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Abstract

The last decade has seen a revival of interest in pebble gamesin the context of proof complexity.
Pebbling has proven to be a useful tool for studying resolution-based proof systems when comparing the
strength of different subsystems, showing bounds on proof space, and establishing size-space trade-offs.
The typical approach has been to encode the pebble game played on a graph as a CNF formula and
then argue that proofs of this formula must inherit (variousaspects of) the pebbling properties of the
underlying graph. Unfortunately, the reductions used hereare not tight. To simulate resolution proofs
by pebblings, the full strength of nondeterministic black-white pebbling is needed, whereas resolution is
only known to be able to simulate deterministic black pebbling. To obtain strong results, one therefore
needs to find specific graph families which either have essentially the same properties for black and
black-white pebbling (not at all true in general) or which admit simulations of black-white pebblings in
resolution.

This paper contributes to both these approaches. First, we design a restricted form of black-white
pebbling that can be simulated in resolution and show that there are graph families for which such
restricted pebblings can be asymptotically better than black pebblings. This proves that, perhaps some-
what unexpectedly, resolution can strictly beat black-only pebbling, and in particular that the space lower
bounds on pebbling formulas in [Ben-Sasson and Nordström 2008] are tight. Second, we present a ver-
satile parametrized graph family with essentially the sameproperties for black and black-white pebbling,
which gives sharp simultaneous trade-offs for black and black-white pebbling for various parameter set-
tings. Both of our contributions have been instrumental in obtaining the time-space trade-off results for
resolution-based proof systems in [Ben-Sasson and Nordström 2009].

1 Introduction

Pebbling is a tool for studying time-space relationships bymeans of a game played on directed acyclic
graphs. This game models computations where the execution is independent of the input and can be per-
formed by straight-line programs. Each such program is encoded as a graph, and a pebble on a vertex in the
graph indicates that the corresponding value is currently kept in memory. The goal is to pebble the output
vertex of the graph with minimal number of pebbles (amount ofmemory) and steps (amount of time).

Pebble games were originally devised for studying programming languages and compiler construction,
but have later found a broad range of applications in computational complexity theory. The pebble game

∗This is the full-length version of the paper [Nor10b] to appear at the25th IEEE Conference on Computational Complexity.
†Research supported by the Royal Swedish Academy of Sciences, the Ericsson Research Foundation, the Sweden-America
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ON THE RELATIVE STRENGTH OF PEBBLING AND RESOLUTION

model seems to have appeared for the first time (implicitly) in [PH70], where it was used to study flowcharts
and recursive schemata, and it was later employed to model register allocation [Set75], and analyze the
relative power of time and space as Turing-machine resources [Coo74, HPV77]. Moreover, pebbling has
been used to derive time-space trade-offs for algorithmic concepts such as linear recursion [Cha73, SS83],
fast Fourier transform [SS77, Tom78], matrix multiplication [Tom78], and integer multiplication [SS79].
An excellent survey of pebbling up to ca 1980 is [Pip80], and some more recent developments are covered
in the author’s upcoming survey [Nor10a].

Thepebbling priceof a directed acyclic graphG in the black pebble game captures the memory space,
or number of registers, required to perform the deterministic computation described byG. We will mainly
be interested in the the more generalblack-white pebble gamemodelling nondeterministic computation,
which was introduced in [CS76] and has been studied in [GT78,Kla85, LT80, LT82, Mey81, KS91, Wil88]
and other papers.

Definition 1.1 (Pebble game).Let G be a directed acyclic graph (DAG) with a unique sink vertexz. The
black-white pebble gameon G is the following one-player game. At any timet, we have a configuration
Pt = (Bt,Wt) of black pebblesBt and white pebblesWt on the vertices ofG, at most one pebble per
vertex. The rules of the game are as follows:

1. If all immediate predecessors of an empty vertexv have pebbles on them, a black pebble may be
placed onv. In particular, a black pebble can always be placed on a source vertex.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertexv have pebbles on them, the white pebble onv
may be removed. In particular, a white pebble can always be removed from a source vertex.

A (complete) black-white pebbling ofG, also called apebbling strategy forG, is a sequence of pebble
configurationsP = {P0, . . . ,Pτ} such thatP0 = (∅, ∅), Pτ = ({z}, ∅), and for allt ∈ [τ ], Pt follows from
Pt−1 by one of the rules above. Thetimeof a pebblingP = {P0, . . . ,Pτ} is simply time(P) = τ and the
spaceis space(P) = max0≤t≤τ{|Bt ∪ Wt|}. Theblack-white pebbling price(also known as thepebbling
measureor pebbling number) of G, denotedBW-Peb(G), is the minimum space of any complete pebbling
of G.

A black pebblingis a pebbling using black pebbles only, i.e., havingWt = ∅ for all t. The (black)
pebbling priceof G, denotedPeb(G), is the minimum space of any complete black pebbling ofG.

In the last decade, there has been renewed interest in pebbling in the context of proof complexity.1 A
(non-exhaustive) list of proof complexity papers using pebbling in one way or another is [AJPU07, BEGJ00,
BIPS10, Ben09, BIW04, BN08, BN09a, BN09b, BW01, EGM04, ET01, ET03, HU07, Nor09, NH08b,
SBK04]. The way pebbling results have been used in proof complexity has mainly been by studying so-
calledpebbling contradictions(also known aspebbling formulasor pebbling tautologies). These are CNF
formulas encoding the pebble game played on a DAGG by postulating the sources to be true and the sink
to be false, and specifying that truth propagates through the graph according to the pebbling rules. The idea
to use such formulas seems to have appeared for the first time in [Koz77], and they were also studied in
[RM99, BEGJ00] before being explicitly defined in [BW01].

Definition 1.2 (Pebbling contradiction). Suppose thatG is a DAG with sourcesS and a unique sinkz.
Identify every vertexv ∈ V (G) with a propositional logic variablev. Thepebbling contradictionoverG,
denotedPebG, is the conjunction of the following clauses:

1We remark that the pebble game studied in this paper should not be confused with the (very different)existential pebble games
that have also been used in proof complexity, for instance, in the papers [Ats04, AD08, AKV04, BG03, GT05].
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1 Introduction

z

x y

u v w

(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u ∨ v ∨ x)

∧ (v ∨ w ∨ y)

∧ (x ∨ y ∨ z)

∧ z

(b) Pebbling contradiction PebΠ2
.

(u1 ∨ u2) ∧ (v2 ∨ w1 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v2 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (x1 ∨ y1 ∨ z1 ∨ z2)

∧ (u1 ∨ v1 ∨ x1 ∨ x2) ∧ (x1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ v2 ∨ x1 ∨ x2) ∧ (x2 ∨ y1 ∨ z1 ∨ z2)

∧ (u2 ∨ v1 ∨ x1 ∨ x2) ∧ (x2 ∨ y2 ∨ z1 ∨ z2)

∧ (u2 ∨ v2 ∨ x1 ∨ x2) ∧ z1

∧ (v1 ∨ w1 ∨ y1 ∨ y2) ∧ z2

∧ (v1 ∨ w2 ∨ y1 ∨ y2)

(c) Substitution pebbling contradiction PebΠ2
[∨2] with respect to binary logical or.

Figure 1: Example of pebbling contradiction with substitution for the pyramid graph Π2.

• for all s ∈ S, a unit clauses (source axioms),

• For all non-sourcesv with immediate predecessorspred(v), the clause
∨

u∈pred(v) u ∨ v (pebbling
axioms),

• for the sinkz, the unit clausez (targetor sink axiom).

For any nonconstant Boolean functionfd : {0, 1}d 7→ {0, 1}, thesubstitution pebbling contradiction with
respect tofd is the CNF formulaPebG[fd] obtained by substitutingfd(x1, . . . , xd) for every variablex and
expanding the result to conjunctive normal form in the canonical way.

If the graphG hasn vertices and maximal indegreeℓ, PebG[fd] is easily verified to be an unsatisfiable
formula overdn variables with less than2d(ℓ+1) ·n clauses of size at mostd(ℓ+1). An example illustrating
Definition 1.2 is given in Figure 1.

Given any black-only pebblingP of G, it is straightforward to simulate this pebbling in resolution to
refute the corresponding pebbling contradictionPebG[fd] in lengthO

(
time(P)

)
and spaceO

(
space(P)

)
.

This was perhaps first noted in [BIW04] for the simplePebG formulas, but the simulation extends readily
to any formulaPebG[fd], with the constants hidden in the asymptotic notation depending onfd and the
maximal indegree ofG. In the other direction, it was recently shown in [BN09b] (strengthening results
in [BN08]) that if fd has the right properties—for instance, if it is the exclusive or function or the threshold
function evaluating to true ifk out of d variables are true for1 < k < d—then any resolution refutationπ
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z

x y

u v w

(a) {xi ∨ yj ∨ z1 ∨ z2 | i, j = 1, 2}.

z

x y

u v w

(b) {ui ∨ vj ∨ x1 ∨ x2 | i, j = 1, 2}.

z

x y

u v w

(c) {ui ∨ vj ∨ yk ∨ z1 ∨ z2 | i, j, k=1, 2}.

Figure 2: Black and white pebbles and (intuitively) corresponding sets of clauses.

of PebG[fd] can be translated into a black-white pebbling ofG with time and space upper-bounded by the
length and space ofπ, respectively (adjusted for small multiplicative constants depending on the maximal
indegree ofG).

There is an obvious gap in these reductions between pebblingand resolution. To interpret a resolution
refutation of a pebbling contradiction in terms of a pebbling of the underlying graph, the full power of
black-white pebbling is needed to make the reduction work. If we want to translate pebblings of graphs
into refutations of the corresponding pebbling contradictions, however, we only know how to do this for the
weaker black pebble game.

To see why resolution has a hard time simulating black-whitepebblings, let us start by discussing a
black-only pebblingP. We can easily mimic such a pebbling in a resolution refutation of PebG[fd] by
deriving thatfd(v1, . . . , vd) is true whenever the corresponding vertexv in G is black-pebbled. We end
up deriving thatfd(z1, . . . , zd) is true for the sinkz, at which point we can download the sink axioms and
derive a contradiction. The intuition behind this translation is that a black pebble onv means that we knowv,
which in resolution translates into truth ofv. In the pebble game, having a white pebble onv instead means
that we need to assumev. By duality, we let this correspond to falsity ofv in resolution. Focusing on the
pyramidΠ2 and pebbling contradictionPebΠ2

[∨2] in Figure 1, our intuitive understanding then becomes
that white pebbles onx andy and a black pebble onz should correspond to the set of clauses

{xi ∨ yj ∨ z1 ∨ z2 | i, j = 1, 2} (1.1)

which indeed encode that assumingx1 ∨ x2 andy1 ∨ y2, we can deducez1 ∨ z2. See Figure 2(a) for an
illustration of this.

If we now place white pebbles onu andv, this allows us to remove the white pebble fromx. Rephrasing
this in terms of resolution, we can say thatx follows if we assumeu andv, which is encoded as the set of
clauses

{ui ∨ vj ∨ x1 ∨ x2 | i, j = 1, 2} (1.2)

(see Figure 2(b)), and indeed, from the clauses in (1.1) and (1.2) we can derive in resolution thatz is black-
pebbled andu, v andy are white pebbled, i.e., the set of clauses

{ui ∨ vj ∨ yk ∨ z1 ∨ z2 | i, j, k = 1, 2} (1.3)

(see Figure 2(c)). This toy example indicates one of the problems one runs into when one tries to simulate
black-white pebbling in resolution: as the number of white pebbles grows, there is an exponential blow-up
in the number of clauses. The clause set in (1.3) is twice the size of those in (1.1) and (1.2), although it
corresponds to only one more white pebble. This suggests that as a pebbling starts to make heavy use of
white pebbles, a resolution refutation will not be able to mimic such a pebbling in a length- and space-
preserving manner.
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This leads to the thought that perhaps black pebbling provides not only upper but also lower bounds on
resolution refutations of pebbling contradictions. This would be consistent with what has been known so far.
For all pebbling contradictions with proven space lower bounds, the underlying graphs have asymptotically
the same black and black-white pebbling price, and hence allknown lower bounds can be expressed in terms
of black pebbling. There have been no examples of pebbling contradictions where resolution can do strictly
better than black pebbling and tightly match smaller boundson space in terms of black-white pebbling.

1.1 Our Results

Our first set of results is that resolution can in fact be strictly better than black-only pebbling, both for
time-space trade-offs and with respect to space in absoluteterms. We prove this by designing a limited
version of black-white pebbling, where we explicitly restrict the amount of nondeterminism, i.e., white
pebbles, a pebbling strategy can use. Such restricted pebbling use “few white pebbles per black pebble” (in
a sense that will be made formal below), and can therefore be simulated in a time- and space-preserving
manner by resolution, avoiding the exponential blow-up just discussed. We then show that for all known
separation results in the pebbling literature where black-white pebbling does asymptotically better than
black-only pebbling, there are graphs exhibiting these separations for which optimal black-white pebblings
can be carried out in our limited version of the game. This means that resolution refutations of pebbling
contradictions over such DAGs can do strictly asymptotically better than what is suggested by black-only
pebbling, matching the lower bounds in terms of (general) black-white pebbling.

More precisely, we obtain such results for three families ofgraphs.2 The first family are thebit reversal
graphsstudied by Lengauer and Tarjan [LT82], for which black-white pebbling has quadratically better
trade-offs than black pebbling. (We refer to Section 3 for all formal notation and definitions used below.)

Lemma 1.3 ([LT82]). There are DAGs{Gn}∞n=1 of sizeΘ(n) with black pebbling pricePeb(Gn) = 3
such that any optimal black pebblingPn ofGn exhibits a trade-offtime(Pn) = Θ

(
n2/space(Pn)+n

)
but

optimal black-white pebblingsPn ofGn achieve a trade-offtime(Pn) = Θ
(
(n/space(Pn))

2 + n
)
.

Theorem 1.4. Fix any non-constant Boolean functionf and letPebGn
[f] be pebbling contradictions over

the graphs in Lemma 1.3. Then for any monotonically nondecreasing functions(n) = O(
√
n) there are

resolution refutationsπn of PebGn
[f] in total spaceO(s(n)) and lengthO

(
(n/s(n))2

)
, beating the lower

boundΩ
(
n2/s(n)

)
for black-only pebblings ofGn.

Focusing next on absolute bounds on space rather than time-space trade-offs, the best known separation
between black and black-white pebbling for polynomial-size graphs is the one shown by Wilber [Wil88].

Lemma 1.5 ([Wil88]). There are DAGs{G(s)}∞s=1 of size polynomial ins with black-white pebbling price
BW-Peb(G(s)) = O(s) and black pebbling pricePeb(G(s)) = Ω(s log s/ log log s).

For pebbling formulas over these graphs we donot know how to beat the black pebbling space bound—
we return to this somewhat intriguing problem in Section 7—but using instead graphs in [KS91] exhibiting
the same pebbling properties, we can obtain the desired result.

Theorem 1.6. Fix any non-constant Boolean functionf and letPebG(s)[f] be pebbling contradictions over
the graphsG(s) in [KS91] with pebbling properties as in Lemma 1.5. Then there are resolution refutations
πn ofPebG(s)[f] in total spaceO(s), beating the lower boundΩ(s log s/ log log s) for black-only pebbling.

If we remove all restriction on graph size, there is a quadratic separation of black and black-white
pebbling established by Kalyanasundaram and Schnitger [KS91].

2All graphs discussed in this paper are explicitly constructible and have bounded vertex indegree. Also, unless otherwise stated
they have a single, unique sink. We do not repeat this in the formal statements here in order not to clutter the text unnecessarily.
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Lemma 1.7 ([KS91]). There are DAGs{G(s)}∞s=1 of sizeexp(Θ(s log s)) such thatBW-Peb(G(s)) ≤
3s+ 1 but Peb(G(s)) ≥ s2.

For pebbling formulas over these graphs, resolution again matches the black-white pebbling bounds.

Theorem 1.8. Fix any non-constant Boolean functionf and letPebG(s)[f] be pebbling contradictions over
the graphsG(s) in Lemma 1.7. Then there are resolution refutationsπn of PebG(s)[f] in total spaceO(s),

beating the lower boundΩ
(
s2
)

for black-only pebbling.

