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Abstract—In 1982, Kannan showed that:5 does not have this question remains open fofP — we do not even know
n*-sized circuits for any k. Do smaller classes also admit of superlinear size lower bounds ftiP.

such circuit lower bounds? Despite several improvements of
Kannan’s result, we still cannot prove that PN does not have However, we do have such lower bounds for some classes

linear size circuits. Work of Aaronson and Wigderson provides  slightly aboveNP. In 1982, Kannan [Kan82] proved that
strong evidence — the “algebrization” barrier — that current ES does not haven’-sized circuits for anyk. This re-
techniques have inherent limitations in this respect. sult was progressively improved using relativizing tech-

We explore questions about fixed-polynomial size circuit niques ([BCGE96], [KW98], [Cai07]) culminating in the

lower bounds around and beyond the algebrization barrier. analogous circuit lower bound &P [Cai07]
We find several connections, including 2 )

Recently, non-relativizing techniques from the theory of
o A o o - interactive proofs have been applied to this problem. Ir6200
- fNP Is in SIZE(n") (has O(n")-size circuit families) — \;nqqchandran [Vin05] showed that the claB does not
or some k b o o . .
— For eache, PN} is in SIZE(n*) for some k haven”-sized CI.rCUItS. Santhanam .[San07].|mproved on this
— ONP/1 is in SIZE(n*) for some k, where ONP is the result by showing that the promise version A does
class of languages acceptedbliviously by NP ma- not haven” circuits for any fixedk. The proofs of Vinod-
chines, with witnesses for “yes” instances depending chandran and Santhanam evade not only the relativization

only on the input length. obstacle, but also the natural proofs obstacle [RR97].
o For a large number of natural classesC and all k > 1, C

« The following are equivalent:

is in SIZE(n*) if and only if C/1NP/poly is in SIZE(n¥). A natural question is to ask whether these techniques can
o Ifthere is a d such that MATIME(n) C NTIME(n?), then  be pushed even further. Can similar results be obtained for
P"" does not haveO(n*) size circuits for any k > 0. other classes liké&\P, PNP, &P and MA? This would have

2 P o ’ R [ ) )
« One cannot shown”-size circuit lower bounds for &P gjonificant implications — for instance! size lower bounds
without new nonrelativizing technigues. In particular,

the proof that PP ¢ SIZE(n*) for all k relies on the 1N NP foranyk would separatéEXP from BPP, a long-
(relativizing) result that PP® C MA = PP ¢ SIZE(n"), standing open problem. In a recent influential paper [AW09],
and we give an oracle relative to whichP®” C MA and ~ Aaronson and Wigderson give strong evidence that the
®P C SIZE(n®) both hold. answer is negative. They formalize a variant of relativizat
called “algebrization”, and show that essentially all kmow
structural complexity results at the polynomial time level
. INTRODUCTION algebrize, while several important lower bound problems,
such as showing fixed-polynomial size lower boundsNér

Proving lower bounds for general nonuniform circuits cannot be resolved by algebrizing methods.

remains one of the most difficult tasks in computational _ _
complexity. One has to go to the exponential-time version of Thus, though we might have techniques that evade rela-
Merlin-Arthur games to find a class provab|y not having at|V|Zat|0n and natural pI’OOfS, there is still a SlgnlflcaatlhBr
polynomial-size circuit family [BFT98]. Currently we do ho toN§h0W|qg fixed-polynomial lower bounds fatP or even
have any techniques for provifigkP cannot have poly-size P - In this paper, we explore the world of fixed-polynomial

circuits, and certainly no techniques for super-polyndmiaSize lower bounds “beyond the barrier”. We show some
lower bounds foNP. surprising connections and equivalences between question

