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Abstract

The last decade has seen a revival of interest in pebble gantles context of proof complexity.
Pebbling has proven to be a useful tool for studying resmiubiased proof systems when comparing the
strength of different subsystems, showing bounds on pqexdes, and establishing size-space trade-offs.
The typical approach has been to encode the pebble gamedpiaya graph as a CNF formula and
then argue that proofs of this formula must inherit (variaspects of) the pebbling properties of the
underlying graph. Unfortunately, the reductions used laeeenot tight. To simulate resolution proofs
by pebblings, the full strength of nondeterministic blackite pebbling is needed, whereas resolution is
only known to be able to simulate deterministic black pefpliTo obtain strong results, one therefore
needs to find specific graph families which either have esdbnthe same properties for black and
black-white pebbling (not at all true in general) or whichmadsimulations of black-white pebblings in
resolution.

This paper contributes to both these approaches. First,esigmn a restricted form of black-white
pebbling that can be simulated in resolution and show thertetlare graph families for which such
restricted pebblings can be asymptotically better thaokopeebblings. This proves that, perhaps some-
what unexpectedly, resolution can strictly beat blackyg@elbbling, and in particular that the space lower
bounds on pebbling formulas in [Ben-Sasson and Nordstt@d8Pare tight. Second, we present a ver-
satile parametrized graph family with essentially the sanoperties for black and black-white pebbling,
which gives sharp simultaneous trade-offs for black andibiahite pebbling for various parameter set-
tings. Both of our contributions have been instrumentalitaming the time-space trade-off results for
resolution-based proof systems in [Ben-Sasson and Nords2009].

1 Introduction

Pebbling is a tool for studying time-space relationshipsnisans of a game played on directed acyclic
graphs. This game models computations where the exectimidépendent of the input and can be per-
formed by straight-line programs. Each such program iséet@s a graph, and a pebble on a vertex in the
graph indicates that the corresponding value is currergpt in memory. The goal is to pebble the output
vertex of the graph with minimal number of pebbles (amourhemory) and steps (amount of time).
Pebble games were originally devised for studying progrargrianguages and compiler construction,
but have later found a broad range of applications in contipmia complexity theory. The pebble game
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model seems to have appeared for the first time (implicityfPH70], where it was used to study flowcharts
and recursive schemata, and it was later employed to modistee allocation[[Set75], and analyze the
relative power of time and space as Turing-machine reseyfeao74/ HPV /7). Moreover, pebbling has
been used to derive time-space trade-offs for algorithrarcepts such as linear recursion [CHd 73, $S83],
fast Fourier transform_[SSVI7, Toni78], matrix multiplicati[Tom78], and integer multiplication_[SS79].
An excellent survey of pebbling up to ca 1980Jis [Pip80], anche more recent developments are covered
in the author’s upcoming survey [Nor10a].

The pebbling priceof a directed acyclic grap&' in the black pebble game captures the memory space,
or number of registers, required to perform the determmEmputation described b¥. We will mainly
be interested in the the more genebtdck-white pebble gammodelling nondeterministic computation,
which was introduced i [CS¥6] and has been studied in [GKERBS,[LT80,LT82] Mey8[l, KS91, Wilg8]
and other papers.

Definition 1.1 (Pebble game).Let G be a directed acyclic graph (DAG) with a unique sink veriexhe
black-white pebble gamen G is the following one-player game. At any timewe have a configuration
P, = (B¢, W) of black pebblesB, and white pebble$V; on the vertices of7, at most one pebble per
vertex. The rules of the game are as follows:

1. If all immediate predecessors of an empty vertexave pebbles on them, a black pebble may be
placed orw. In particular, a black pebble can always be placed on a sagxtex.

2. A black pebble may be removed from any vertex at any time.
3. A white pebble may be placed on any empty vertex at any time.

4. If allimmediate predecessors of a white-pebbled verteave pebbles on them, the white pebbleon
may be removed. In particular, a white pebble can alwaysim@ved from a source vertex.