In particular, Theorems 1.6 and 1.8 show that the lower boundon proof space for pebbling contradictions
in terms of black-white pebbling price in [BN08] is tight (upto constant factors).

Turning to our second set of results, we first note that in spite of the theorems above, for general pebbling
formulas we still do not know of any way of simulating black-white pebbling in resolution. Instead, we are
limited to deriving upper bounds from black-only pebblingswhile lower bounds have to be obtained in terms
of black-white pebblings. At first sight, this might not looktoo bad since the space gap between the two can
be at most quadratic, as shown by Meyer auf der Heide [Mey81].However, the translation given in [Mey81]
of a black-white pebbling in spaces to a black pebbling in spaceO

(
s2
)

incurs an exponential blow-up in
pebbling time, destroying all hope of obtaining nontrivialtime-space trade-off results for resolution in this
way. Hence, to get meaningful trade-offs for pebbling formulas we need graph families with strongdual
trade-offs for black and black-white pebbling simultaneously. In this paper, we present such a family of
graphs, building on and strengthening previous work by Carlson and Savage [CS80, CS82].

Theorem 1.9.There is an explicitly constructible two-parameter graph familyΓ(c, r), for c, r ∈ N+, having
unique sink, vertex indegree2, and sizeΘ

(
cr3 + c3r2

)
, and satisfying the following properties:

1. Γ(c, r) has black-white pebbling priceBW-Peb(Γ(c, r)) = r + O(1) and black pebbling price
Peb(Γ(c, r)) = 2r +O(1).

2. There is a black-only pebbling ofΓ(c, r) in time linear in the graph size and in spaceO(c+ r).

3. Suppose thatP is a black-white pebbling ofΓ(c, r) with space(P) ≤ r + s for 0 < s ≤ c/8. Then
time(P) ≥

(
c−2s
4s+4

)r · r! .
The graph family in Theorem 1.9 turns out to be surprisingly versatile. For instance, we can use it to

prove among other things the rather striking statement thatfor anyarbitrarily slowly growingnon-constant
function, there are explicit graphs of such (arbitrarily small) pebbling space complexity that nevertheless
exhibit superpolynomialtime-space trade-offs for black and black-white pebbling simultaneously.

Theorem 1.10. Let g(n) be any arbitrarily slowly growing3 monotone functionω(1) = g(n) = O
(
n1/7

)
,

and letǫ > 0 be an arbitrarily small positive constant. Then there is a family of explicitly constructible
single-sink DAGs{Gn}∞n=1 of sizeΘ(n) such that the following holds:

1. The graphGn has black-white pebbling priceBW-Peb(G) = g(n) + O(1) and black pebbling price
Peb(G) = 2 · g(n) + O(1).

2. There is a complete black pebblingP ofGn with time(P) = O(n) andspace(P) = O
(

3
√

n/g2(n)
)

3. Any complete black-white pebbling ofGn in space at most
(
n/g2(n)

)1/3−ǫ
requires pebbling time

superpolynomial inn.

More examples of interesting trade-offs that can be obtained from the graphs in Theorem 1.9 are given
in Section 6.

3Note that we also assumeg(n) = O
(

n1/7
)

, i.e., thatg(n) does not grow to fast. This is just a simplifying technical assumption.
If we allow the minimal space to grow as fast asnǫ for someǫ > 0, then it is easy to use our graph family with other parameter
settings to obtain even stronger results. Hence, the interesting aspect here is thatg(n) is allowed to grow arbitrarily slowly.
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2 Outline of Constructions and Proofs

1.2 Organization of This Paper

In Section 2 we outline the main ideas behind our results, andSection 3 provides all the necessary pre-
liminaries for the formal proofs of these results given in the rest of the paper. Section 4 proves our claims
about the limited type of black-white pebblings that can be simulated by resolution, and in Section 5 we
show that there are such limited pebblings for some interesting graph families. In Section 6, we discuss the
graphs exhibiting our new pebbling trade-off results, and show how different parameter settings yield strong
dual time-space trade-offs with upper bounds for black pebbling and matching lower bounds for black-white
pebbling. We conclude in Section 7 by discussing some remaining open problems.

2 Outline of Constructions and Proofs

We will need to set up a fair amount of technical machinery before we can give the full, formal proofs of our
results. In order not to obscure unnecessarily what are in essence reasonably straightforward arguments, in
this section we try to give an overview of the main ideas, postponing the technicalities for later.

2.1 Limited Black-White Pebblings That Can Be Simulated by Resolution

Let us start by discussing the tools used to establish Theorems 1.4, 1.6, and 1.8. The idea is to design a
version of the black-white pebble game that is tailor-made for resolution. This game is essentially just a for-
malization of the naive resolution simulation sketched in Section 1, but before stating the formal definitions,
let us try to provide some intuition why the rules of this new game look the way they do.

First, if we want a game that can be mimicked by resolution, then placements of isolated white vertices
do not make much sense. What a resolution derivation can do isto download axiom clauses, and intuitively
this corresponds to placing a black pebble on a vertex together with white pebbles on its immediate pre-
decessors, if it has any. Therefore, we adopt such aggregatemoves as the only admissible way of placing
new pebbles. For instance, looking at the graphΠ2 and pebbling contradictionPebΠ2

[∨2] in Figure 1 again,
placing a black pebble onz and white pebbles onx andy corresponds to downloading the axiom clauses
in (1.1).

Second, note that if we have a black pebble onz with white pebbles onx andy corresponding to the
clauses in (1.1) and a black pebble onx with white pebbles onu andv corresponding to the clauses in (1.2),
we can derive the clauses in (1.3) corresponding toz black-pebbled andu, v andy white-pebbled but no
pebble onx. This suggests that a natural rule for white pebble removal is that a white pebble can be removed
from a vertex if a black pebble is placedon that same vertex(and not on its immediate predecessors).

Third, if we then just erase all clauses in (1.3), this corresponds to all pebbles disappearing. On the face
of it, this is very much unlike the rule for white pebble removal in the standard pebble game, where it is
absolutely crucial that a white pebble can only be removed when its predecessors are pebbled. However, the
important point here is that not only do the white pebbles disappear—the black pebble that has been placed
on z with the help of these white pebbles disappears as well. Whatthis means is that we cannot treat black
and white pebbles in isolation, but we have to keep track of for each black pebble which white pebbles it
depends on, and make sure that the black pebble also is erasedif any of the white pebbles supporting it is
erased. The way we do this is to label each black pebblev with its supporting white pebblesW , and define
the pebble game in terms of moves of such labelledpebble subconfigurationsv〈W 〉.

Definition 2.1 (Pebble subconfiguration).For v a vertex andW a set of vertices, we say thatv〈W 〉 is a
pebble subconfigurationwith a black pebble onv supported by white pebbles onW . The black pebble on
v is said to bedependenton the white pebbles in itssupportW . We refer tov〈∅〉 as anindependent black
pebble.

7



ON THE RELATIVE STRENGTH OF PEBBLING AND RESOLUTION

Our next definition now formalizes the informal descriptionof our new pebble game. We remark that
this definition is quite similar to the pebble game defined in [Nor09], and that we have borrowed freely from
notation and terminology there.

Definition 2.2 (Labelled pebbling). For G any DAG with unique sinkz, a (complete)labelled pebbling
of G is a sequenceL = {L0, . . . ,Lτ} of labelled pebble configurations such thatL0 = ∅, Lτ = {z〈∅〉}, and
for all t ∈ [τ ] it holds thatLt can be obtained fromLt−1 by one of the following rules:

Introduction Lt = Lt−1 ∪ {v〈pred (v)〉}, wherepred(v) is the set of immediate predecessors ofv.

Erasure Lt = Lt−1 \ {v〈V 〉} for v〈V 〉 ∈ Lt−1.

Merger Lt = Lt−1 ∪
{
v〈(V ∪W ) \ {w}〉

}
for v〈V 〉, w〈W 〉 ∈ Lt−1 with w ∈ V . We denote this subcon-

figurationmerge(v〈V 〉, w〈W 〉), and refer to it as amerger onw.

Let Bl(Lt) =
⋃ {v | v〈W 〉 ∈ Lt} denote the set of all black-pebbled vertices inLt and Wh(Lt) =⋃ {W | v〈W 〉 ∈ Lt} the set of all white-pebbled vertices. Then the space of an labelled pebblingL =

{L0, . . . ,Lτ} is maxL∈L{|Bl(L) ∪ Wh(L)|} and the time ofL is time(L) = τ .

Figures 2(a) and 2(b) are both examples of subconfigurationsresulting from introduction moves, and if
we merge the two we get the subconfiguration in Figure 2(c).

The game in Definition 2.2 might look quite different from thestandard black-white pebble game, but
it is not hard to show that labelled pebblings are essentially just a restricted form of black-white pebblings.
(The proof of this is deferred to Section 4.)

Lemma 2.3. If G is a single-sink DAG andL is a complete labelled pebbling ofG, then there is a complete
black-white pebblingPL ofG with time(PL) ≤ 4

3 time(L) andspace(PL) ≤ space(L).

However, the definition of space of labelled pebblings does not seem quite right from the point of view
of resolution. Not only does the space measure fail to capture the exponential blow-up in the number of
white pebbles discussed above. We also have the problem thatif one white pebble is used to support many
different black pebbles, then in a resolution refutation simulating such a pebbling we have to pay multiple
times for this single white pebble, once for every black pebble supported by it. To get something that can be
simulated by resolution, we therefore need to restrict the labelled pebble game even further.

Definition 2.4 (Bounded labelled pebblings).An (m,S)-bounded labelled pebblingis a labelled pebbling
L = {L0, . . . ,Lτ} such that everyLt contains at mostm pebble subconfigurationsv〈W 〉 and everyv〈W 〉
has white support size|W | ≤ S.

Observe that boundedness automatically implies low space complexity, since an(m,S)-bounded peb-
bling L clearly satisfiesspace(L) ≤ m(S + 1). And using the concept of bounded labelled pebblings, we
can show that if there is such a pebbling of a graphG, then this pebbling can be used as a template for a
resolution refutation of any pebbling contradictionPebG[f]. (We again refer to Section 4 for the proof.)

Lemma 2.5. Suppose thatL is any complete(m,S)-bounded pebbling of a graphG and thatf is any
nonconstant Boolean function of arityd. Then there is a resolution refutationπL of the formulaPebG[f]
in simultaneous lengthL(πL) = time(L) · exp

(
O(dS)

)
and total spaceTotSp(πL) = m · exp

(
O(dS)

)
.

In particular, fixing f it holds that resolution can simulate(m,O(1))-bounded pebblings in a time- and
space-preserving manner.

The whole problem thus boils down to the question whether there are graphs with (a) asymptotically
different properties for black and black-white pebbling for which (b) optimal black-white pebblings can be
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2 Outline of Constructions and Proofs

s1 s2

γ1 γ2 γ3

Figure 3: Base case for Carlson-Savage graph with 3 spines and sinks.

carried out in the bounded labelled pebbling framework. Theanswer to this question turns out to be yes,
and the space upper bounds for the pebbling contradictions in Theorems 1.4, 1.6, and 1.8 are all proven
by exhibiting bounded labelled pebblings for the corresponding graphs. The details concerning how these
graphs are constructed, as well as how they are pebbled, are somewhat intricate, however, and are therefore
presented separately in Section 5.

2.2 A Graph Family with Tight Trade-offs for Black and Black-White Pebbling

Let us next outline the proof of our graph pebbling trade-offresults in Theorem 1.9. We remark that in
what follows, we will discuss a slightly different setting where graphs may have multiple sinks, not just one,
and where we only require that a pebblingvisitsevery sink once, touching it with a black or white pebble,
instead of leaving a black pebble on the sink until the end of the pebbling. It is straightforward to translate
results for such pebblings back to the setting in Theorem 1.9. (See Section 3 for the technical details.)

Our graph family is built on a construction by Carlson and Savage [CS80, CS82]. Carlson and Savage
only prove their trade-off for black pebbling, however, andthe extension of their results to black-white
pebbling requires changing the construction and doing a nontrivial amount of extra work (as is usually the
case when one wants to lift a black pebbling result to black-white pebbling). The formal definition of the
family of graphs, which we will refer to asCarlson-Savage graphs, is probably easier to parse if the reader
first studies the illustrations in Figures 3 and 4.

Definition 2.6 (Carlson-Savage graphs).The two-parameter graph familyΓ(c, r), for c, r ∈ N+, is defined
by induction overr. The base caseΓ(c, 1) is a DAG consisting of two sourcess1, s2 andc sinksγ1, . . . , γc
with directed edges(si, γj), for i = 1, 2 andj = 1, . . . , c, i.e., edges from both sources to all sinks. The
graphΓ(c, r + 1) hasc sinks and is built from the following components:

• c disjoint copiesΠ(1)
2r , . . . ,Π

(c)
2r of a pyramid graph4 of height2r with sinksz1, . . . , zc.

• one copy ofΓ(c, r), for which we denote the sinks byγ1, . . . , γc.

• c disjoint and identicalspines, where each spine is composed ofcr sections, and every section contains
2c vertices. We let the vertices in theith section of a spine be denotedv[i]1, . . . , v[i]2c.

The edges inΓ(c, r + 1) are as follows:

• All “internal edges” inΠ(1)
2r , . . . ,Π

(c)
2r andΓ(c, r) are present also inΓ(c, r + 1).

• For each spine, there are edges
(
v[i]j, v[i]j+1

)
for all j = 1, . . . , 2c − 1 within each sectioni and

edges
(
v[i]2c, v[i + 1]1

)
from the end of a section to the beginning of next fori = 1, . . . , cr − 1, i.e.,

for all sections but the final one, wherev[cr]2c is a sink.

• For each sectioni in each spine, there are edges
(
zj, v[i]j

)
from thejth pyramid sink to thejth vertex

in the section forj = 1, . . . , c, as well as edges
(
γj , v[i]c+j

)
from the jth sink in Γ(c, r) to the

(c+ j)th vertex in the section forj = 1, . . . , c.
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z1 γ1z2 γ2z3 γ3

Π
(1)
2r Π

(2)
2r Π

(3)
2r

Γ(3, r)

Figure 4: Inductive definition of Carlson-Savage graph Γ(3, r + 1) with 3 spines and sinks.
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2 Outline of Constructions and Proofs

Let us focus on the trade-off lower bound in part 3 of Theorem 1.9, which is the hard part to prove, and
let us start by trying to provide some intuition why this bound should hold. For simplicity, consider first
black-only pebblings. Assume inductively that part 3 of Theorem 1.9 has been proven forΓ(c, r − 1) and
considerΓ(c, r). Any pebbling strategy for this DAG will have to pebble through all sections in all spines.
Consider the first section anywhere, let us say on spinej, that has been completely pebbled, i.e., there have
been pebbles placed on and removed from all vertices in the section. Let us say that this happens at timeτ1.
But this means thatΓ(c, r − 1) and all pyramidsΠ(1)

2(r−1), . . . ,Π
(c)
2(r−1) must have been completely pebbled

during this part of the pebbling as well. Fix any pyramid and consider some point in timeσ1 < τ1 when
there are at leastr+1 pebbles on its vertices, which must happen because of known pebbling lower bounds
for pyramids [Coo74, Kla85]. At this point, the rest of the graph must contain very few pebbles (think ofs
here as being very small). In particular, there are very few pebbles on the subgraphΓ(c, r − 1) at timeσ1,
so for all practical purposes we can think ofΓ(c, r − 1) as being essentially empty of pebbles.

Consider now the next section in the spinej that is completed, say, at timeτ2 > τ1. Again, we can
argue that some pyramid is completely pebbled in the time interval [τ1, τ2], and thus hasr + 1 pebbles on it
at some timeσ2 > τ1 > σ1. This means thatΓ(c, r − 1) is essentially empty of pebbles at timeσ2 as well.
But note that all sinks in the subgraphΓ(c, r − 1) must have been pebbled in the time interval[σ1, σ2], and
since we know thatΓ(c, r − 1) is (almost) empty at timesσ1 andσ2, this allows us to apply the induction
hypothesis. SinceP has to pebble through a lot of sections in different spines, we will be able to repeat the
above argument many times and apply the induction hypothesis onΓ(c, r − 1) each time. Adding up all the
lower bounds obtained in this way, the induction step goes through.