. ' .. ._about fixed-polynomial size circuits in this regime.
A more modest goal is to show fixed-polynomial size poly 9

lower bounds, i.e., lower bounds of the fomfi for some In our first batch of results, we consider various pairs of
fixed k. Apart from being a first step towards super- classes and show that a fixed-polynomial size lower bound
polynomial bounds, this question is closely related to quesfor the larger class actually implies a lower bound for the
tions in derandomization, thanks to known tradeoffs betwee Smaller class. sze begin with a simple observationAN
hardness and randomness ([BM84]’ [Ya082]’ [NW94]) EveeroeS not haven"-size circuits then neither doddA. We



then show that fixed-polynomial circuit lower bounds for a different emphasis, namely to derive several unlikely
NP are equivalent to fixed polynomial-circuit lower bounds consequences of small circuits for those classes and thereb
for the larger clasNPI"‘] given any fixede, where the give more evidence that lower bounds are likely to hold.
latter class is polynomial time with¢ adaptive queries

to an NP oracle. In particular, this implies that showing [l. PRELIMINARIES

fixed-polynomial lower bounds for polynomial time with . . )
nonadaptive access to &P oracle is as hard as showing A- Complexity Classes, Promise Problems and Advice

such lower bounds fokP itself. We assume a basic familiarity with complexity classes
We explore the clas©NP, “Oblivious NP”, implicitly ~ such as P, RP, BPP, NP, PNP, MA, AM, xF,
defined by Chakaravarthy and Roy [CRO6]. A langudge &P, PP, EXP, and NEXP. The Complexity Zoo
is in ONP if for every n there is a single polynomial- (http:/qwiki.caltech.edu/wiki/ComplexityZoo) is an &x-
size witnessw,, for everyz in L with |z| = n. Thus lent resource for basic definitions and statements of ®sult
ONP is a rather restrictive subclass BP. Nevertheless, we Given a complexity clas€, coC is the class of languages
show thatONP nearly c_aptl_Jres the hardness of shovmg L such thatl € C. Given a functions : N — N, SIZE(s) is
dpes_ not have small circuits: NP does_ not hgvez_’“-saeq the class of Boolean function= {f,} such that for each
circuits thenONP/1 does not have:*-sized circuits. This n, f. has Boolean circuits of siz€(s(n)). For a Boolean
result highlights a difference between the fixed-polyndmia ¢ nction , Ckt(f) is the circuit complexity off, i.e., the

lower bound question and the super-polynomial lower bound;, of the smallest circuit computing Given a language
question. The clas®NP/1 is solvable with polynomial size | 414 an integer, L, = LN {0,1}"

circuits, and we strongly believe thaltP is not. Yet, from

the perspective of fixed-polynomial size bounds, these two We also require the notion of circuit size for other circuit
classes are equivalent! ' models. These are typically defined by having one or more

auxiliary inputs to a deterministic circuit and defining the

A similar phenomenon holds more generally. We provejgngyage accepted by the circuit using some condition on
a result that holds for a wide variety of complexity Classesacceptance of auxiliary inputspSIZE(s) is the class of

NP
such asNP, P, MA, BPP andPP. For all these classeS  ggjean functionsf computed by Parity-circuits of size
and many more, i does not haver*-size circuit families O(s), i.e., f(z) = 1 iff the circuit for f onz accepts on an
thenC/1 N P/poly does not have:*-size circuits either. odd number of auxiliary inputs.

. . b _ _ _
We next consider the question &' being in fixed- In order to deal with promise classes in a general way,

polynomial size. We use results from holograpphic ProofSye take as fundamental the notion of a complexity measure.
to show that fixed-polynomial size circuits f&" would A complexity measur€TIME is a mapping which assigns

imply that NP can be simulated by Merlin-Arthur games 1, each pair(A, ), where M is a time-bounded machine
operating in a fixed polynomial time bound, which would (here a time functior,, (z) is implicit) andz an input, one

