem for classes of graphs closed under contraction. J. Math. Sci.

55 (1991), 1621–1643.

[42] Omer Reingold. 2008. Undirected connectivity in Log-Space. J. ACM 55, 4 (2008), 1–24.

[43] Klaus Reinhardt and Eric Allender. 2000. Making nondeterminism unambiguous. SIAM J. Comput. 29, 4 (2000), 1118–

1131. DOI: https://doi.org/10.1137/S0097539798339041

[44] Thomas Thierauf and Fabian Wagner. 2010. The isomorphism problem for planar 3-connected graphs is in unambigu-

ous logspace. Theor. Comput. Syst. 47, 3 (2010), 655–673.

[45] Thomas Thierauf and Fabian Wagner. 2014. Reachability in K3,3-free graphs and K5-free graphs is in unambiguous

logspace. Chicago J. Theoret. Comput. Sci. 2 (2014), 1–29.

[46] Jacobo Torán. 2004. On the hardness of graph isomorphism. SIAM J. Comput. 33, 5 (2004), 1093–1108.

[47] Oleg Verbitsky. 2007. Planar graphs: Logical complexity and parallel isomorphism tests. In 24th International Sympo-

sium on Theoretical Aspects of Computer Science (STACS). Springer, 682–693.

[48] Fabian Wagner. 2007. Hardness results for tournament isomorphism and automorphism. In 32nd International Sympo-

sium on Mathematical Foundations of Computer Science (MFCS) (Lecture Notes in Computer Science, Vol. 4708). Springer,

572–583.

[49] Louis Weinberg. 1966. A simple and efficient algorithm for determining isomorphism of planar triply connected

graphs. Circ. Theor. 13 (1966), 142–148.

[50] Douglas B. West. 2000. Introduction to Graph Theory (2nd ed.). Prentice Hall.

[51] Hassler Whitney. 1933. A set of topological invariants for graphs. Amer. J. Math. 55 (1933), 235–321.

Received July 2020; revised May 2022; accepted June 2022

ACM Transactions on Computation Theory, Vol. 14, No. 2, Article 8. Publication date: September 2022.

https://doi.org/10.1145/1008293.1008295
http://opac.inria.fr/record=b1131924
https://doi.org/10.1137/S0097539798339041