This is the spirit of the proof of the black-only pebbling trade-off in [CS82]. When we instead want
to deal with black-white pebblings, things get much more complicated. Black pebblings must by necessity
pebble through a graph in a bottom-up fashion, and it is therefore straightforward to measure “how far” a
black pebbling has progressed. A black-white pebbling, however, can place and remove pebbles anywhere
in the DAG at any time. Therefore, it is more difficult to control the progress of a black-white pebbling, and
one has to use different ideas and work harder in the proof.

We establish part 3 of Theorem 1.9 by proving a slightly stronger lemma, dealing withconditional
pebblings that start with some pebbles already present on the graph, and can also leave some pebbles on
the graph at the end of the pebbling. A crucial ingredient in the proof is that we assume below (without
loss of generality) that all pebblings arefrugal, meaning that no obviously redundant pebble placements
are made, but that all pebbles placed on the graph are used to place other black pebbles on successors or
to remove white pebbles from successors. (Again, we refer toSection 3 for a more thorough discussion of
these pebbling technicalities.)

Lemma 2.7. Suppose thatP = {Pσ, . . . ,Pτ} is a conditional black-white pebbling onΓ(c, r) such that

1. max
{

space(Pσ), space(Pτ )
}
< s for 0 < s ≤ c/8− 1.

2. P pebbles all sinks inΓ(c, r) during the time interval[σ, τ ].

3. space(P) < r + s+ 2.

Then it holds thattime(P) = τ − σ ≥
(
c−2s
4s+4

)r · r! .

To establish this result we will need the following four technical lemmas, the proofs of which are post-
poned to Section 6. Lemmas 2.8 and 2.9 are easy, but Lemmas 2.10 and 2.11 are somewhat less immediate
and provide the key to the proof.

4The formal definition will be given later in Definition 3.4, but as an example the graph in Figure 1(a) is a pyramid of height2.
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Lemma 2.8. Supposev is a vertex with a pathQ to some sink such that all vertices inQ have outdegree1.
Then any frugal black-white pebbling pebblesv exactly once, and the pathQ contains pebbles during one
contiguous time interval.

Lemma 2.9. LetH be a subgraph ofG such that the only edges betweenV (H) andV (G)\V (H) emanate
from the unique sinkzh ofH. Suppose thatP is a complete pebbling ofG such thatH is completely empty
of pebbles at some timeτ ′ but at least one vertex ofH has been pebbled during the time interval[0, τ ′].
ThenP must have pebbledH completely during the interval[0, τ ′].

Lemma 2.10. At all times during a pebbling ofΓ(c, r) as in Lemma 2.7, strictly less than4(s+1) pyramids

Π
(j)
2r contain pebbles simultaneously.

Lemma 2.11. At all times during a pebbling ofΓ(c, r) as in Lemma 2.7, strictly less than4(s + 1) spine
sections contain pebbles simultaneously.

Proof of Lemma 2.7.Let P = {Pσ, . . . ,Pτ} be a pebbling as in the statement of the lemma. We show that
time(P) ≥ T (c, r, s) =

(
c−2s
4s+4

)r · r! by induction overr.
For r = 1, the assumptions in the lemma imply that more thanc− 2s sinks are empty at timesσ andτ .

These sinks must be pebbled, which trivially requires strictly more thanc− 2s >
(
c−2s
4s+4

)
= T (c, 1, s) time

steps.
Assume that the lemma holds forΓ(c, r − 1) and consider any pebbling ofΓ(c, r). Less than2s spines

contain pebbles at timeσ or timeτ . All the other strictly more thanc−2s spines are empty at timesσ andτ
but must be completely pebbled during[σ, τ ] since their sinks are pebbled during this time interval. (This
can be more formally argued by using Lemma 3.12.)

Consider the first timeσ′ when any spine gets a pebble for the first time. Let us denote this spine byQ′.
By Lemma 2.8 we know thatQ′ contains pebbles during a contiguous time interval until itis completely
pebbled and emptied at, say, timeτ ′. During this whole interval[σ′, τ ′] less than4s + 4 sections contain
pebbles at any one given time by Lemma 2.11, so in particular less then4s + 4 spines contain pebbles.
Moreover, Lemma 2.8 says that every spine containing pebbles will remain pebbled until completed. What
this means is that if we order the spines with respect to the time when they first receive a pebble in groups
of size4s+ 4, no spine in the second group can be pebbled until the at leastone spine in the first group has
been completed.

We observe that this divides the spines that are empty at the beginning and end ofP into strictly more
than c−2s

4s+4 groups. Furthermore, we claim that completely pebbling just one empty spine requires at least
r · T (c, r − 1, s) time steps. Given this claim we are done, since it follows that the total pebbling time must
then be lower-bounded byc−2s

4s+4r · T (c, r − 1, s) = T (c, r, s). This is so since at least one spine from each
group is pebbled in a time interval totally disjoint from thetime intervals for all spines in the next group.

It remains to establish the claim. To this end, fix any spineQ∗ empty at timesσ∗ andτ∗ but completely
pebbled in[σ∗, τ∗]. Consider the first timeτ1 ∈ [σ∗, τ∗] when any section inQ∗, let us denote it byR1, has
been completely pebbled (i.e., all vertices has been touched by pebbles but are now empty again). During the
time interval[σ∗, τ1] all pyramid sinksz1, . . . , zc must be pebbled (since they are immediate predecessors).
Since less than2 · (4s + 4) < c pyramids contain pebbles at timesσ∗ or τ1 (Lemma 2.10), at least one
pyramid is pebbled completely (Lemma 2.9), which requiresr + 1 pebbles. Moreover, there is at least one
pebble on the sectionR1 during this whole interval. Hence, there must exist a point in timeσ1 ∈ [σ∗, τ1]
when there are strictly less than(r + 2) + s − (r + 1)− 1 = s pebbles on the subgraphΓ(c, r − 1). Also,
at this timeσ1 less than4s + 4 sections contain pebbles (Lemma 2.11), and in particular this means that
there are pebbles on less than4s+3 other section of our spineQ∗. This puts an upper bound on the number
of sections ofQ∗ that can have been touched by pebbles this far, since every section is completely pebbled
during a contiguous time interval before being emptied again, and we chose to focus on the first sectionR1

in Q∗ that was finished.
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Look now at the first sectionR2 in Q∗ other than the less than4s + 4 sections containing pebbles at
timeσ1 that is completely pebbled, and let the time whenR2 is finished be denotedτ2 (clearly, τ2 > τ1).
During [σ1, τ2] all sinks ofΓ(c, r − 1) must have been pebbled, and at timeτ2 − 1 less than4s + 3 other
section inQ∗ contain pebbles.

Finally, consider the first new sectionR3 in our spineQ∗ to be completely pebbled among those not
yet touched at timeτ2 − 1. Suppose thatR3 is finished at timeτ3. Then during[τ2, τ3] some pyramid is
completely pebbled, and thus there is some timeσ3 ∈ (τ2, τ3) when there are at leastr + 1 pebbles on this
pyramid and at least one pebble on the spineQ∗, leaving less thans pebbles forΓ(c, r − 1). But this means
that we can apply the induction hypothesis on the interval[σ1, σ3] and deduce thatσ3−σ1 ≥ T (c, r− 1, s).
Note also that at timeσ3 less than8s+ 8 < c sections inQ∗ have been finished.

Continuing in this way, for every group of8s + 8 < c finished sections in the spineQ∗ we get one
pebbling ofΓ(c, r − 1) in space less thanr + s + 1 and with less thans pebbles in the start and end
configurations, which allows us to apply the induction hypothesis a total number of at leastcr8s+8 > r times.
(Just to argue that we get the constants right, note that8s + 8 < c implies that after the final pebbling of
the sinks ofΓ(c, r − 1) has been done, there is still some empty section left inQ∗. When this final section
is taken care of, we will again get at leastr + 1 pebbles on some pyramid while at least one pebble resides
onQ∗, so we get the space onΓ(c, r − 1) down belows as is needed for the induction hypothesis.)

This proves our claim that pebbling one spine takes time at leastr · T (c, r − 1, s). Lemma 2.7 now
follows.

3 Preliminaries

In this section, we collect all the basic definitions and facts we need about resolution and pebbling.

3.1 The Resolution Proof System

A literal is either a propositional logic variable or its negation, denotedx andx, respectively. Aclause
C = a1 ∨ · · · ∨ ak is a set of literals. A clause containing at mostk literals is called ak-clause. A CNF
formulaF = C1 ∧ · · · ∧Cm is a set of clauses. Ak-CNF formulais a CNF formula consisting ofk-clauses.
We say thatF impliesC, denotedF � C, if any truth value assignment satisfyingF must also satisfyC.

When we want to study length and space simultaneously, the following definition of the resolution proof
system is very convenient.

Definition 3.1 (Resolution ([ABRW02])). A sequence ofclause configurations(sets of clauses)π =
{C0, . . . ,Cτ} is a resolution refutationof a CNF formulaF if C0 = ∅, Cτ contains the contradictory
empty clause0 without any literals, and for allt ∈ [τ ], Ct is obtained fromCt−1 by one of the following
rules:

Axiom Download Ct = Ct−1 ∪ {C} for someC ∈ F (anaxiomclause).

Erasure Ct = Ct−1 \ {C} for someC ∈ Ct−1.

Inference Ct = Ct−1 ∪ {D} for someD inferred fromC1, C2 ∈ Ct−1 by theresolution rule, i.e.,D =
C1 ∪ C2 \ {x, x} for some variablex such thatx ∈ C1 andx ∈ C2.

Definition 3.2 (Length and space).The lengthL(π) of a resolution derivationπ is the total number of
axiom downloads and inferences made inπ, i.e., the total number of clauses counted with repetitions.

Theclause spaceSp(C) of a clause configurationC is |C|, i.e., the number of clauses inC, and thetotal
spaceTotSp(C) is

∑
C∈C|C|, i.e., the total number of literals inC counted with repetitions. The clause
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space (total space) of a derivationπ is the maximal clause space (total space) of any clause configuration
C ∈ π.

Taking the minimum over all refutations of a formulaF , we defineL(F ⊢ 0) = minπ:F ⊢ 0{L(π)},
Sp(F ⊢ 0) = minπ:F ⊢ 0{Sp(π)}, andTotSp(F ⊢ 0) = minπ:F ⊢ 0{TotSp(π)} as the length, clause space,
and total space of refutingF in resolution, respectively.

It is sometimes technically convenient to add aweakeningrule to Definition 3.1, allowing a resolution
derivation to derive a weaker clauseC ′ % C from C. We can allow or disallow this rule as we see fit, since
any such weakening steps can always be eliminated without increasing the length or space of a refutation.
In particular, the following upper bounds on resolution length and space are cleaner to state if we assume
that weakening can be used.

Proposition 3.3. SupposeC is a set of clauses andC is a clause, both over a set of variables of sizen. Then
C � C if and only if there exists a resolution derivation ofC fromC. Furthermore, ifC can be derived from
C then it can be derived in length at most2n+1 − 1 and total space at mostn(n+ 2) simultaneously.

The proof of this proposition is standard and can be found in,for instance, [BN09b].

3.2 Graph Terminology and Notation

We writeG to denote a graph with verticesV (G) and edgesE(G). All graphs in this paper are directed
unless otherwise stated, and(u, v) denotes a directed edge fromu to v.

We let succ(v) denote the immediate successors andpred(v) denote the immediate predecessors of a
vertexv in G. We say that vertices ofG with indegree0 aresourcesand that vertices with outdegree0 are
sinks. (In the literature, sources are also referred to asinputsand sinks astargetsor outputs). In the notation
just introduced, a source vertexs in G is a vertex withpred(s) = ∅, and for a sinkz we havesucc(z) = ∅.
We will write S(G) to denote the source vertices ofG andZ(G) to denote the sink vertices. For brevity, we
will sometimes refer to a DAG with a unique sink as asingle-sink DAG.

Some more notational conventions are that the parameterℓ denotes the maximal indegree of a DAG, and
that when not stated otherwise,n will denote the size, i.e., the number of vertices, of a DAG (or, if more
convenient, the size to within a small constant factor). We write Q : v  w to denote a pathQ starting at
the vertexv and ending at the vertexw.

Thepyramid graphsalready mentioned several times in this paper are formally defined as follows.

Definition 3.4 (Pyramid graph). Thepyramid graphΠh of heighth is a layered DAG withh + 1 levels,
where there is one vertex on the highest level (the sinkz), two vertices on the next level et cetera down to
h+ 1 vertices at the lowest level0. Theith vertex at levelL has incoming edges from theith and(i+ 1)st
vertices at levelL− 1.

3.3 Pebbling Technicalities

The flavour of the pebble game presented in Definition 1.1 is the version that we are interested in for our
applications in proof complexity, but for the purposes of stating and proving our results we need a slightly
more general definition.

Definition 3.5 (General pebbling definition). Suppose thatG is a DAG with sourcesS and sinksZ (one
or many). Ablack-white pebblingfrom (B0,W0) to (Bτ ,Wτ ) in G is a sequence of pebble configurations
P = {P0, . . . ,Pτ} such thatP0 = (B0,W0), Pτ = (Bτ ,Wτ ), and for allt ∈ [τ ], Pt follows fromPt−1 by
one of the rules in Definition 1.1. The space of a pebble configurationP = (B,W ) is space(P) = |B ∪ W |
and the space of the pebblingP is space(P) = maxt∈[τ ]{space(Pt)}.
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We say that a pebblingP = {P0, . . . ,Pτ} is conditional if P0 6= (∅, ∅) andunconditionalotherwise.
A complete black-white pebblingvisitingZ is a pebbling such thatP0 = Pτ = (∅, ∅) and such that for

everyz ∈ Z, there exists a timetz ∈ [τ ] whenz ∈ Btz ∪ Wtz . The minimum space of such a visiting
pebbling is denotedBW-Peb∅(G), and for the black pebble game we have the measurePeb∅(G).

A persistentpebbling ofG is a pebblingP such thatPτ = (Z, ∅). The minimum space of any complete
persistent black-white or black-only pebbling ofG is denotedBW-Peb(G) andPeb(G), respectively.

We think of the moves in a pebbling as occurring at integral time intervalst = 1, 2, . . . and talk about
the pebbling move “at timet” (which is the move resulting in configurationPt) or the moves “during the
time interval[t1, t2].”

A visiting pebbling touches all sinks but leaves the graph empty at timeτ , whereas a persistent pebbling
leaves black pebbles on all sinks at the end of the pebbling. If G hasm sinks, then it clearly holds that
BW-Peb(G) ≤ BW-Peb∅(G) +m andPeb(G) ≤ Peb∅(G) +m. Also, if G has a unique sink, it is easy
to see thatPeb(G) = Peb∅(G).

The only pebblings we are really interested in are complete pebblings ofG. However, when we prove
lower bounds on pebbling price it will sometimes be convenient to be able to reason in terms of partial
pebbling move sequences, i.e., conditional pebblings. Onecan think of conditional pebblings as pebblings
that receive the start configuration(B1,W1) “as a gift”, and are also allowed to leave(B2,W2) without
“cleaning up” when they finish. It is clear that we can assume that (B1,W1) = (B1, ∅) and(B2,W2) =
(∅,W2) since we can freely place white pebbles onG and freely remove black pebbles. The way the gift
can help us is that we get black pebbles at the beginning for free, and are allowed to leave white pebbles
without having to do the hard work of removing them.

The reason we need visiting pebblings and not just persistent ones is that the graphs of interest will
be constructed in terms of smaller subgraph components withuseful pebbling properties, and that for such
subgraphs we have the following easy observation (the proofof which is omitted).

Observation 3.6. Suppose thatG is a DAG and thatP is any complete pebbling ofG. LetU ⊆ V (G) be
any subset of vertices ofG and letH = H(G,U) denote the induced subgraph with verticesV (H) = U
and edgesE(H) =

{
(u, v) ∈ E(G)

∣∣u, v ∈ U
}

. Then the pebblingP restricted to the vertices inU is a
complete visiting pebbling strategy forH.