A (complete) black-white pebbling ¢f, also called gpebbling strategy foi, is a sequence of pebble
configurationsP = {Py, ..., P} such thatP, = (0,0), P = ({z},0), and for allt € [r], P, follows from
P,_, by one of the rules above. Thiene of a pebblingP = {Py,...,P.} is simplytime(P) = 7 and the
spaceis space(P) = maxo<i<-{|B: U W;|}. Theblack-white pebbling pricéalso known as thpebbling
measureor pebbling numbérof G, denotedBW-Peb(G), is the minimum space of any complete pebbling
of G.

A black pebblingis a pebbling using black pebbles only, i.e., havihg = () for all t. The (black)
pebbling priceof GG, denotedPeb(G), is the minimum space of any complete black pebblingrof

In the last decade, there has been renewed interest in pghbblihe context of proof complexiE/.A
(non-exhaustive) list of proof complexity papers usinglgily in one way or another is [AJPUC7, BEGIO0O,
BIPS10, Ben09 BIW04, BN0O&, BNO9a, BNUSh, BW(OT, EGMD4, ETNBET03,[HUOY [ Nor09, NHO8b,
SBKO0O4]. The way pebbling results have been used in proof éaxiip has mainly been by studying so-
calledpebbling contradictiongalso known agpebbling formulasr pebbling tautologies These are CNF
formulas encoding the pebble game played on a ABy postulating the sources to be true and the sink
to be false, and specifying that truth propagates througlgthph according to the pebbling rules. The idea
to use such formulas seems to have appeared for the firsttifi@z /4], and they were also studied in
[RM99,[BEGJOD] before being explicitly defined [n [BWO1].

Definition 1.2 (Pebbling contradiction). Suppose thafs is a DAG with sourcesS and a unigue sink.
Identify every vertexo € V(G) with a propositional logic variable. The pebbling contradictiorover G,
denotedPeb, is the conjunction of the following clauses:

"We remark that the pebble game studied in this paper shotilbenconfused with the (very differergxistential pebble games
that have also been used in proof complexity, for instancthe papers [Ats04. ADO8. AKVOL, BGD3. GT05].
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(c) Substitution pebbling contradiction Peby, [V2] with respect to binary logical or.

Figure 1: Example of pebbling contradiction with substitution for the pyramid graph IIs.
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For any nonconstant Boolean functigip : {0,1}? — {0,1}, the substitution pebbling contradiction with
respect tof,; is the CNF formulaPeb ;| f4] obtained by substitutingy(x1, . .. , z4) for every variabler and
expanding the result to conjunctive normal form in the cacedrway.

If the graphG hasn vertices and maximal indegrée Peb;[f,] is easily verified to be an unsatisfiable
formula overdn variables with less tha2f‘*1) . », clauses of size at modt/+1). An example illustrating
Definition[I.2 is given in FigurEl 1.

Given any black-only pebblin@ of G, it is straightforward to simulate this pebbling in res@atto
refute the corresponding pebbling contradicti®eb,[f;] in IengthO(time(P)) and spac® (space(P)).
This was perhaps first noted in_[BI\W04] for the simgteb, formulas, but the simulation extends readily
to any formulaPeb[f,], with the constants hidden in the asymptotic notation dejpenon f,; and the
maximal indegree of7. In the other direction, it was recently shown In_[BND9bJrésigthening results
in [BNOS]) that if f; has the right properties—for instance, if it is the exclasiv function or the threshold
function evaluating to true ik out of d variables are true for < k < d—then any resolution refutation
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Figure 2: Black and white pebbles and (intuitively) corresponding sets of clauses.

of Peb[f4] can be translated into a black-white pebblingéofvith time and space upper-bounded by the
length and space of, respectively (adjusted for small multiplicative constadepending on the maximal
indegree of7).

There is an obvious gap in these reductions between pebdtidgesolution. To interpret a resolution
refutation of a pebbling contradiction in terms of a pebyliof the underlying graph, the full power of
black-white pebbling is needed to make the reduction wofkve want to translate pebblings of graphs
into refutations of the corresponding pebbling contradict, however, we only know how to do this for the
weaker black pebble game.