be very surprising. We use this to show that a strongy ihree values “0” (accept), “1” (reject) and “?" (failure
derandomization oMA would imply circuit lower bounds ¢ cTiMmE promise). We distinguish betweayntacticand
for ENP,_contan|ngaI|ne of results relating dera”dom'zat'onsemanticcomplexity measures. Syntactic measures have
to circuit lower bounds ([IKW02], [KI04], [San07]). as their range{0,1} while semantic measures may map
As mentioned earlier, Vinodchandran and Santhanam’some machine-input pairs to “?”. The complexity measures
circuit lower bounds ([Vin05], [San07]) use nonrelativigi DTIME andNTIME are syntactic (each halting deterministic
techniques. The only nonrelativizing technique they use i®r non-deterministic machine either accepts or rejects on
based on interactive proof systems (see [BFL91]), arguablgach input), while complexity measures suchBisTIME
the only true nonrelativizing technique currently avaidab and MATIME are semantic (a probabilistic machine may
in computational complexity. We exhibit a relativized wibrl accept on an input with probability 1/2, thus failing the
where®P has an?-sized circuit family and the conclusions bounded-error promise). For syntactic measures, anyngalti
of the nonrelativizing techniques used by Vinodchandrah anmachine defines a language, while for semantic measures,
Santhanam also hold. This shows that a barrier analogoumly a subset of halting machines define languages.
to algebrization also holds when trying to prove tha® A promise problem is a pai(Y,N), where Y, N C
does not have quadratic-size circuit families. Actuallyy o 10,1}* andY NN = 2. A promise problentY, N) belongs
oracle result rules out a certain class of techniques whicl, 5 classCTIME(#) if there is a maching/ halting in time
algebrization is silent about — techniques in which a non- 4, 4 inputs of lengthn such thatM fulfils the CTIME
relatizing result is used in more than one way. promise on inputs i U N, accepting on inputs i’ and
Questions about fixed polynomial size circuits ®rand  rejecting on inputs inVv.

NP have also been explored by Lipton [Lip94], but with £, 4 complexity classC, Promise-C is the class of



promise problems which belong €@ Sometimes, whefiis  in OMA. Thus we do not expect either of these classes
a syntactic class, we abuse notation andiaedPromise-C ~ to be easy — indeed)NP = P implies NEXP = EXP.
interchangeably. Nor is it likely to be easy to showDMA C NP, since
that would imply MAg = NE, and resolve long-standing

A languagelL is in CTIME(t)/a if there is a machine - ;
derandomization questions.

M halting in timet(-) taking an auxiliaryadvicestring of
lengtha(-) such that for each, there is some advice string  Using the notions above, we can get tight uniform charac-
bn, |bn| = a(n) such thatM fulfils the CTIME promise for  terizations ofC C SIZE(poly) for several interesting classes
each inputez with advice stringb,, and accepts iff = € L. C.

For syntactic classes, a lower bound with advice or for Proposition 5: NP C SIZE(poly) iff NP C ONP iff
the promise version of the class translates to a lower boundP C OMA.

for the class itself. Proof: From the preceding discussion, it is clear that

Proposition 1: Let CTIME be a syntactic complexity NP C ONP impliesNP C OMA, andNP C OMA implies
measure. IfCTIME(poly(n))/O(n) ¢ SIZE(s(n)), then NP C SIZE(poly). Thus we just need to show thitP C
CTIME(poly(n)) € SIZE(s(o(n))). SIZE(poly) implies NP = ONP. We will show that under

Proposition 2: Let CTIME be a syntactic complexity this assumptionSAT € ONP, and then use the fact that

measure. IfPromise-CTIME(poly(n)) ¢ SIZE(s(n)), then ONP is closed under m-reductions to concludé = ONP.

CTIME(poly(n)) € SIZE(s(n)). Assume SAT € SIZE(n*) for somek. We define the
o following ONP machineM for SAT. Given a formulap of
B. Oblivious Classes sizen, M guesses a circuif’ of sizen* for SAT on inputs

Intuitively, if a class C is defined using “proofs of of Igng_thn. If _Caccepts.orqb, M uses_C.tlo find acandidfa.te
acceptance” for each input and some condition on thesatisfying assignment via _self—reduC|b|I|ty and paddap|l|ty
verifiability of proofs, the oblivious version of the cla§s of SAT. If wis a valid assignmenfi/ accepts, otherwise it

is the class of languages for which teameproof can be rejects. Note that no unsatisfiable formula is ever accepted

used on any input of a certain length. Oblivious versions of" thiS process, moreover @ is a correct circuit forS AT,

symmetric alternation classes were defined by Chakaravartifl! satisfiable formulae are accepted. Thiuss an oblivious
and Roy [CRO06] for the purpose of obtaining tight uniform witness forSAT on lengthn. u
characterizations dllP C SIZE(poly). Here, we extend the Proposition 6: EXP C SIZE(poly) iff EXP = OMA.
definitions to non-deterministic and Merlin-Arthur classe Proof: The backward direction follows sind@MA C
Definition 3: A languageL is in ONTIME(¢) if there is  SIZE(poly). For the forward direction, it follows from

a relation R(z,y) computable in deterministic timg|z|), = work on instance checkers and interactive proofs ([BFL91],
and a sequence of witnessgs, },n = 1...c0 with |w,| <  [BFNW93]) that if EXP C SIZE(poly), then EXP = MA.