Some proofs are facilitated by observing that visiting pebblings have a certain “duality” property. The
next proposition is an immediate consequence of the anti-symmetric nature of the pebbling rules in Defini-
tion 1.1 (just observe that the rules for placing and removing a black pebble are the duals of the rules for
removing and placing a white pebble, respectively).

Proposition 3.7 ([CS76]). If P is a black-white pebbling from(B1,W1) to (B2,W2), then we can get a
dual pebblingP from (W2, B2) to (W1, B1) in exactly the same time and space by reversing the sequence
of moves and switching the colours of the pebbles. In particular, if P is a complete visiting pebbling ofG,
then so isP .

For the applications in proof complexity, we often want results stated for DAGs with one unique sink,
but most pebbling results are more natural to state and provefor DAGs with multiple sinks. This small
technicality is easily taken care of as follows.

Definition 3.8 (Single-sink version).Let G be a DAG with sinksZ(G) = {z1, . . . , zm} for m > 1. The
single-sink version̂G of G consists of all vertices and edges inG plus the extra verticesz∗1 , . . . , z

∗
m−1 and

the edges(z1, z∗1), (z2, z
∗
1), (z

∗
1 , z

∗
2), (z3, z

∗
2), (z

∗
2 , z

∗
3), (z4, z

∗
3), et cetera up to(z∗m−2, z

∗
m−1), (zm, z∗m−1).

That is,Ĝ consists ofG with a binary tree of minimal size added on top of the sinks. See Figure 5 for a
small example. The following observation is immediate.
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z1 z2 z3 z4 z5 z6

z∗1

z∗2

z∗3

z∗4

z∗5

G

Figure 5: Schematic illustration of single-sink version Ĝ of graph G.

Observation 3.9. LetG be a DAG with sinksZ(G) = {z1, . . . , zm} for m > 1. Then for any flavour of
pebbling (visiting or persistent) it holds thatBW-Peb

(
Ĝ
)
≤ BW-Peb(G)+1 andPeb

(
Ĝ
)
≤ Peb(G)+1.

Moreover, if there is a pebbling strategyP (visiting or persistent) forG that can pebble the sinks in arbitrary
order, then there is a pebbling strategŷP of the same type (black or black-white, visiting or persistent) for
Ĝ with time

(
P̂
)
≤ time(P) + 2m andspace(P̂) ≤ space(P) + 1.

The next proposition is convenient when composing pebblings of smaller subgraphs into a pebbling of
a larger graph.

Proposition 3.10. Suppose thatG is a DAG with unique sinkz. Then for any complete black or black-white
pebblingP of G there is a complete pebblingP ′ with the same colours such thattime(P ′) = time(P),
space(P ′) = space(P), and there is a timet during P ′ whenz has a pebble but the pebbling space is
strictly less thanspace(P).

Proof. For black pebblings this statement is obvious. Once we placea black pebble on the sinkz, we can
remove all other pebbles from the DAG.

Suppose for a black-white pebblingP that the pebbling space reaches the maximums precisely when
a pebble is placed onz at timet. Then the move at timet + 1 must be a pebble removal. If a pebble is
removed from a vertex other thanz, we are done. Otherwise, fix some vertexw ∈ pred(z) havingz as
its only successor. Suppose thatw contains a white pebble during some interval[σ, τ ] ⊇ [t, t + 1] (and if
not, run the dual pebbling in Proposition 3.7 instead). To obtain P ′, we changeP as follows. The pebble
placement onw at timeσ is omitted. At timet, a white pebble is placed onz. In between timest andt+ 1,
w is white pebbled, and then the white pebble onz is removed at timet+ 1.

It is immediate from the definition of the black pebble game that black pebblings always proceed in a
bottom-up fashion in the following sense.

Observation 3.11.Suppose thatQ : u v is a path inG and thatP = {Pσ,Pσ+1, . . . ,Pτ} is a black-only
pebbling such that the whole pathQ is completely free of pebbles at timeσ but a pebble is placed on the
endpointv at timeτ . Then the starting pointu must have been pebbled during the time interval(σ, τ).

A simple but important lemma, lying at the heart of essentially all black-white pebbling lower bounds, is
the following generalization of Observation 3.11 to black-white pebbling: In order to pebble the endpointv
of a some path, one needs to pebble all vertices on this path atsome point prior toor after pebblingv.
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Lemma 3.12 ([GT78]). Suppose thatQ : u  v is a path inG and thatP = {Pσ,Pσ+1, . . . ,Pτ} is
a black-white pebbling such that the whole pathQ is completely free of pebbles at timesσ and τ but the
endpointv is pebbled at some point during(σ, τ). Then the starting pointu is pebbled during(σ, τ) as well.

Proof. By induction over the length of the pathQ. The base caseu = v is trivial. For the induction step, let
w be the immediate successor ofu onQ. By the induction hypothesis,w is pebbled and unpebbled again
some time during(σ, τ). Thenu must be covered by a pebble either when the pebble onw is placed there
(if this pebble is black) or when it is removed (if it is white). The lemma follows.

When proving lower bounds on pebblings, it often helps to assume that the pebblings under consideration
do not perform any obviously redundant moves. The followingdefinition, which formalizes this notion, is a
generalization of [GLT80] from black-only to black-white pebbling.

Definition 3.13 (Frugal pebbling). LetP be a complete pebbling of a DAGG. To every pebble placement
on a vertexv at timeσ we associate thepebbling interval[σ, τ), whereτ = τ(σ, v) is the first time afterσ
when the pebble is removed fromv again (orτ = ∞, say, if this never happens).

If a sink zi ∈ Z(G) is pebbled for the first time at timeσ, then the pebble onzi is essentialduring the
pebbling interval[σ, τ). A pebble on a non-sink vertexv is essential during[σ, τ) if either an essential black
pebble is placed on an immediate successor ofv during(σ, τ) or an essential white pebble is removed from
an immediate successor ofv during(σ, τ). Any other pebble placements on any vertices are non-essential.

The pebbling strategyP is frugal if all pebbles inP are essential at all times.

Without loss of generality, we can assume that all pebblingsare frugal.

Lemma 3.14. For any complete pebblingP (black or black-white, visiting or persistent) there is a frugal
pebblingP ′ of the same type such thattime(P ′) ≤ time(P) andspace(P ′) ≤ space(P).

Proof sketch.Just delete any non-essential pebbles and verify that what remains is a legal pebbling.

One minor technical snag is that we will need to assume not only that complete pebblings are frugal, but
that this also holds forconditional pebblings(Definition 3.5). This is no real problem, however, since we can
always assume that the conditional pebblings we are dealingwith are subpebblings of larger, unconditional
pebblings. In fact, an alternative way of defining frugal pebblings (unconditional or conditional) is to say
that a pebble placement on a non-sink vertexv is essential if the pebble stays until either a black pebble
is placed on an immediate successor ofv or a white pebble is removed from an immediate successor ofv.
If a pebbling contains non-essential moves, then it is easy to see that such moves can be eliminated to get
a shorter pebbling that is still legal. This new pebbling might contain other non-essential moves, but after
applying the procedure a finite number of times we obtain a pebbling with only essential moves. Adding the
requirement that each sink should only be pebbled once, we recover Definition 3.13.

We conclude this section by recalling the following resultsfor pebblings of pyramid graphs.

Theorem 3.15 ([Coo74, Kla85]).The black pebbling price of the pyramidΠh of heighth is Peb(Πh) =
h+ 2, and there is a linear-time pebbling achieving this bound.

The black-white pebbling price ofΠh is BW-Peb(Πh) = h/2 + O(1). For pyramids of odd height the
exact boundBW-Peb(Π2h+1) = h+ 3 holds, and for even height we haveBW-Peb∅(Π2h) = h+ 2.

We remark that the exact bounds for black-white pebbling above are not stated or proven by Klawe
in [Kla85], but can be read off from the exposition of Klawe’sproof in (the full-length version [NH08a]
of) [NH08b].
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ON THE RELATIVE STRENGTH OF PEBBLING AND RESOLUTION

4 Labelled Black-White Pebblings and Resolution Simulations

Let us now prove the claims made in Section 2.1 about the labelled black-white pebble game in Defini-
tion 2.2, namely that this game is just a limited version of standard black-white pebbling (Lemma 2.3) and
that resolution refutations of pebbling contradictions can simulate labelled pebblings if all labelled pebble
subconfigurations have bounded size (Lemma 2.5).

4.1 Proof of Lemma 2.3

Recall that we want to prove that ifL is a complete labelled pebbling of a single-sink DAGG, then we
can transformL into a complete standard black-white pebblingPL of G with time(PL) ≤ 4

3 time(L)
andspace(PL) ≤ space(L). The proof of this fact is not hard, and much of the needed material can be
extracted from similar arguments in [Nor09]. Since what is actually proven in [Nor09] is something different
and slightly weaker, however, we provide a full, explicit proof of Lemma 2.3 below.

The first modification of the pebble game when going from Definition 1.1 to Definition 2.2 is that in the
context of resolution, a more natural rule for white pebble removal appears to be that a white pebble can be
removed from a vertex when a black pebble is placed on that same vertex. It seems intuitively fairly obvious
that this rule change should not really affect the pebble game, and indeed it does not.

Lemma 4.1. Let us say that asuperpositionedblack-white pebbling ofG is a pebbling as in Definition 1.1,
except that a vertex may have both a black and a white pebble onitself, and that rule (4) is changed to:

4’. A white pebble onv can be removed only if there is a black pebble onv.

Then for any complete superpositioned pebblingS of G there is a standard complete black-white pebbling
P with time(P) ≤ time(S) andspace(P) ≤ space(S).

Proof. Suppose that we are given a superpositioned pebblingS = {S0, . . . ,Sτ} of G. We construct a
standard black-white pebblingP = {P0, . . . ,Pτ} such that forPt = (Bt,Wt) andSt = (B′

t,W
′
t) it holds

thatBt ⊇ B′
t, Bt ∪ Wt = B′

t ∪ W ′
t and (as required by Definition 1.1)Bt ∩ Wt = ∅. In particular, this

means thatspace(P) = space(S), and that ifS is a complete pebbling, then so isP.
The construction is by forward induction overS. We setP0 = S0 = (∅, ∅) and then make the inductive

step by a case analysis over the pebbling moves.

1. If S places a black pebble onv at timet + 1, the vertices inpred(v) must be pebbled inSt and thus
by induction also inPt. If v ∈ Wt, we remove the white pebble fromv in P. Then we place a black
pebble onv.

2. If S removes a black pebble fromv at timet+ 1, by inductionv is black-pebbled inPt. We remove
the black pebble fromv in P, unlessv ∈ W ′

t in which case we leave the black pebble onv.

3. If S places a white pebble onv at time t + 1, we place a white pebble there inP if v 6∈ Bt and
otherwise do nothing.

4. When a white pebble is removed fromv in S it holds thatv ∈ B′
t. Thus, by inductionv ∈ Bt, so the

white pebble has already been removed fromv in P, or was never placed there.

It clearly holds thattime(P) ≤ time(S), sinceP makes at most as many pebbling moves asS.

The second step in the proof of Lemma 2.3 is to show that if we take a complete labelled pebbling
L = {L0, . . . ,Lτ} of a DAG G and look at the vertices

(
Bl(Lt),Wh(Lt)

)
covered by black and white
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4 Labelled Black-White Pebblings and Resolution Simulations

pebbles for allt ∈ [τ ], we can extract a legal complete (superpositioned) black-white pebbling ofG in
essentially the same time and space. We prove this formally in the next two lemmas.

The first lemma says that without loss of generality we can assume that all labelled pebblings arenon-
redundantin the sense that if a subconfigurationv〈V 〉 is derived at timet, then this subconfiguration is not
just thrown away but is used at some timet′ > t further on in the pebbling before being erased.

Lemma 4.2. Let L = {L0, . . . ,Lτ} be any complete labelled pebbling of a DAGG. Then we can con-
struct a complete labelled pebblingL′ = {L′

0, . . . ,L
′
τ ′} of G with time(L′) ≤ time(L) andspace(L′) ≤

space(L) that has the following property: Ifv〈V 〉 is erased at timet in L′, i.e.,v〈V 〉 ∈ L′
t \ L′

t+1, then
this subconfiguration has been used in a merger or reversal move immediately before being erased, and the
subconfiguration resulting from this move is present inL′

t+1.

Proof. This is easy if formally somewhat tedious, so let us first try to visualize the proof. For any labelled
pebblingL, we can construct a DAGGL encoding the pebbling as follows. For every subconfiguration v〈V 〉
appearing at timet1 and staying in the graph until timet2 when it is erased, we create a vertex(v〈V 〉, [t1, t2]).
For each mergeru〈U〉 = merge(v〈V 〉, w〈W 〉), we draw edges fromv〈V 〉 andw〈W 〉 to u〈U〉. The sources
in GL are vertices(v〈pred (v)〉, [t1, t2]), and by assumption there is a sink(z〈∅〉, [t1, τ ]). Note that without
loss of generality we can assume that we never derive a subconfiguration that is already present in the graph,
so all vertices inGL have indegree0 or 2 corresponding to introductions and mergers, respectively.

Consider the subgraph ofGL consisting of all vertices from which the sink vertex(z〈∅〉, [t1, τ ]) is
reachable. We constructL′ to be the subpebbling corresponding exactly to the moves in this subgraph,
except that we reorder moves if needed so that erasures are always performed as soon as possible. Since the
moves inL′ are a subset of the moves inL, clearlytime(L′) ≤ time(L).

Formally, this amounts to the following. We construct the modified pebblingL′ by backward induction
overL = {L0, . . . ,Lτ}. LetL′

τ = Lτ = {z〈∅〉}. Our induction hypothesis is thatL′
t∗ ⊆ Lt∗ for t∗ > t. The

backward induction step fromt+ 1 to t is a case analysis over the movesLt  Lt+1 in L. For simplicity,
we allow using fractional time steps in the interval[t, t+ 1] in the inductive constructions below.

Introduction Lt+1 = Lt ∪ {v〈pred (v)〉}: SetL′
t = L′

t+1 \ {v〈pred (v)〉}. Note that we might have
L′
t = L′

t+1 if v〈pred (v)〉 6∈ L′
t+1. In any case, the induction hypothesis holds forL′

t.

Merger Lt+1 = Lt ∪ {v〈(V ∪ W ) \ {w}〉}: If v〈(V ∪ W ) \ {w}〉 6∈ L′
t+1, setL′

t = L′
t+1. The

induction hypothesis trivially remains true. Otherwise, if the merged subconfiguration is present in
L′
t+1 setL′

t =
(
L′
t+1 ∪ {v〈V 〉, w〈W 〉}

)
\ {v〈(V ∪ W ) \ {w}〉}. We can go fromL′

t to L′
t+1 in

at most three steps via intermediate L-configurationsL′
t+1/3 = L′

t ∪ {v〈(V ∪ W ) \ {w}〉} and
L′
t+2/3 = L′

t+1 ∪ {w〈W 〉} by first mergingv〈V 〉 andw〈W 〉, then possibly erasingv〈V 〉 and finally
possibly erasingw〈W 〉.

Erasure Lt+1 = Lt \ {v〈V 〉}: All erasure moves inL′ are taken care of in connection with mergers, so set
L′
t = L′

t+1.

We claim that all moves inL′ constructed in this way are legal. For ifu〈U〉 ∈ L′
t, thenu〈U〉 ∈ Lt and

we know that this subconfiguration must have been derived at some point in timet∗ ≤ t in L. Thus the
backward construction ofL′ will yield a correct derivation ofu〈U〉. Also note that by construction, when a
subconfiguration inL′ is erased it has just been used in some merger move.

Finally, by constructionL′
t ⊆ Lt, and for the intermediate fractional time step L-configurationsL′

t+a/b

in the merger moves inL′ we haveL′
t+a/b ⊆ Lt+1. It follows thatspace(L′) ≤ space(L).