t(n) such that: The proof of this result also giveeXP = OMA. [ ]
1) If z € L, thenR(z, w),|) holds. Since Impagliazzo, Kabanets and Wigderson [IKWO02]
2) If z ¢ L, then for ally, R(x,y) does not hold. showed thatNEXP C SIZE(poly) implies NEXP = EXP
Definition 4: A languagel is in OMATIME(¢) if there is we have the following coroliary.

a relationR(z, y, ) computable in deterministic tim|z|) Corollary 7: NEXP C SIZE(poly) iff NEXP = MA iff
and a sequence of witnessgs, },n = 1...00 with |w,| <  NEXP = OMA.
t(n) such that:

1) If z € L, then for allz, R(x,w,, 2) holds.

2) If x ¢ L, then for anyy, Pr. R(x,y,z) < 1/2. The question of fixed polynomial size circuit lower

We have thatONP C OMA C SIZE(poly). The first bounds wastirst considered by Kannan, who proved lower
inclusion is immediate: for the second inclusion, note thafounds for;.
we can amplify the success probability of @A protocol Theorem 8 (Kannan [Kan82])For any k > 0, X% ¢
abovel — 27" just as we do for artMA protocol. By the ~ SIZE(n*).
union bound, there must be some random strirtgat gives Theorem 8 has been strengthened progressively in a
the cor_re_zct answer for every input when we have guessegequence of papers ([BC®6], [KW98], [Cai07]) and the
the oblivious witness;. Giving y and » as advice for each  gmajiest uniform complexity class for which we can show
input length is sufficient to decide the language. unconditional lower bounds i§5 [Cai07]. Circuit lower

On the other hand, all sparse languagedih are con- bounds have recently been shown for the promise version
tained iINnONP, and all sparse languagesMn are contained of MA [San07] but showing such lower bounds for uniform

Ill. TRANSLATIONS OFCIRCUIT LOWERBOUNDS



MA and smaller classes remains an important open questiofor NP, sinceP|” = PNPIO(ee )] (|BHO1], [Hem89)).

Such lower bounds folP, apart from being interesting in We note that improving our results to show tHé® C
their own right, would also separaBPP andNEXP, which SIZE(n*) implies PNP C S|ZE(nk') for some fixedk’ de-

would be a major breakthrough in the area of derandomizasending only on: would require nonrelativizing techniques.
tion. This is because there is a relativized world [BFFT01] where

One obstacle to proving lower bounds for classes smalleNEXP C PNP 1 SIZE(poly). In this world, NP has fixed
than S5 is that such results cannot relativize. There havepolynomial-size circuits, buPNP does not.
been non-relativizing results in this area ([Vin05], [S@H0 Theorem 10:Fix any constany. There is ak such that

but there is a paucity of non-relativizing techniques apartyp SIZE(n*) iff there is a &’ such thatPNPI?") C
from the arithmetization technique used in work on inter'SIZE(_n’“'). N

active proofs ([LFKN92], [Sha92]). Recently, Aaronson and
Wigderson [AWO09] have introduced the notion of algebriza- , o hh : ) .
tion which in fact covers all known complexity-theoretic ¥ = ¢¥° is sufficient n the “?Versgpd'gec“o”- Nan;2ely, we
techniques for lower bounds at the polynomial-time level;Show thatNP C SIZE(n") implies P " C SIZE(nt).
they show that fixed-polynomial size lower bounds K? Let M be an deterministic polynomial time machine that
cannot be proven by algebrizing methods. makesn? oracle calls toSAT. Let by,...,b; be Boolean,
where j < n?. Define thepseudo-simulatiorof M (z) on

., b; to be the following nondeterministic computation:

Proof: One direction is obvious. We prove that choosing

Given the insufficiency of current techniques to prove
unconditional lower bounds, we focus on reductions betweefit: - -
circuit lower bounds for various classes. We show for SimulateM (x) over its firstj queries, simulating théth
various pairs of classeB and C, whereB C C, that a oracle call as follows: (for; =1,..., j):
fixed polynomial lower bound foC also implies a fixed
polynomial lower bound for the smaller clag We call
such resultdranslationsof circuit lower bounds.

o if b; = 0 then the simulation continues, presuming that
the ith query answered “no”,

« if b; = 1 then a variable assignment to thith query is
guessed, and the simulation continues if the assignment
satisfies thath query, otherwise itejects

Such a translation result can be interpreted in two ways.
An optimist would say that we are making our lower bound
task easier: in order to prove a lower bound Bowe now
only need to prove a lower bound for the weaker cl@ss If the simulation itself accepts or rejects at any time, then
A pessimist would say that this gives additional evidenceacceptor rejectaccordingly. If the simulation passes gll
that proving a lower bound fo€ is hard, since this would query steps above without rejecting, tharcept Otherwise,

automatically result in a stronger lower bound. reject

One example of a translation is the result that if the poly- Define the languagé, to be the set ofz, j, b1, ..., bpa)
nomial hierarchy contains a language of superpolynomiasuch thatl < j < n?, b; € {0,1}, and for alli =1,..., 7,
circuit complexity, then so dod$P. However, this result no the pseudo-simulation of/(z) onby,...,b; accepts.

longer holds if we consider fixed polynomial size. Indeed,
if it did, we would already have a superlinear circuit lower ;.o ignored. We choose this definition &f, so that the
bound forNP, by Theorem 8. final circuit family is easy to describe.)

We begin by giving a simple example: translating circuit nyitively, 7, takes some candidate query answers, and
lower bounds forAM to circuit lower bounds foMA. This checks that the “yes” query answers are correct up to some

result seems to have been observed independently by Seve[ﬁiint. (We need a trick to determine that “no” query answers
researchers.

. o

Theokrem 9:For anyk > 0, AM Z SIZE(n") iff MA Clearly L, is in NP. Thus it is captured by a circuit family

SIZE(n"). {Ca} of n* size, by assumption. Now define a machiNe
Proof: For the forward direction, iiMA C SIZE(n*)  that on inputz and circuitC' does the following:

(Note on input(x, j,b1,...,byq), the bitsbi1,...,bpa

are correct.)

then NP C SIZE(poly), which is known to implyAM = Guess bitsby,...,bpa. FOr j = 1,...,n%, check if
MA [AKSS95]. The backward direction follows from the C(z, j, by b ) N bn-+1 ba) = b ’Acc,:ept i all
rJ yreeyYy—1y 4 Yy sy Yn - g
fact thatMA ¢ AM [BM88]. B checks passed, and the pseudo-simulation)fz) on
Next, we consider fixed polynomial size lower boundsb,, ..., b,. accepts.

NP[n? - NP
for the classP""[**l, which lies betweemNP and P™". We Intuitively, N tries to use the circuif’ to determine that its
show that such lower bounds would in fact imply fixed g,esseq), .. b, are the correct query outcomes. Notice

polynomial lower bounds foKP. This result also shows that that L(N) is in NP. ThereforeL(N) is also captured by
. . NP .
fixed polynomial lower bounds fd?H yield lower bounds 5 circuit family {CN of n* size. Finally, set up a circuit



family {D,,} defined as: of Proposition 5. IfNP C SIZE(s), then we getNP C
U.>0 ONTIME(s®), for arbitrary circuit size s. By letting

._ N q
D () := Cry (ninayerel® Crgnase)s s be the circuit complexity ofSAT, we get thatSAT €
for anzappropriate constant Note the circuitD,, is of size  ONTIME(s®) for somec, but SAT does not have circuits
O(n*"). of size s — 1. We then scale this separation down using an

We now prove that for alt, D,, (z) = 1 iff M(x) accepts. advif:e-efficient.pa.ldding argument to concludg thgt a pgdded
Consider the for-loop oiV. We claim the following invariant Version of SAT is in ONP but does not have circuits of size
holds: O(n*).