For labelled pebblings as in Lemma 4.2, if we ignore all relations between black and white pebbles in
the subconfigurations and consider

(
Bl(Lt),Wh(Lt)

)
for t ∈ [τ ], this is a legal superpositioned pebbling.
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ON THE RELATIVE STRENGTH OF PEBBLING AND RESOLUTION

Lemma 4.3. Suppose thatL is a complete labelled pebbling of a DAGG. Then there is a complete super-
positioned pebblingS ofG such thattime(S) ≤ 4

3 time(L) andspace(S) ≤ space(L).
Proof. By Lemma 4.2, without loss of generality we can assume that each v〈V 〉 is erased fromL precisely
after it has been used in a merger, and thatv〈V 〉 is erased beforew〈W 〉 when both subconfigurations are
eliminated after a movev〈(V ∪ W ) \ {w}〉 = merge(v〈V 〉, w〈W 〉), so that the white pebble onw is
removed before the black pebble onw.

It is clear that we are done if we can construct a superpositioned pebblingS with moves matching the
moves inL exactly. LetS0 = (∅, ∅) and constructSt+1 inductively by looking at the moves inLt  Lt+1.

Introduction Lt+1 = Lt ∪ {v〈pred (v)〉}: Place white pebbles onpred(v) and then a black pebble onv
in S.

Merger Lt+1 = Lt ∪ {v〈(V ∪ W ) \{w}〉} for v〈V 〉, w〈W 〉 ∈ Lt: No pebbling moves inS, but note that
if v〈V 〉 is now removed, the change in pebbles onG in L is exactly the same as after an application
of rule (4’) onw.

Erasure Lt+1 = Lt \ {v〈V 〉}: This is the only nontrivial case. In general, an erasure move in an labelled
pebbling can remove an arbitrary number of white pebbles without any black pebbles being even close
to these white pebbles, and there is no way we can match such a move in a superpositioned pebbling.
But since we can assume thatL is an labelled pebbling as described in Lemma 4.2, we know that
v〈V 〉 has just been used in a merger. Consequently, the only pebblethat disappears when going from(
Bl(Lt),Wh(Lt)

)
to

(
Bl(Lt+1),Wh(Lt+1)

)
is either the black pebble onv, which is always a legal

pebble removal, or some white pebble onw ∈ V which has just been eliminated in the merger move
by a black pebble, and this is a legal pebble removal according to rule (4’).

We see thatS generated in this way is a legal superpositioned pebbling, if we modify each introduction
step into|pred(v)| + 1 pebble placement moves. Clearly,space(S) ≤ space(L). To see thattime(S) ≤
4
3 time(L), consider any vertexv. The wayS is constructed fromL, every timev is pebbled it is both black-
pebbled and white-pebbled, after which the pebbles are removed. This takes4 moves inS. In L, a single
introduction move can place pebbles on many vertices. However, to remove the pebbles fromv requires
3 moves, namely1 merger followed by2 erasures. This gives the time bound, and the lemma follows.

Now Lemma 2.3 follows from combining Lemmas 4.1 and 4.3.

4.2 Proof of Lemma 2.5

The assumption in Lemma 2.5 is that we are given a complete(m,S)-bounded labelled pebblingL =
{L0, . . . ,Lτ} of a DAG G. We want to prove that for any nonconstant Boolean functionf of arity d,
there is a resolution refutationπL of PebG[f] in lengthL(πL) = time(L) · exp

(
O(dS)

)
and total space

TotSp(πL) = m · exp
(
O(dS)

)
.

Let us first adopt the notation that for a vertexv, we letv[f] denote the set of clauses obtained when
substitutingf(v1, . . . , vd) for v and expanding to conjunctive normal form, and similarly forv[f]. We extend
this notation to clauses by defining(C ∨D)[f] = {C ′ ∨D′ | C ′ ∈ C[f] ,D′ ∈ D[f]}. Note that if a clause
C containsK literals, thenC[f] has at most2dK clauses containing at mostdK literals each.

The proof is by induction over the pebblingL. We maintain the invariant that ifLt is the set of subcon-
figurations at timet, then thenπ will contain exactly the clausesCt =

{(∨
w∈W w ∨ v

)
[f]

∣∣ v〈W 〉 ∈ Lt

}
.

SinceL is an(m,S)-bounded pebbling, this means thatCt will contain at mostm2d(1+S) clauses, each
clause of size at mostd(1 + S). To simplify the notation in the proof, we will implicitly use fractional time
steps inπ, making sure that it never takes more thanexp

(
O(dS)

)
time steps to get fromCt−1 to Ct.

Consider the pebbling move made inL at timet :
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1. If L introducesv〈pred (v)〉, we download all the axiom clauses in
(∨

w∈pred(v) w ∨ v
)
[f]. By assump-

tion we have|pred (v)| ≤ S, so the number of axiom clauses are at most2d(1+S).

2. SupposeL mergesv〈V 〉, w〈W 〉 ∈ Lt−1 with w ∈ V into v〈(V ∪ W ) \ {w}〉. By the inductive
hypothesis, we have the clauses

(∨
u∈V u ∨ v

)
[f] and

(∨
x∈W x ∨ w

)
[f] in memory. Together, these

clauses clearly imply
(∨

u∈(V ∪W )\{w} u ∨ v
)
[f].

Let D be any clause in the set
(∨

u∈(V ∪W )\{w} u ∨ v
)
[f]. By Proposition 3.3, we can deriveD

from the clauses corresponding tov〈V 〉 andw〈W 〉 in lengthexp
(
O(dS)

)
and additional total space

O
(
(dS)2

)
. Doing this in turn for all the2d(1+S) clausesD ∈

(∨
u∈(V ∪W )\{w} u ∨ v

)
[f] establishes

the induction step.

3. If L erases a subconfigurationv〈V 〉, we just erase all clauses in
(∨

w∈pred(v) w ∨ v
)
[f] from memory.

At the end of the pebblingL, we haveCτ = {z[fd]} for z the sink ofG. We conclude the refutation by
downloading all the sink axioms inz[fd] and deriving the empty clause0 in lengthexp(O(d)) and total
spaceO

(
d2
)
. This proves the lemma.

5 Separations of Black Pebbling and Bounded Labelled Pebbling

The second component in our proof that resolution refutations of pebbling contradictions can be strictly
more efficient than black pebblings of the corresponding graphs is to show that there are graph families
which separate black pebbling and bounded black-white labelled pebbling. In this section, we briefly review
the graph families exhibiting the separations between black and black-white pebbling in Lemmas 1.3, 1.5,
and 1.7, and then prove that the black-white pebblings for these graphs can be carried out in the bounded
labelled pebbling framework. From this Theorems 1.4, 1.6, and 1.8 immediately follow by appealing to
Lemma 2.5. We first attend to Lemma 1.3 and Theorem 1.4 in Section 5.1, and then take care of Lemmas 1.5
and 1.7 and Theorems 1.6 and 1.8 in Section 5.2.

5.1 Bounded Pebblings for Time-Space Trade-offs

The trade-offs in Lemma 1.3 are obtained for graphs built from permutations in the following way.

Definition 5.1 (Permutation graph ([LT82])). Let π denote some permutation of{0, 1, . . . , n− 1}. The
permutation graph∆(n, π) overn elements with respect toπ is defined as follows.∆(n, π) has2n vertices
divided into alower rowwith verticesu0, u1, . . . , un−1 and anupper rowwith verticesw0, w1, . . . , wn−1.
For all i = 0, 1, . . . , n−2, there are directed edges(ui, ui+1) and(wi, wi+1), and for alli = 0, 1, . . . , n−1,
there are edges

(
ui, wπ(i)

)
from the lower row to the upper row.

Thus, the only source in∆(n, π) is u0 and the only sink iswn−1. All vertices in the lower row except
the leftmost one have indegree1 and all vertices in the upper row except the leftmost one haveindegree2.

Any DAG of fan-in2 must have pebbling price at least3. It is not too hard to see that the graphs∆(n, π)
have pebblings in this minimal space: keeping one pebble on vertexwi of the upper row, move two pebbles
consecutively on the lower row untiluπ−1(i+1) is reached, and then pebblewi+1. Generalizing this pebbling
strategy leads to the following upper bound on the time-space trade-off for any permutation graph.5

5All results reviewed below are from [LT82, Section 2]. Our statements of the results differ slightly in the constants, though,
since there are some (minor) technical differences in the definitions in [LT82] as compared to the present paper. Proofs of the
lemmas and theorems as stated here can be found in [Nor10a].
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Figure 6: Bit reversal graph ∆(8, rev) on 8 elements.

Lemma 5.2 ([LT82]). Let∆(n, π) be the permutation graph overn elements for any permutationπ. Then
the black pebbling price of∆(n, π) is Peb(∆(n, π)) = 3, and for any spaces, 3 ≤ s ≤ n, there is a black
pebbling strategyP for ∆(n, π) with space(P) ≤ s and time(P) ≤ 2n2

s−2 + 2n.

To prove lower bounds for permutation graphs, Lengauer and Tarjan focus on permutations defined in
terms of reversing the binary representation of the integers {0, 1, . . . , n− 1} whenn is an even power of2.

Definition 5.3 (Bit reversal graph ([LT82])). Them-bit reversalof i, 0 ≤ i ≤ 2m − 1, is the integer
revm(i) obtained by writing them-bit binary representation ofi in reverse order. Thebit reversal graph
∆(2m, revm) is the permutation graph overn = 2m with respect torevm.

We will denote the bit reversal graph by∆(n, rev) for simplicity, implicitly assuming thatn = 2m. An
example of a bit reversal graph can be found in Figure 6.

For bit reversal graphs, the trade-off in Lemma 5.2 for blackpebbling is asymptotically tight.

Theorem 5.4 ([LT82]). Suppose thatP is any complete black pebbling of the bit reversal graph∆(n, rev)

overn = 2m elements such thatspace(P) = s for s ≥ 3. Thentime(P) ≥ n2

8s .

Note, in particular, that if we want to black-pebble∆(n, rev) in linear time, then linear space is needed.
The proof of Theorem 5.4 relies on the fact that a black pebbling must always proceed through a graph in
topological order. For a black-white pebbling this is no longer true, since pebbles may be placed anywhere
at any time. Adjusting the argument used in the proof of Theorem 5.4 accordingly, one instead gets the
following, weaker lower bound.

Theorem 5.5 ([LT82]). LetP be any complete black-white pebbling of∆(n, rev) with space(P) = s for
s ≥ 3. Thentime(P) ≥ n2

18s2
+ 2n.

When first looking at the proof of Theorem 5.5, it might seem that the bound should not really have
to be weaker than in Theorem 5.4 but that this could plausiblybe just a consequence of the analysis being
harder to carry out in the black-white pebbling case. Somewhat surprisingly, however, Lengauer and Tarjan
prove that Theorem 5.5 is in fact tight. That is, one can do (much) better using white pebbles in addition to
the black ones. In particular, there is a linear-time black-white pebbling strategy for∆(n, rev) using only
order of

√
n pebbles. Moreover, it is possible to transform the pebblingstrategy in [LT82] into a bounded

labelled pebbling. We conclude our discussion of permutation graphs by stating and proving this as a formal
theorem.

Theorem 5.6.Let∆(n, rev) be the bit reversal graph overn = 2m elements. Then for any space parameter
s ≥ 3 there is a complete(2 + 2s/3, 2)-bounded labelled pebblingL of ∆(n, rev) with space(L) ≤ s and
time(L) ≤ 288n2

s2
+ 22n.
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Theorem 5.6 is an easy corollary of the next lemma. We establish the lemma first and then explain how
it implies the theorem. We also remark that our proof follows[LT82] fairly closely. Thus, our contribution
consists in adapting the argument to the bounded labelled pebbling framework.

Lemma 5.7. For all s, 3 ≤ s ≤ 3
√
n, there is a complete(2 + 2s/3, 2)-bounded labelled pebblingL of

∆(n, rev) with space(L) ≤ s and time(L) ≤ 288n2

s2
+ 6n.

Proof of Lemma 5.7.Write m = log n and letr be the non-negative integer such that3 · 2r ≤ s < 3 · 2r+1.
Divide the upper row of∆(n, rev) into 2r intervals

Ij =
{
wj·2m−r+k

∣∣ k = 0, 1, . . . , 2m−r − 1
}

(5.1)

of size2m−r for j = 0, . . . , 2r − 1 and then subdivide each interval into2m−2r chunksby defining

Ci
j =

{
wj·2m−r+i·2r+k

∣∣ k = 0, 1, . . . , 2r − 1
}

(5.2)

for i = 0, . . . , 2m−2r − 1. (Note that2m−2r ≥ 1 sinces ≤ 3
√
n by assumption.) Figure 7 exemplifies these

definitions on the32-element bit reversal DAG with22 intervals and2 chunks per interval.
The pebbling strategy will proceed in2m−2r phasescorresponding to the2m−2r chunks in each interval,

and in2r stageswithin each phase corresponding to the different intervals. All the phases in the pebbling
are completely analogous except for some minor tweaks in thefirst and final phases, which we refer to as
the0th and(2m−2r − 1)st phases, respectively. To help the reader parse the notation, we note that in what
follows superscriptsi will correspond to phases/chunks and subscriptsj to stages/intervals. We reserve2r

independent black pebbles for the lower row,2r dependent black pebbles for the “current chunks” in the
upper row, and2r − 1 supporting white pebbles for theses dependent black pebbles. These white pebbles
will be placed on the rightmost vertices inI0, I1, . . . , I2r−2. By the way we choser, this leaves one auxiliary
pebble to help with advancing the other pebbles.

We start the0th stage in the0th phase by doing what is in essence a complete black-only pebbling of
the lower row, leaving2r independent black pebbles on

U0
0 = {urevm(k)〈∅〉 | k = 0, 1, . . . , 2r − 1} . (5.3)

More formally, this is done as follows. Introduce the subconfigurationsu0〈∅〉 andu1〈u0〉, and then merge
them to getu1〈∅〉. Next, introduceu2〈u1〉 and merge withu1〈∅〉 to getu2〈∅〉. We continue in this way
along the lower row, erasing all subconfigurationsui〈ui−1〉 as we go, as well as all subconfigurationsui〈∅〉
not found inU0

0 .
Once we have the independent black pebbles inU0

0 , we use them to “sweep” a black pebble past the
0th chunk ofI0 in the upper row, leaving it on the rightmost vertexw2r−1. In formal notation, we introduce
w0〈u0〉, merge withu0〈∅〉 to getw0〈∅〉, and then erasew0〈u0〉. Next, we introducew1

〈
w0, urevm(1)

〉
and

merge first withw0〈∅〉 and then withurevm(1)〈∅〉, resulting inw1〈∅〉. The dependent black pebbles onw1

are then erased. Next, we introducew2

〈
w1, urevm(2)

〉
and mergew1〈∅〉 and urevm(2)〈∅〉 to getw2〈∅〉,

after which the dependent black pebbles onw2 are erased. Moving right in this fashion, we finally derive
w2r−1〈∅〉, noting that all the independent black pebblesurevm(i)〈∅〉 that we need for this are present inU0

0 .
This concludes the0th stage of our labelled pebbling.

In the next stage, we move all independent black pebbles inU0
0 on the lower row exactly one step to the

right to the verticesuk for k = 1, revm(1) + 1, revm(2) + 1, . . . , revm(2r − 1) + 1. Fork = 1, this is done
by introducingu1〈u0〉, merging withu0〈∅〉 to getu1〈∅〉, and then erasingu1〈u0〉 andu0〈∅〉. The general
case is of course completely analogous. Using the fact that1 = revm(revr(1) · 2m−r), we see that we now
have independent black pebbles on

U0
1 =

{
urevm(revr(1)·2m−r+k)〈∅〉

∣∣ k = 0, 1, . . . , 2r − 1
}

, (5.4)
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Figure 7: Intervals Ij for r = 2 in ∆(32, rev) and 0th chunks in I0 and Irevr(1) = I2 with inverse images.

which by (5.2) is the set of all predecessors in the lower row of the0th chunkC0
revr(1)

of the intervalIrevr(1).
This crucial fact is illustrated in Figure 7.