The above is a brief sketch. We now proceed more

For all j = 1,...,n9, the jth iteration of the for-loop i )
formally. We define the following language:

in N is reached without failing a check, iff the firgtbits
of by,...,bna are the answers to the firgtqueries that\/ L = {z1" |z e SAT,ris a power of2,

makes on. r > |a|, Ckt(SAT},) < (Jz| + )},

1 andb; = 1, the call toC'? checks that there is a satisfying 7St we showl < ONP/1, and then we show. ¢
assignment to the first query. Whegn= 1 andb; = 0, the SIZE(n").

call to C still checks that there is a satisfying assignmentto We define a non-deterministic polynomial time machine
the first query (by flipping; to bel), but N only continues A taking one bit of advice, such that when the advice bit is
if C? outputs 0. That is, the pseudo-simulationterrejects,  correct for lengthn, there is a polynomial-size witness,
hence there is no satisfying assignment for the first querywhich works for any input of that length. Given an inpubf

In the jth iteration, we have (by induction) thét, ..., b, lengthn, M first checks if it can be decomposed:as for r

are the answers to the firgt— 1 queries of M (x). Then  a power of 2, such that > |z|. For any inputy, there can be
for b; = 1, the respective check succeeds iff tfth query  at most one such decomposition singe> r > |y|/2. This
can be satisfied by an assignment. Wiher= 0, the check check can be performed in linear time, and if it succeeds, the
succeeds iff thgth query is unsatisfiable. correspondinge and r can be obtained. The bit of advice
for M is assumed to be if and only if Ckt(SAT),|) <

(|z| 4+ 7)?*. This is just one bit of information givem,
sincen uniquely determinesx| and r. If the advice bit is

0, then M rejects. OtherwiseM guesses a circui€ of

) ) size n?*. It simulatesC on z. If C accepts onz, it uses
The next result shows that fixed polynomial lower boundsge|t. requcibility and paddability o5 AT to find a candidate

for NP also translate to fixed polynomial lower bounds satisfying assignment for. If the assignment worksM
for the oblivious version ofNP (using 1 bit of advice). accepts, otherwisa! rejects.

An interesting aspect of this result is that it illustrates ] o ] )
that proving superpolynomial circuit lower bounds is a Cl€arly,J runsin polynomial time. Also, there is a single
very different problem than proving fixed polynomial lower Withess of sizeoly(n), namely a correct circuit’ forTSAT
bounds. On the one han@NP/1 C SIZE(poly) and we on |nput§ 0f_|engtHx| which v_vorks fo.r any inputcl” € L,
do not expectNP C SIZE(poly), thus the two inclusions whenM is given the correct bit of advice. Thiise ONP/1.
are very unlikely to be equivalent. On the other hand, the Assume, for the purpose of contradiction, that €
inclusions of the two classes in fixed polynomial size areSIZE(n*). Hence there is a sequence of circuilg of size

The claim can be proved for agllby induction. Whery =

It follows that D, (z) = 1 iff the pseudo-simulation of
M(z) onby,..., by« accepts wherg; is the outcome of the
ith query onM(x), which is true iff M(x) accepts. This
completes the proof. ]

equivalent. O(n*) deciding L,, for eachn. We show that this implies
Theorem 11:For anyk, NP ¢ SIZE(n*) iff ONP/1 ¢ that for infinitely manym, t_here is a circuitCm of size
SIZE(nk). less thanCkt(SAT,,) deciding SAT on inputs of length

o o m. We define the circuitg’,,, as follows. Given an input

Proof: The “if” direction is easy. IfONP/1 does not length m, our C,, has hard-coded the leastm) = 2°

have circuits of sizex”, thenNP/1 does not have circuits such thatr(m) > m and Ckt(SAT,,) < (m + r(m))2*.
of size n*. SinceNP is a syntactic class, this implies that Such anr(m) gxists for eachm. %SS’ there must be
NP does not have circuits of size". infinitely many m such thatr(m) > 2m, for otherwise
The other direction is more involved. AssuM® does not  Ckt(SAT,,) < (3m)% = O(poly(m)) almost everywhere,
have circuits of sizex*. We consider two cases. NP C which is a contradiction to our assumption tifal’T" does

SIZE(poly), then by Proposition G\P = ONP, henceONP not have polynomial-size circuits.