Intuitively, what we want to do now is to place a white pebble on the rightmost vertex of the in-
terval Irevr(1)−1 and use this white pebble plus the lower-row black pebbles onU0

1 to sweep a black
pebble all the way to the rightmost vertex in the0th chunk ofIrevr(1). To accomplish this, first intro-
ducewrevr(1)·2m−r

〈
wrevr(1)·2m−r−1, urevm(revr(1)·2m−r)

〉
and merge this subconfiguration with the indepen-

dent black pebbleurevm(revr(1)·2m−r)〈∅〉, which is present inU0
1 , to derivewrevr(1)·2m−r

〈
wrevr(1)·2m−r−1

〉
.

Then introducewrevr(1)·2m−r+1

〈
wrevr(1)·2m−r , urevm(revr(1)·2m−r+1)

〉
and merge to get the subconfiguration

wrevr(1)·2m−r+1

〈
wrevr(1)·2m−r−1

〉
. Continuing in this way, erasing dependent black pebbles inthe upper row

as soon as they are no longer needed, we advance a black pebblealong all the vertices of the0th chunk of the
interval Irevr(1), finally arriving at the pebble subconfigurationwrevr(1)·2m−r+2r−1

〈
wrevr(1)·2m−r−1

〉
. This

concludes stage1 of phase0.
The rest of the stages of phase0 are completely analogous. In thejth stage, we can move the lower-row

pebbles fromU0
j−1 to U0

j where this notation is generalized to mean

U0
j =

{
urevm(revr(j)·2m−r+k)〈∅〉

∣∣ k = 0, 1, . . . , 2r − 1
}

(5.5)

for all j ≤ 2r − 1, and then place black pebbles on the rightmost vertex in every chunkC0
revr(j)

with
the help of a white pebble on the rightmost vertex inIrevr(j)−1, i.e., , derive pebble subconfigurations
wrevr(j)·2m−r+2r−1

〈
wrevr(j)·2m−r−1

〉
. At the end of the final stage of phase0, we thus have black pebbles

on the rightmost vertices of all0th chunks and white pebbles on the rightmost vertices ofI0, I1, . . . , I2r−2.
Later phases will move the black pebbles to the right, chunk by chunk, while leaving the white pebbles in
place. We observe that during phase0, we made at mostn introduction moves andn merger moves on the
lower row to get the pebbles into “starting position”U0

0 , and then exactly2r introductions and mergers more
on the lower row in each of the other2r − 1 stages.

Inductively, suppose at the beginning of phasei that there are dependent black pebbles on the rightmost
vertices in all(i − 1)st chunks, i.e., subconfigurationswrevr(j)·2m−r+i·2r−1

〈
wrevr(j)·2m−r−1

〉
for all j > 0

andwi·2r−1

〈
∅
〉

for j = 0. Let us extend the lower-row pebble configuration notation above to full generality
and define

U i
j =

{
urevm(revr(j)·2m−r+i·2r+k)〈∅〉

∣∣ k = 0, 1, . . . , 2r − 1
}
=

{
v〈∅〉

∣∣v ∈ rev−1
m

(
Ci
revr(j)

)}
, (5.6)
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where the second equality is easily verified from (5.2). In stage0 of phasei, we rearrange the lower-row
black pebbles to obtain the configuration inU i

0. Since there are already2r independent black pebbles present
somewhere on the lower row, this can be achieved with at mostn−2r introductions and mergers (essentially
by moving the black pebbles to the closest new position to theright—we refer to [LT82] for the details).
This allows us to advance the independent black pebble inI0 on the upper row from the rightmost vertex
in chunki − 1 to the rightmost vertex in chunki. Moving the independent black pebbles inU i

0 one step to
the right in each following stage toU i

1, U
i
2, et cetera, we can sweep dependent black pebbles across theith

chunks of the other intervalsIj in the orderIrevr(1), Irevr(2), . . . , Irevr(2r−1) = I2r−1. All in all, we make
at most(n − 2r) + (2r − 1) · 2r introductions and merger moves on the vertices in the lower row during
phasei for i ≥ 1.

In the final (2m−2r − 1)st phase, we note that there are supporting white pebbles on the rightmost
vertex of the chunk in every interval exceptI2r−1 (where the rightmost vertex is the sink). Therefore, in
every stage except the final one, when we make an introductionmove on a rightmost vertex, we merge
the introduced subconfiguration with the subconfigurationson its two predecessors of this vertex to remove
the white pebble. In the very final stage, we obtain an independent black pebble onwn−1. Removing all
other pebbles from the DAG, which are all independent black pebbles, we have obtained a complete labelled
pebbling of∆(n, rev).

The space of this pebbling is3 ·2r ≤ s by construction. All subconfigurationsv〈W 〉 have white support
size|W | ≤ 2, and there are always at most2 ·2r ≤ 2s/3 “static” subconfigurations plus2 auxiliary ones. As
to the time bound, it is easy to verify that we make an introduction for each upper row vertex exactly once,
and2 mergers are needed to eliminate the white pebbles in the support of the introduced subconfiguration.
The number of introductions and mergers in the lower row is atmost2n + (2r − 1) · 2r+1 during phase0
and at most2(n − 2r) + (2r − 1) · 2r+1 for each of the other2m−2r − 1 phases, and summing up we get a
total of at most

2m−2r
(
(2n − 2r+1) + (2r − 1) · 2r+1

)
+ 2r+1 + 3n < 2m−2r

(
2n+ 22r+1

)
+ 3n

<
n

(s/6)2
(
2n+ 2(s/3)2

)
+ 3n

≤ 144
n2

s2
+ 3n

(5.7)

introduction and merger moves in total, where we used that2m−2r ≥ 1, 2r ≤ s/3 < 2r+1, ands ≤ 3
√
n.

Multiplying by 2 to take the removal moves into account gives the time bound stated in the lemma.

Proof of Theorem 5.6.Fors ≤ 3
√
n this was proven in Lemma 5.7. To get the statement fors > 3

√
n, use

the same pebbling strategy as in the proof of Lemma 5.7 but chooser so that
√
n/2 < 2r ≤ √

n. Then the
number of chunks2m−2r is at most2, and the time bound derived from (5.7) reduces to22n.

To obtain the graphsGn of sizeΘ(n) in Lemma 1.3, we setm = ⌈log2 n⌉ and letGn = ∆(2m, revm).
As noted at the beginning of this section, Theorem 1.4 now follows if we combine Lemma 2.5 with
Lemma 5.7.

5.2 Bounded Pebblings for Absolute Separations of Pebbling Space

To obtain results for resolution matching the pebbling separations of Lemma 1.5 by [Wil88] and Lemma 1.7
by [KS91], it is sufficient to consider a more general graph family studied in the latter paper. To describe
how this graph family is constructed we first need an auxiliary definition.

Definition 5.8 (m-line and (n,m)-spiral mesh). An m-line is a DAG with vertex setv1, v2, . . . , vm and
edge set{(vi, vi+1) | i = 1, 2, . . . ,m− 1}.
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An (n,m)-spiral meshis a DAG on vertices{vi,j | i ∈ [n], j ∈ [m]} with edges(vi,j , vi,j+1) for i ∈ [n]
andj ∈ [m− 1], (vi,j, vi+1,j) for i ∈ [n− 1] andj ∈ [m], and(vi,m, vi+1,1) for i ∈ [n− 1]. The ith
columnof the(n,m)-spiral mesh consists of the verticesvi,j for j ∈ [m].

We now present the three-parameter graph familyΛ(p, q, k) in [KS91]. The construction is by induction
overq.

Definition 5.9 (Λ(p, 0, k)-graph). The graphΛ(p, 0, k) is a (1, p)-mesh, that is, ap-line, the first row
f1, f2, . . . , fp andlast row l1, l2, . . . , lp of which are both defined to be the vertices of thep-line.

For q > 0, the graphΛ(p, q, k) consists of a number of identical building blocksN(p, q, k), which
all contain a copy each ofΛ(p, q − 1, k). In the recursive definitions below, we will be somewhat sloppy
with the indices in order not to clutter the notation. In particular, if we wanted to be formally correct, all
subgraphs and vertices below should be labelled by their “level of recursion”q within the construction, as
well as by a number indicating which of the identical copies on recursion levelq the vertex resides in, but
we believe that adding these extra indices would lead to moreconfusion than clarity.

TheN(p, q, k)-block graph construction, defined next, is illustrated in Figure 8. We remark that this
graph has been slightly modified as compared to [KS91].6

Definition 5.10 (N(p, q, k)-block [KS91]). Suppose thatΛ(p, q − 1, k) has been defined. Theblock graph
N(p, q, k), wherek ≤ p, consists of the following components:

• a copy ofΛ(p, q − 1, k) with first rowf1, f2, . . . , fm and last rowl1, l2, . . . , lm,

• a
(
(p+ 1)2, p

)
-spiral meshB on verticesbi,j, i ∈

[
(p+ 1)2

]
, j ∈ [p],

• a
(
(p+ 1)3, p

)
-spiral meshA on verticesai,j, i ∈

[
(p+ 1)3

]
, j ∈ [p],

• k copiesR1, . . . , Rk of a (p+ 1)-line, with theith copy having verticesri,j for j ∈ [p+ 1].

For ease of notation, in what follows we will writenb = (p+1)2 andna = (p+1)3 for the number of rows
in B andA.

The subgraph components are connected by edges as follows (where we use the notation
(
u; v

)
for the

edge fromu to v for clarity):

•
(
bnb,j ; fj

)
for j ∈ [p],

•
(
bnb,j ; ri,p+2−j

)
for i ∈ [k] andj ∈ [p],

•
(
lj ; a1,j

)
for j ∈ [p],

•
(
l⌊ip/k⌋; ri,1

)
for i ∈ [k], and

•
(
ri,p+1 ; a1,j

)
for all i ∈ [k] and allj such that(i− 1)p/k < j ≤ ip/k.

Theith column ofN(p, q, k) consists of theith columns ofB, Λ(p, q − 1, k), andA.

We glue theN(p, q, k)-blocks together to form the graphΛ(p, q, k) as follows.

6Again, proofs of the results as stated here can be found in [Nor10a].
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Figure 8: Building block N(p, q, k) in graph separating black and black-white pebbling (here k = p/2).
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Definition 5.11 (Λ(p, q, k)-graph [KS91]). Forq ≤ p andk ≤ p, the graphΛ(p, q, k) consists of⌈p/k⌉+1
copies of the block graphN(p, q, k), which we denoteN (1)(p, q, k), N (2)(p, q, k), . . . , N (⌈p/k⌉+1)(p, q, k).

The edges between the blocks are
(
a
(i)
na,j

; b
(i+1)
1,j

)
for i = 1, . . . , ⌈p/k⌉ andj = 1, . . . , p, i.e., the last vertex

in every column in theith N -block is connected to the first vertex in the same column in the (i + 1)st
N -block.

We define the first rowf1, f2, . . . , fm of Λ(p, q, k) to consist of the first rowb(1)1,1, b
(1)
1,2, . . . , b

(1)
1,p, of the

first N -block and the last rowl1, l2, . . . , lm, to consist of the last rowa(⌈p/k⌉+1)
na,1

, a
(⌈p/k⌉+1)
na,2

, . . . , a
(⌈p/k⌉+1)
na,p

of the lastN -block. Theith column ofΛ(p, q, k) is defined to be the union of theith columns of all the
N -blocks.

Let us now first state the properties that we need from theΛ(p, q, k)-graphs, then show how Lemmas 1.5
and 1.7 and Theorems 1.6 and 1.8 follow from these properties, and finally give the proof that there are
efficient bounded labelled pebblings of the graphs.

Proposition 5.12 ([KS91]).The graphsΛ(p, q, k), have sizeO
(
poly(p)(p/k)q

)
, maximal vertex indegree3,

and a unique sink.

Theorem 5.13 ([KS91]).Any complete black pebbling ofΛ(p, q, k) requires at leastpq pebbles.

Theorem 5.14.Every graphΛ(p, q, k) has a complete(p + kq + 2, 3)-bounded labelled pebbling.

If we set k = p log log p/ log p and q = log p/ log log p in Definition 5.11, it follows from Propo-
sition 5.12 and Theorem 5.13 that we obtain graphs of size polynomial in p with black pebbling price
Ω(p log p/ log log p), as claimed in Lemma 1.5. Since these graphs have(O(p),O(1))-bounded labelled
pebblings by Theorem 5.14, we can appeal to Lemma 2.5 to deduce that resolution refutations of pebbling
contradictions over these graphs can match the black-whitepebbling space bounds, which proves Theo-
rem 1.6. If we instead choosek = 1 andq = p in Definition 5.11, we get graphs of sizeexp(Θ(p log p))
that have black pebbling priceΩ

(
p2
)

but admit(O(p),O(1))-bounded labelled pebblings. This gives us
Lemma 1.7 and Theorem 1.8.

Hence, all that remains is to establish Theorem 5.14, and we conclude this section by doing so. Again,
we point out that the pebbling strategy presented below follows the one in [KS91] closely, and that our
contribution is thus not in designing a completely new pebbling strategy, but in taking an existing strategy
and turning it into a bounded labelled pebbling.

Before presenting the formal proof, let us sketch the main idea. Observe that if there were noR-graphs
in Λ(p, q, k) but only the vertices in thep columns, then it would be straightforward to do a complete
bottom-up black-only pebbling with justp+1 pebbles. However, this strategy is impossible to implementin
the black pebble game. Very briefly, the reason for this is that any black pebbling has to pebble the graph in
topological order, but since the predecessors of the vertices in theR-graphs have their order reversed—with
the source ofR having its predecessor inΛ(p, q − 1, k), whereas the successor vertices have predecessors
in the preceding subgraphB—this constantly throws the black pebbling off-balance. Using the power of
white pebbles, however, we can avoid this problem and place black pebbles on the sinks of all graphsRi,
i ∈ [k], at all levels of recursion in the graph construction, and then do the black bottom-up pebbling of the
vertices in the column-part of the graph. The formal detailsfollow.

Proof of Theorem 5.14.The labelled pebbling strategy is constructed by inductionoverq. The base case is
trivial sinceΛ(p, 0, k) is just ap-line. For the the sake of our induction hypothesis, let us dosome extra work
and note that we can in fact even fill the wholep-line with independent black pebbles and still stay within our
space bounds. That is, ifl1, . . . , lp are the vertices ofΛ(p, 0, k), we can introducel1〈∅〉 andl2〈l1〉 and merge
them to getl2〈∅〉, after whichl2〈l1〉 is erased, then introducel3〈l2〉 and merge withl2〈∅〉 to obtainl3〈∅〉,
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after whichl3〈l2〉 is erased, et cetera, until we have the whole row{lj〈∅〉 | j ∈ [p]} of independent black
pebbles.

Inductively, suppose that we have constructed forΛ(p, q − 1, k) a pebblingL starting with independent
black pebbles{fj〈∅〉 | j ∈ [p]} on the first row, ending with independent black pebbles{lj〈∅〉 | j ∈ [p]}
on the last row, and never using more thanp+ k(q − 1) + 2 subconfigurationsv〈W 〉 at any time, all with
bounded white support size|W | ≤ 3. It is sufficient to construct fromL a labelled pebblingL′ for the block
graphN(p, q, k) moving independent black pebbles from the first row ofB to the last row ofA using no
more thanp+ kq + 2 subconfigurations with bounded support size. Such a pebbling is then easily extended
to pebbling for all ofΛ(p, q, k) by pebbling the blocks one by one in a bottom-up fashion. (This is so since
we can easily shift independent black pebbles from the last row of anN -block to the first row of the next
N -block using the same kind of labelled pebbling moves that will be discussed more in detail below.)

Thus, suppose that we have independent black pebbles{b1,j〈∅〉 | j ∈ [p]} on all vertices in the first
row of B. We move these pebbles up one row as follows. First introduceb2,1

〈
b1,1, b1,p

〉
and merge with

b1,1〈∅〉 andb1,p〈∅〉 to getb2,1〈∅〉, erasingb1,1〈∅〉 and the dependent black pebbles onb2,1. Next, introduce
b2,2

〈
b2,1, b1,2

〉
and merge withb1,2〈∅〉 and the newly derived subconfigurationb2,1〈∅〉 to getb2,2〈∅〉, after

which the dependent black pebbles onb2,2 are erased, as well asb1,2〈∅〉. Continuing in this way, erasing
pebble subconfigurations as soon as they are no longer neededand using only2 auxiliary subconfigurations,
we can shift the whole row, and we keep on shifting the pebblesrow by row, from left to right for each row,
until the last row ofB has all vertices covered by independent black pebbles{bnb,j〈∅〉 | j ∈ [p]}.