does not have circuits of size". Now, for eachm such thatr(m) > 2m, we have
If NP ¢ SIZE(poly), then SAT ¢ SIZE(poly). We use  Ckt(SAT,,) > (m + r(m)/2)%*, just by assumption on
the fact that there is a “smoothly parameterized” versiomrminimality of »(m). Thus for thesem, Ckt(SAT,,) >



(m + r(m))?*/22k. When C,, is given z of length m, it uniquely determinegz| and r. The bit of advice just
it runs D,,, () (217(™)), using the hard-coded value for specifies ifCkt(L],) < (lz| + r)2k. If yes, M simulates
r(m) and a hard-coded copy ab,, ). C, decides theCTIME machine forL” onz, accepting iff the simulated
SAT,, correctly and has size at moé&t((m + r(m))¥),  machine does. If not) rejects.

by the assumption on size ¢fD,,}. For large enoughn,

If CTIME is able to simulate deterministic time, as is the
O((m +r(m))*) < (m + r(m))?* /22*, which implies that

e ] X case for all the complexity classes in the statement of the
for infinitely manym, SA.T’.” has circuits of size less than theorem, thenl” € C/1, since every stage of the process
Ckt(SAT;y) ~ a contradiction. B above, including the simulation of the machine o, can

A corollary of Theorem 11 is that iNP doesn't have be implemented in polynomial time. Also, just by using the
circuits of size O(n*), then NP/1 N SIZE(poly) doesn’t  optimal circuits forL’ to decideL” on appropriately padded
have circuits of sizeD(n*). This follows sinceONP/1 C inputs, it follows thatZ.”” has polynomial size circuits, in fact
NP /1 N SIZE(poly). In fact, this kind of translation result, circuits of sizeO(n?*). O
showing that a fixed polynomial circuit lower bound for a
class implies a fixed polynomial circuit lower bound for a
language in the class with polynomial-size circuits, holds IV. ON SMALL CIRCUITS FOR PNP
much more generally, faany complexity measure satisfying
a certain natural condition. This condition corresponds to We show that if there were circuits f®@""(*} having
“closure under deterministic transductions” as defined bysize smaller than®, then one can speed up nondeterministic
van Melkebeek and Pervyshev [vMP06], but rather than statéomputations by adding randomness. This is a result in the
it formally, we just observe that our proof works for any spirit of Lipton’s work [Lip94] on consequences of classes
reasonable complexity class for which we wish to show ahaving small circuits.
circuit lower bound. The proof abstracts out the padding Theorem 14:1f PNPI"l has O(n*) size circuits, then

argument in the proof of Theorem 11. NTIME[n¢] C MATIME[n*polylog(n)].

N'I';heorem 12:Let C be a complexity class such &, Proof: Let M be a nondeterministi©(n¢) time ma-
P™, MA, BPP or PP. If C does not have circuits of size chine. Define a nondeterministic machidé’ as follows.

O(n*), thenC/1NSIZE(poly) does not have circuits of size On an inputz, first compute an equivalerf AT instance

O(n*). ém,» Of length O(npolylog(n)) using a succinct version
Theorem 12 can be stated as equivalencefor the — Of Cook's theorem [Coo88]. Then transforpy, . into a
polynomial-time versions of syntactic measures. formula s, which has PCPs of lengt®(n“polylog(n))

with the property that any proposed proof can be verified
in O(polylog(n)) time. Such PCPs exist, due to work of
Ben-Sasson et al. [BSGHD5]. Finally, nondeterministically
guess a proof, and accept iff the proof is valid.

o Note the lexicographically first valid proof af,s, can
The forward implication in Corollary 13 follows from easily be computed iRNPI**Povos(m)] Thus the hypothesis

;ircr:solrem 12, and the backward implication from Prop05|—Of the theorem implies that there is @(n*polylog(n))

size circuit family {C,,} with the following properties. On
Proof of Theorem 12.Let L’ € C be a language such that gpn input (z, i) with |i| = log|x|, if M'(z) accepts, then
L' does not have circuits of sizé(n*). We define a padded Cl(x.19|({z,4)) outputs theith bit of the lexicographically
languagel.” such thatl.” in C/1NSIZE(poly) andL” does first valid proof of ¢y;,. (We assume without loss of
not have circuits of siz&)(n*). L” is defined fromL’ in  generality that the proof begins with a description/af ..)

exactly the same way as the languaBids defined from | A77(z) rejects, then the circuit outputson every input.
SAT in the proof of Theorem 11:

Corollary 13: Let CTIME be a syntactic measure, and
C be the polynomial-time version of that measure, such a
NP, PNP or PP. C does not have circuits of sizé® iff C/1n
SIZE(poly) does not have circuits of size".

Our MA simulation of M on inputz existentially guesses
a circuitC’ = Cly|410g 2| Of Size O(n*polylog(n)). Then it
runs the polylogarithmic time verifier fap, .. When a bit
of 151, Or a bit of the proof is requested by the verifier, the
bit is obtained by simulating’(z, ) with the appropriate
index 7, returning the output. The simulation requires only
O(n*polylog(n)) time. [

L" = {z1" |z € L' ris a power of2,
r > |af, Ckt(LY,) < (Jz| +7)*}.

The proof thatL” ¢ SIZE(n*) is exactly as in the proof
of Theorem 11. For the upper bound, we definE IME
machineM with one bit of advice accepting”. Given an
input y of lengthn, M first decomposeg as z1”, where From Theorem 14, we derive a new example of the phe-
r is a power of 2 and > |z|, if such a decomposition is Nnomenon that derandomization results imply circuit lower

possible. If not,M rejects. If such a decomposition exists, bounds ([IKW02], [KI04], [San07]).



Theorem 15:If there is ad such thatMATIME(n) C [ |
NTIME(n), then PP does not haved(n") size circuits By an analysis of the proof of Beigel, Buhrman and
for any k > 0. Fortnow [BBF98], we can show thatP C SIZE(n?)

Proof: Suppose, on the contrary, that the assumptiorrelative to their oracle. With a more careful reworking of
holds andPNP does have circuits of siz&(n*) for some their proof we can showsP C SIZE(n?) for a relativized
k. We derive a contradiction. From Theorem 14, we haveworld (proof omitted).
. :
that NP C MATIME(n ponIog(g)). From the assumption  The fact thatsP has small circuits in a relativized world
that MATIME(”]zHg NTIME(n ),d(l%l?addmg, we have goes not compel skepticism that a lower bound can be
that MATIME(n" ") C NTIME(n ). Thus we have  rqved; since for instance Vinodchandran's lower bound for

NP C NTIME(n(“+1)), which is a contradiction to the non-  pp goesn't relativize ([Vin05], [Aar06]). We show some-
deterministic time hierarchy theorem ([Co072], [SFM78], thing stronger: that a new non-relativizing idea is recdire

[283]). to get circuit lower bounds foP.

Theorem 15 can be interpreted as a “low-end” analogue e nonrelativizing part of Vinodchandran’s proof utikize
of the Impagliazzo-Kabanets-Wigderson result [[KWO02}ttha 1o tact that PPP SIZE(poly) implies PPP C MA

MA 7# NEXP implies NEXP ¢ SIZE(poly). (see [BFLI1]). HowevelP® C MA (and more strongly,
EXP = BPP) relative to the Beigel-Buhrman-Fortnow
V. RELATIVIZED CIRCUIT UPPERBOUND oracle. We have the following contrasting results.
Vinodchandran's circuit lower bound foPP [VinO5] Corollary 17 (Vinodchandran)Relative to all oracles, if

raises the possibility that similar lower bounds might beP™" € MA thenPP ¢ SIZE(n) for any fixedk.

provable for other counting classes. A natural candidate fo Corollary 18 (Theorem 16)There is an oracle relative to
such a class isbP, since Toda’'s landmark result [Tod91] which P®P C MA and®P C SIZE(n?).

proves that the Polynomial Hierarchy randomly reduces to
@P, and we know fixed polynomial-size lower bounds for
the Polynomial Hierarchy. Thus far, even the relativized
status of the question of whethe® has small circuits has
remained unresolved.

Thus to provesP ¢ SIZE(n?), one would need nonrel-
ativizing techniques beyond those used by Vinodchandran.
It's an interesting open problem to show an analogue of
Theorem 16 in the Aaronson-Wigderson framework of al-

gebrization [AW09].
We first give an oracle relative to whieghP has quadratic-

size circuits. We use a previously published oracle due to
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