Next, we want to place black pebbles on the sinks of all theRi-subgraphs. Fix somei and consider
Ri. Introduceri,2

〈
ri,1, bnb,p

〉
and merge withbnb,p〈∅〉 to obtainri,2

〈
ri,1

〉
, erasingri,2

〈
ri,1, bnb,p

〉
. Con-

tinue by introducingri,3
〈
ri,2, bnb,p−1

〉
and merging it withbnb,p−1〈∅〉 to obtainri,3

〈
ri,2

〉
, and then merge

this subconfiguration withri,2
〈
ri,1

〉
to deriveri,3

〈
ri,1

〉
, where the subconfigurationsri,3

〈
ri,2, bnb,p−1

〉
,

ri,3
〈
ri,2

〉
, and ri,2

〈
ri,1

〉
are erased as soon as they are no longer needed. Working our way up Ri in

this fashion, we finally deriveri,p+1

〈
ri,1

〉
. Note that we use here that we have all the independent black

pebblesbnb,j〈∅〉, j ∈ [p], available. We repeat these pebbling moves for all theRi-graphs to obtain
{ri,p+1

〈
ri,1

〉
| i ∈ [p+ 1]}. For this part of the pebbling we again use2 auxiliary subconfigurations, and

we end up with a total ofk subconfigurations on all the subgraphsRi, i ∈ [k].
Now, shift the independent black pebbles{bnb,j〈∅〉 | j ∈ [p]} from the last row ofB to {fj〈∅〉 | j ∈ [p]}

on the first row ofΛ(p, q − 1, k) (by the same kind of moves that have been described in detail above), and
then appeal to the induction hypothesis to obtain a pebblingmoving these black pebbles further upward
to {lj〈∅〉 | j ∈ [p]} on the last row ofΛ(p, q − 1, k). By the induction hypothesis, such a pebbling uses at
mostp+ k(q − 1) + 2 pebble subconfigurations. We note that adding thek pebble subconfigurations on
theRi-subgraphs, the total number of subconfigurations exactly meets the upper bound we are aiming for
in the inductive step.

To finish the pebbling ofN(p, q, k), we first want to eliminate all the white pebbles onri,1, i ∈ [k],
which is possible since there are (independent) black pebbles on the predecessors of these vertices in the last
row of Λ(p, q − 1, k). Thus, for alli ∈ [k] in turn, introduceri,1

〈
l⌊ip/k⌋

〉
and mergeri,p+1

〈
ri,1

〉
with the

introduced subconfiguration as well as withl⌊ip/k⌋〈∅〉 to deriveri,p+1〈∅〉, where we eraseri,1
〈
l⌊ip/k⌋

〉
and

ri,p+1

〈
ri,1

〉
and any intermediate subconfigurations as soon as they are nolonger needed. Next, we shift

the black pebbles{lj〈∅〉 | j ∈ [p]} from the last row ofΛ(p, q − 1, k) to {a1,j〈∅〉 | j ∈ [p]} on the first row
of A. This is done in the same way as previous “shifting” moves, and we use that in addition to the pebbles
on the last row ofΛ(p, q − 1, k) we also have independent black pebbles on the sinks of allRi-subgraphs.
In this part of the pebbling we will need subconfigurations with white support size3, since that is the
indegree of the vertices in the first row ofA. When we are done shifting, we erase the pebblesri,p+1〈∅〉
from the sinks of theRi-subgraphs. Finally, we move all the black pebbles inA row by row upward, using
2 auxiliary subconfigurations, until the last row ofA has all vertices covered by independent black pebbles.
This concludes the inductive step, and the theorem follows.
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ON THE RELATIVE STRENGTH OF PEBBLING AND RESOLUTION

6 Carlson-Savage Graphs and Strong Dual Trade-offs

In this section, we present a full proof of Theorem 1.9 and show how the Carlson-Savage graphs can be used
to obtain graphs with strong dual pebbling trade-offs wherethe upper bounds are in terms of black pebbling
and the lower bounds are in terms of black-white pebbling.

We first list the statements that we want to prove in order to establish Theorem 1.9 in Lemmas 6.1,
6.2, and 6.3 below. Note that the lemmas are stated for the graph family Γ(c, r) in Definition 2.6. It is
straightforward to translate the lemmas to what is needed for Theorem 1.9 by using the single-sink version
of Γ(c, r) in Definition 3.8 and appealing to Observation 3.9. Then, we show how these lemmas yield
pebbling time-space trade-offs. Finally, we provide the formal proofs of the lemmas.

Let us start by recalling the size and pebbling price bounds.

Lemma 6.1. The graphsΓ(c, r) are of size|V (Γ(c, r))| = Θ
(
cr3 + c3r2

)
, and have black-white pebbling

price BW-Peb∅
(
Γ(c, r)

)
= r + 2 and black pebbling pricePeb∅

(
Γ(c, r)

)
= 2r + 1.

Note that Lemma 6.1 says that the minimum pebbling space required grows linearly with the recursion
depthr but is independent of the number of spinesc of the DAG.

Next, we need the fact that there is a linear-time completelyblack pebbling ofΓ(c, r) in space linear in
c+ r. This is in fact a strict improvement (though easily obtained) of the corresponding result in [CS82].

Lemma 6.2. The graphsΓ(c, r) have persistent black pebbling strategies in simultaneousspaceO(c + r)
and time linear in the size of the graphs.

Our main result for the Carlson-Savage graphs is the following trade-off for black-white pebbling, which
provides us with a variety of pebbling trade-off results if we choose the parametersc andr appropriately.

Lemma 6.3. Suppose thatP is a complete visiting black-white pebbling ofΓ(c, r) with

space(P) < BW-Peb∅
(
Γ(c, r)

)
+ s = (r + 2) + s

for 0 < s ≤ c/8 − 1. Then the time required to performP is lower-bounded by

time(P) ≥
(
c− 2s

4s + 4

)r

· r! .

Observe that Lemma 6.3 is just a special case of Lemma 2.7, obtained by settingPσ = Pτ = (∅, ∅), and
we already gave a proof of Lemma 2.7 in Section 2.2, assuming some auxiliary technical lemmas. Hence,
for Lemma 2.7 all we need to do is to establish the lemmas stated without proof in Section 2.2.

Before showing any lemmas, however, let us now see how we can prove Theorem 1.10 by appealing to
Lemmas 6.1, 6.2, and 6.3.

Theorem 1.10 (restated).Let g(n) be any arbitrarily slowly growing monotone functionω(1) = g(n) =
O
(
n1/7

)
, and let ǫ > 0 be an arbitrarily small positive constant. Then there is a family of explicitly

constructible single-sink DAGs{Gn}∞n=1 of sizeΘ(n) with constant vertex indegree such that:

1. The graphGn has black-white pebbling priceBW-Peb(G) = g(n) + O(1) and black pebbling price
Peb(G) = 2 · g(n) + O(1).

2. There is a complete black pebblingP ofGn with time(P) = O(n) andspace(P) = O
(

3
√

n/g2(n)
)

3. Any complete black-white pebblingP ofGn in space at most
(
n/g2(n)

)1/3−ǫ
requires pebbling time

superpolynomial inn.
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Proof. Consider the graphsΓ(c, r) in Definition 2.6. We want to choose the parametersc andr in a suitable
way so that get a family of graphs in sizen = Θ

(
cr3 + c3r2

)
(using the bound on the size ofΓ(c, r) from

Lemma 6.1). If we chooser = r(n) = g(n) for g(n) = O
(
n1/7

)
, this forcesc = c(n) = Θ

(
3
√

n/g2(n)
)
.

Consider the graph family{Hn}∞n=1 defined byHn = Γ(c(n), r(n)) as above and letGn = Ĥn be the
single-sink version ofHn. This is a family of single-sink DAGs of sizeΘ(n).

By Lemma 6.1 combined with Observation 3.9, it holds thatPeb(Gn) = g(n) + O(1). Also, the black
pebbling ofHn in Lemma 6.2 yields a linear-time pebbling ofGn in spaceO

(
3
√

n/g2(n)
)
. Now set the

parameters in Lemma 6.3 tos = c1−ǫ′ for ǫ′ = 3ǫ. Then for large enoughn we haves ≤ c/8 − 1 and

Lemma 6.3 can be applied. We get that if the pebbling space is less than
(
n/g2(n)

)1/3−ǫ
, then the required

time for the black-white pebbling grows as
(
Ω
(
cǫ

′))r
=

(
Ω
(
n/g2(n)

))ǫg(n)
which is superpolynomial inn

for anyg(n) = ω(1). The theorem follows.

We also note that using different parameter settings, we canobtain graphs with veryrobust trade-offs
in the sense that the lower bound in the trade-off applies over a very wide space range, namely all the way
from log n up to≈ 3

√
n.

Theorem 6.4. There is a family of explicitly constructible single-sink DAGs{Gn}∞n=1 of sizeΘ(n) with
constant vertex indegree such that:

1. Peb(Gn) = O(log n).

2. There is a complete black pebblingP ofGn with time(P)=O(n) andspace(P)=O

(
3

√
n/ log2 n

)
.

3. There is a constantK > 0 such that any complete black-white pebblingP of Gn in space at most

K 3

√
n/ log2 n must take timenΩ(log logn).

Proof. Consider the graphsΓ(c, r) in Definition 2.6 with parameters chosen so thatc = 2r. Then the size of
Γ(c, r) isΘ

(
r223r

)
by Lemma 6.1. Letr(n) = max{r : r223r ≤ n} and define the graph family{Gn}∞n=1

to be the single-sink version ofΓ(2r, r) for r = r(n).
Translating fromGn back toΓ(c, r) we have parametersr = Θ(log n) andc = Θ

(
(n/ log2 n)1/3

)
, so

Lemma 6.1 yields thatPeb(Gn) = O(log n). Hence, the linear-time persistent black pebbling ofGn in
Lemma 6.2 has spaceO

(
(n/ log2 n)1/3

)
.

Settings = c/8−1 in Lemma 6.3 shows that there is a constantK such that if the space of a black-white
pebblingP drops belowK · (n/ log2 n)1/3 ≤ (r + 2) + s, then we must have

time(P) ≥ O(1)r · r! = nΩ(log logn) (6.1)

(where we used thatr = Θ(log n) for the final equality). The theorem follows.

As a final application of Theorem 1.9, we show that it can be used to construct DAGs with not only
superpolynomial but even exponential trade-offs. A simplecounting argument can be used to show that we
can never expect to get exponential trade-offs from DAGs with polylogarithmic pebbling price. However, if
we move to graphs with pebbling priceΩ(nǫ) for some constantǫ > 0, such graphs could potentially exhibit
exponential trade-offs. We obtain such a family of graphs byagain adjusting the parameters in Definition 2.6
appropriately.

Theorem 6.5. There is a family of explicitly constructible single-sink DAGs{Gn}∞n=1 of sizeΘ(n) with
constant vertex indegree such that:

1. Peb(Gn) = O
(

8
√
n
)
.
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2. There is a complete black pebblingP of Gn with time(P) = O(n) andspace(P) = O
(

4
√
n
)
.

3. There is a constantK > 0 such that any complete black-white pebbling ofGn in space at mostK 4
√
n

must take time
(

8
√
n
)
! .

Proof. Use the single-sink version ofΓ(c, r) as above with parametersc = 4
√
n andr = 8

√
n.

We remark that there is nothing magic in our particular choice of parametersc andr in Theorem 6.5.
Other parameters could be plugged in instead and yield slightly different results. Note also that again we
have a certain robustness in the trade-off results in that itholds for space from8

√
n to 4

√
n, at which point it

drops sharply to allow a linear-time pebbling.
We now turn to the proofs of Lemmas 6.1, 6.2, and 6.3. In the proofs we will need a few useful auxiliary

lemmas, the first of which gives us information about how the spines in the Carlson-Savage DAGs are being
pebbled. We will use this information repeatedly in what follows.

Lemma 6.6 (Rephrasing of Lemma 2.8).Suppose thatG is a DAG and thatv is a vertex inG with a
pathQ to some sinkzi ∈ Z(G) such that all vertices inQ \ {zi} have outdegree1. Then any frugal black-
white pebbling strategy pebblesv exactly once, and the pathQ contains pebbles during one contiguous time
interval.

Proof. By induction from the sink backwards. The induction base is immediate. For the inductive step,
supposev has immediate successorw and thatw is pebbled exactly once.

If w is black-pebbled at timeσ, thenv has been pebbled before this and the first pebble placed onv
stays until timeσ. No second placement of a pebble onv after timeσ can be essential sincev has no other
immediate successor thanw. If w is white-pebbled and the pebble is removed at timeσ, then the first pebble
placed onv stays until timeσ and no second placement of a pebble onv after timeσ can be essential.

Thus each vertex on the path is pebbled exactly once, and the time intervals when a vertexv and its
successorw have pebbles on them overlap. The lemma follows.

The second auxiliary lemma speaks about subgraphsH of a DAGG whose only connection to the rest
of the graphG \H are via the sink ofH. Note that the pyramids inΓ(c, r) satisfy this condition.

Lemma 6.7 (Rephrasing of Lemma 2.9).Let G be a DAG andH a subgraph inG such thatH has a
unique sinkzh and the only edges betweenV (H) andV (G) \ V (H) emanate fromzh. Suppose thatP is
any frugal complete pebbling ofG having the property thatH is completely empty of pebbles at some given
time τ ′ but at least one vertex ofH has been pebbled during the time interval[0, τ ′]. ThenP pebblesH
completely during the interval[0, τ ′].

Proof. Suppose thatv ∈ V (H) is pebbled at timeσ′ < τ ′. Note that all paths starting inv must hitzh sooner
or later, sincezh is the unique sink ofH and there is no other way out ofH into the rest ofG. Consider the
longest path fromv to zh. If this path has length1, clearlyzh must be pebbled before timeτ ′ since otherwise
the pebble placement onv is non-essential. The same statement follows for anyv by induction over the path
length. But sinceH is empty at times0 andτ ′ andzh is pebbled during(0, τ ′), H is completely pebbled
during this time interval.

Let us now establish that the size and pebbling price of the Carlson-Savage DAGs are as claimed.

Proof of Lemma 6.1.The base case graphΓ(c, 1) in Definition 2.6 has sizec + 2. A pyramid of heighth
has(h+1)(h+2)/2 vertices, so thec pyramids of height2(r− 1) in Γ(c, r) contributecr(2r− 1) vertices.
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Thec spines withcr sections of2c vertices each contribute a total of2c3r vertices. And then there are the
vertices inΓ(c, r − 1). Summing up, the total number of vertices inΓ(c, r) is

(c+ 2) +
r∑

i=2

(
ci(2i − 1) + 2c3i

)
= Θ

(
cr3 + c3r2

)
(6.2)

as is stated in the lemma.
Clearly, BW-Peb∅(Γ(c, 1)) = Peb∅(Γ(c, 1)) = 3, since pebbling a vertex with fan-in2 requires3

pebbles andΓ(c, 1) can be completely pebbled in this way by placing pebbles on the two sources and then
pebbling and unpebbling the sinks one by one.

Suppose inductively thatBW-Peb∅(Γ(c, r)) = r + 2 and considerΓ(c, r + 1). It is straightforward to

see thatBW-Peb∅(Γ(c, r + 1)) ≤ r+3. Every pyramidΠ(j)
2r can be completely pebbled withr+2 pebbles

(Theorem 3.15). We can pebble each spine bottom-up in the following way, section by section. Suppose
by induction that we have a black pebble on the last vertexv[i − 1]2c in the (i − 1)st section. Keeping the

pebble onv[i− 1]2c, perform a complete visiting pebbling ofΠ(1)
2r . At some point during this pebbling we

must have a pebble on the pyramid sinkz1 and at mostr other pebbles on the pyramid (by Proposition 3.10).
At this time, place a black pebble onv[i]1 and remove the pebble fromv[i− 1]2c. Complete the pebbling of

Π
(1)
2r , leaving the pyramid empty. Performing complete visiting pebblings ofΠ(2)

2r , . . . ,Π
(c)
2r in an analogous

fashion allows us to move the black pebble alongv[i]2, . . . , v[i]c, never exceeding total pebbling spacer+3.
In the same way, for every visiting pebblingP of Γ(c, r) there must exist timesσi for all i = 1, . . . , c, when
space(Pσi) < space(P) and the sinkγi contains a pebble. Performing a minimum-space pebbling of
Γ(c, r), possiblyc times if necessary, this allows us to advance the black pebble alongv[i]c+1, . . . , v[i]2c,
never exceeding total pebbling spacer+3. This shows thatΓ(c, r + 1) can be completely pebbled withr+3
pebbles. A simple syntactic adaptation of this arguments for black pebbling (appealing to Theorem 3.15 for
the black pebbling price of pyramids) also yieldsPeb∅(Γ(c, r)) ≤ 2r + 3.

To prove that there are matching lower bounds for the pebbling constructed above, it is sufficient to show
that some pyramidΠ(j)

2r must be completely pebbled while there is at least one pebbleonΓ(c, r + 1) outside

of Π(j)
2r . To see why, note that if we can prove this, then simply by using the the fact thatBW-Peb∅(Π2r) =

r + 2 andBW-Peb∅(Π2r) = 2r + 2 and adding one for the pebble outside ofΠ
(j)
2r we have the matching

lower bounds that we need. We present the argument for black-white pebbling, which is the harder case.
The black-only pebbling case is handled completely analogously.

Suppose in order to get a contradiction that there is a visiting pebbling strategyP for Γ(c, r + 1) in

spacer+ 2. By Observation 3.6,P performs a complete visiting pebbling of every pyramidΠ
(j)
2r . Consider

the first timeτ1 when some pyramid has been completely pebbled and let this pyramid beΠ(j1)
2r . Then at

some timeσ1 < τ1 there arer + 2 pebbles onΠ(j1)
2r and the rest of the graphΓ(c, r + 1) must be empty of

pebbles at this point.
We claim that this implies that no vertex inΓ(c, r + 1) outside of the pyramidΠ(j1)

2r has been pebbled
before timeσ1. Let us prove this crucial fact by a case analysis.

1. No vertexv in any other pyramidΠ(j′)
2r can have been pebbled before timeσ1. For if so, Lemma 6.7

says thatΠ(j′)
2r has been completely pebbled before timeσ1, contradicting our choice ofΠ(j1)

2r as the
first such pyramid.

2. No vertex on a spine has been pebbled before timeσ1. This is so since Lemma 6.6 tells us that if
some vertex on a spine has been pebbled, then the whole spine must have been pebbled in view of the
fact that it is empty at timeσ1. But then Lemma 3.12 implies that all pyramid sinks must havebeen
pebbled. This case has already been excluded.
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3. Finally, no vertexv in Γ(c, r) can have been pebbled before timeσ1. Otherwise the frugality of
P implies (by pattern matching on the arguments in the proofs of Lemmas 3.12 and 6.6) that some
successor ofv must have been pebbled as well, and some successor of that successor et cetera, all the
way up to whereΓ(c, r) connects with the spines. But we have ruled out the possibility that a spine
vertex has been pebbled.

This establishes the claim, and we are now almost done. To clinch the argument, we need a couple of
final observations. Note first that by frugality, at some timein the interval(σ1, τ1) some vertex in some
spine must have been pebbled. This is so since the pyramid sink zj1 has been pebbled before timeτ1, all of

Π
(j1)
2r is empty at timeτ1, and all spines are empty at timeσ1 < τ1. But then Lemma 6.6 tells us that there

will remain a pebble on this spine until all of the spine has been completely pebbled.

Consider now the second pyramidΠ(j2)
2r completely pebbled byP, say, at timeτ2. At some point in time

σ2 < τ2 we haver + 2 pebbles onΠ(j2)
2r , and moreoverσ2 > τ1 sinceΠ(j2)

2r is empty at timeτ1. But now
it must hold that either there is a pebble on a spine at this point, or, if all spines are completely empty, that
some spine has been completely pebbled. If some spine has been completely pebbled, however, this in turn
implies (appealing to Lemma 3.12 again) that there must be some pebble somewhere in some other pyramid

Π
(j′)
2r at timeσ2. Thus the pebbling space exceedsr+2 and we have obtained our contradiction. The lemma

follows.

Studying the pebbling strategies in the proof of Lemma 6.1, it is not hard to see that they are very
inefficient. The subgraphs inΓ(c, r) will be pebbled over and over again, and for every step in the recursion
the time required multiplies. We next show that if we are a bitmore generous with the pebbling space, then
we can get down to linear time.

Proof of Lemma 6.2.We want to prove thatΓ(c, r) has a persistent black pebbling strategyP that pebbles
every vertex inΓ(c, r) exactly once and uses spaceO(c+ r). Suppose that there is such a pebbling strategy
Pr for Γ(c, r). We describe how to construct a pebblingPr+1 for Γ(c, r + 1) inductively. Note that the base
case forΓ(c, 1) is trivial.

The construction ofPr+1 is very straightforward. First usePr to make a persistent pebbling ofΓ(c, r)
in spaceO(c + r). At the end ofPr, we havec pebbles on the sinksγ1, . . . , γc. Keeping these pebbles in

place, pebble the pyramidsΠ(1)
2r , . . . ,Π

(c)
2r persistently one by one in spaceO(r) with a strategy pebbling

each vertex exactly once (for instance, by pebbling the pyramid bottom-up level by level). We leave pebbles
on all pyramid sinksz1, . . . , zc. This stage of the pebbling only requires spaceO(c + r) and at the end we
have2c black pebbles on all pyramid sinksz1, . . . , zc and all sinksγ1, . . . , γc of Γ(c, r). Keeping all these
pebbles in place, we can pebble allc spines in parallel in linear time withc+ 1 extra pebbles.

It remains to fill in the gaps in the proof of Lemma 2.7 and its special case Lemma 6.3. Recall that
the proof of Lemma 2.7 presented in Section 2.2 hinged on the claims that not too many pyramids can be
pebbled simultaneously in a space-efficient pebbling, and that this is true for the spines as well. Assuming
these two claims, we could show that that as any spine was pebbled, the pebbling had to alternate back and
forth between time intervals when there are a lot of pebbles on some pyramid and time intervals when all
sinks inΓ(c, r) are pebbled. This allowed us to apply the induction hypothesis multiple times and obtain the
required lower bound.

Hence, all that remains to complete the proof of Lemma 2.7 is to establish the two technical lemmas that
upper-bound how many pyramids and spine sections can contain pebbles simultaneously at any one given
time in a pebbling subjected to space constraints as in Lemma2.7. The claims in the two lemmas are very
similar in spirit, as are the proofs, so we state the lemmas together and then present the proofs in sequence.
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Lemma 6.8 (Rephrasing of Lemma 2.10).Suppose thatP = {Pσ, . . . ,Pτ} is a conditional black-white
pebbling onΓ(c, r) and thats is a constant satisfying the conditions in Lemma 2.7. Then atall times during

the pebblingP strictly less than4(s+ 1) pyramidsΠ(j)
2r contain pebbles simultaneously.

Lemma 6.9 (Rephrasing of Lemma 2.11).Suppose thatP = {Pσ, . . . ,Pτ} is a conditional black-white
pebbling onΓ(c, r) and thats is a constant satisfying the conditions in Lemma 2.7. Then atall times during
the pebblingP strictly less than4(s+ 1) spine sections contain pebbles simultaneously.

Note that Lemma 6.9 provides a total bound on the number of pebbled sections in allc spines. There
might be spines containing several sections being pebbled simultaneously (in fact, this is exactly what one
would expect a black-white pebbling to do to optimize the time given the space constraints), but what
Lemma 6.9 says that if we fix an arbitrary timet ∈ [σ, τ ], add up the number of sections containing pebbles
at timet in each spine, and sum over all spines, we never exceed4(s + 1) sections in total.

Proof of Lemma 6.8.Suppose that on the contrary, there is some timet∗ ∈ (σ, τ) when at least4s + 4
pyramidsΠ(j) in Γ(c, r) contain pebbles. Of these pyramids, at least2s + 4 are empty both at timeσ and
at timeτ sincespace(Pσ) < s andspace(Pτ ) < s. By Lemma 6.7, these pyramids, which we denote
Π(1), . . . ,Π(2s+4), are completely pebbled during[σ, τ ]. Moreover, we can conclude that for everyΠ(j),
j = 1, . . . , 2s + 4, there is an interval[σj , τj ] ⊆ [σ, τ ] such thatt∗ ∈ (σj , τj) andΠ(j) is empty at timesσj
andτj but contains pebbles throughout the interval(σj , τj) during which it is completely pebbled.

For eachΠ(j) there must exist some timet∗j ∈ (σi, τi) when there are at leastr + 1 = BW-Peb∅
(
Π(j)

)

pebbles. Fix such a timet∗j for every pyramidΠ(j) and assume that allt∗j , j = 1, . . . , 2s + 4, are sorted in
increasing order. We have two possible cases:

1. At least half of allt∗j occur before (or at) timet∗, i.e., they satisfyt∗j ≤ t∗. If so, look at the largest

t∗j ≤ t∗. At this time there are at leastr+1 pebbles onΠ(j) and at least2s+4
2 − 1 = s+1 pebbles on

other pyramids, which means thatspace
(
Pt∗j

)
≥ (r + 2) + s. In other words,P exceeds the space

restrictions in Lemma 2.7. Contradiction.

2. At least half of allt∗j occur after timet∗, i.e., they satisfyt∗j > t∗. If we consider the smallestt∗j larger
thant∗ we can again conclude thatspace

(
Pt∗j

)
≥ (r + 1) + (s + 1), which is again a contradiction.

Hence, ifP is a pebbling that complies with the restrictions in Lemma 2.7, it can never be the case that
4s+ 4 pyramidsΠ(j) in Γ(c, r) contain pebbles simultaneously.

Proof of Lemma 6.9.Suppose that at some timet∗ ∈ (σ, τ) at least4s + 4 sections contain pebbles. At
least2s + 4 of these sections are empty at timesσ and τ . Let us denote these sectionsR1, . . . , R2s+4.
Appealing to Lemma 6.6, we conclude that there are intervals[σj, τj ] ⊆ [σ, τ ] for j = 1, . . . , 2s + 4, such
that t∗ ∈ (σj , τj) andRj is empty at timesσj andτj but contains pebbles throughout the interval(σj , τj)
during which it is completely pebbled.

By Lemma 6.8, we know that less than4s + 4 pyramids contain pebbles at timeσj and similarly at
time τj. Since allc pyramids inΓ(c, r) must have their sinks pebbled during(σj , τj) but it holds that
2 · (4s+ 4) < c by the assumptions in Lemma 2.7, we conclude from Lemma 6.7 that for every sectionRj

we can find some pyramidΠ(j) that is completely pebbled during the interval(σj , τj). This, in turn, implies
that there is some timet∗j ∈ (σj, τj) when the pyramidΠ(j) contains at leastBW-Peb∅

(
Π(j)

)
= r + 1

pebbles. (We note that manyt∗j can be equal and even refer to the same pyramid, but this is nota problem.)
As in the proof of Lemma 6.8, we now sort thet∗j , j = 1, . . . , 2s + 4, in increasing order and consider

the two possible cases. If at least half of allt∗j satisfyt∗j ≤ t∗, we look at the largestt∗j ≤ t∗. At this time

there are at leastr+1 pebbles onΠ(j) and at least2s+4
2 = s+2 pebbles on different sections, which means
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that space
(
Pt∗j

)
≥ r + s + 3 exceeds the space restrictions. If, on the other hand, at least half of all t∗j

satisfyt∗j > t∗, then for the smallestt∗j larger thant∗ we can again conclude thatspace
(
Pt∗j

)
≥ r + s+ 3,

which is a contradiction. The lemma follows.

As we discussed at the start of this section, Theorem 1.9 now follows by applying Observation 3.9 on
the single-sink version ofΓ(c, r).

As a final note, we remark that not only do our proofs get much more involved when going from the
black-only pebbling trade-off in [CS82] to our black-whitepebbling trade-off, but the added complications
also lead to our bound for black-white pebbling being slightly worse than the one in [CS82] for black
pebbling. More specifically, Carlson and Savage are able to prove their results for DAGs having onlyΘ(r)
sections per spine, whereas we needΘ(cr) sections inΓ(c, r). This blows up the number of vertices, which
in turn weakens the trade-offs measured in terms of graph size. It would be interesting to find out whether
our proof could in fact be made to work for graphs with onlyO(r) sections per spine. If so, this would
immediately improve the trade-offs for the graphs in Theorems 1.10, 6.4, and 6.5, as well as the resolution
trade-offs derived from these graphs in [BN09b].

7 Concluding Remarks

It is known that the black-white pebbling price is always a lower bound on the resolution space of refuting
pebbling contradictionsPebG[f] with respect to the “right” functionsf, as proven in [BN08]. Also, for all
graphs studied in this context so far there have been shown toexist refutations of the corresponding peb-
bling contradictions in space upper-bounded by the black-white pebbling price—trivially for graphs where
the black and black-white pebbling prices coincide, and more interestingly for the graphs in the current
paper where the black-white pebbling price is asymptotically smaller than the black pebbling price. This
naturally raises the question whether it holds in general that the refutation space of pebbling contradictions
is asymptotically equal to the black-white pebbling price of the underlying graphs.

Open Question 1.Is in true for any DAGGwith bounded vertex indegree and any (fixed) Boolean function f
that the pebbling contradictionPebG[f] can be refuted in total spaceO(BW-Peb(G))?

More specifically, one could ask—as a natural first line of attack if one wants to investigate whether
the answer to the above question could be yes—if it holds thatbounded labelled pebblings are in fact as
powerful as general black-white pebblings. In a sense, thisis asking whether only a very limited form of
nondeterminism is sufficient to realize the full potential of black-white pebbling.

Open Question 2. Does it hold that any complete black-white pebblingP of a single-sink DAGG with
bounded vertex indegree can be simulated by a(O(space(P)),O(1))-bounded pebblingL?

Note that a positive answer to this second question would immediately imply a positive answer to the
first question as well by Lemma 2.5.

We have no strong intuition either way regarding Open Question 1, but as to Open Question 2 it would
perhaps be somewhat surprising if bounded labelled pebblings turned out to be as strong as general black-
white pebblings. Interestingly, although the optimal black-white pebblings of the graphs in Lemma 1.7 can
be simulated by bounded pebblings, the same approach doesnot work for the original graphs separating
black-white from black-only pebbling in [Wil88]. Indeed, these latter graphs might be a candidate graph
family for answering Open Question 2 in the negative, i.e., showing that standard black-white pebblings can
be asymptotically stronger than bounded labelled pebblings.

Finally, we are intrigued by the question of whether the properties of the formulasPebG[f] shown to
hold in [BN08, BN09b] for “the right kind” of functionsf in fact extend to the simpler formulasPebG[∨]
defined in terms of non-exclusive or.
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Open Question 3. Is it true for any DAGG that any resolution refutationπ of PebG[∨] can be translated
into a black-white pebbling ofG with time and space upper-bounded asymptotically by the length and space
of π?

Earlier results in [Nor09, NH08b] can be interpreted as indicating that this should be the case, but the
results there only apply to limited classes of graphs and only capture space lower bounds, not time-space
trade-offs. And the papers [BN08, BN09b] do not shed any light on this question, as the techniques used
there inherently cannot work for formulas defined in terms ofnon-exclusive or.

If the answer to Open Question 3 is yes—which we would cautiously expect it to be—then this could be
useful for settling the complexity of decision problems forresolution proof space, i.e., the problem given a
CNF formulaF and a space bounds to determine whetherF has a resolution refutation in space at mosts.
Reducing from pebbling space by way of formulasPebG[∨] would avoid the blow-up of the gap between
upper and lower bounds on pebbling space that cause problemswhen using, for instance, exclusive or.
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