To see why resolution has a hard time simulating black-wpébblings, let us start by discussing a
black-only pebblingP. We can easily mimic such a pebbling in a resolution refatatf Peb,[fs] by
deriving thatf,(v1,...,vq) is true whenever the corresponding veriein G is black-pebbled. We end
up deriving thatfy(z1, ..., 2z4) is true for the sinkz, at which point we can download the sink axioms and
derive a contradiction. The intuition behind this trarisiiatis that a black pebble anmeans that we know,
which in resolution translates into truth of In the pebble game, having a white pebblevdnstead means
that we need to assume By duality, we let this correspond to falsity ofin resolution. Focusing on the
pyramid Il and pebbling contradictio®ebyy, [V2] in Figure[l, our intuitive understanding then becomes
that white pebbles om andy and a black pebble onshould correspond to the set of clauses

{Zivy;VaVve|ij=1,2} (1.1)

which indeed encode that assumingV xz2 andy; V y2, we can deduce; V z;. See Figur¢ 2(R) for an
illustration of this.

If we now place white pebbles anandu, this allows us to remove the white pebble framRephrasing
this in terms of resolution, we can say thafollows if we assume: andwv, which is encoded as the set of
clauses

{Uﬂ/@-\/wl\/wg |i,j =1,2} (1.2)

(see Figurg¢ Z2(b)), and indeed, from the clauseBE1d (1.1)[A& (e can derive in resolution thais black-
pebbled and:, v andy are white pebbled, i.e., the set of clauses

{ﬂi\/ﬁj\/gk\/zl\/,@|i,j,k7:1,2} (1.3)

(see Figurg¢ 2(t)). This toy example indicates one of thelprob one runs into when one tries to simulate
black-white pebbling in resolution: as the number of whigblples grows, there is an exponential blow-up
in the number of clauses. The clause seflnl(1.3) is twice iteedf those in[(T11) and(1.2), although it
corresponds to only one more white pebble. This suggestsatha pebbling starts to make heavy use of
white pebbles, a resolution refutation will not be able tomniai such a pebbling in a length- and space-
preserving manner.



1 Introduction

This leads to the thought that perhaps black pebbling pesvitbt only upper but also lower bounds on
resolution refutations of pebbling contradictions. Thisuld be consistent with what has been known so far.
For all pebbling contradictions with proven space lowerrms) the underlying graphs have asymptotically
the same black and black-white pebbling price, and hend¢@maln lower bounds can be expressed in terms
of black pebbling. There have been no examples of pebblingadictions where resolution can do strictly
better than black pebbling and tightly match smaller bowrdspace in terms of black-white pebbling.

1.1 Our Results

Our first set of results is that resolution can in fact be gyribetter than black-only pebbling, both for
time-space trade-offs and with respect to space in abstdutes. We prove this by designing a limited
version of black-white pebbling, where we explicitly résttrthe amount of nondeterminism, i.e., white
pebbles, a pebbling strategy can use. Such restrictedipghise “few white pebbles per black pebble” (in
a sense that will be made formal below), and can thereforénbalated in a time- and space-preserving
manner by resolution, avoiding the exponential blow-up giscussed. We then show that for all known
separation results in the pebbling literature where blabke pebbling does asymptotically better than
black-only pebbling, there are graphs exhibiting thesasgmns for which optimal black-white pebblings
can be carried out in our limited version of the game. Thismsdhat resolution refutations of pebbling
contradictions over such DAGs can do strictly asymptadfjchétter than what is suggested by black-only
pebbling, matching the lower bounds in terms of (generagislwhite pebbling.

More precisely, we obtain such results for three familiegrabhg The first family are théit reversal
graphsstudied by Lengauer and Tarjan_[L182], for which black-whitebbling has quadratically better
trade-offs than black pebbling. (We refer to Secfibn 3 fofamal notation and definitions used below.)

Lemma 1.3 ((LT82]). There are DAGYG,, }° , of size©(n) with black pebbling pricdPeb(G,,) = 3
such that any optimal black pebblirig, of G,, exhibits a trade-offime(P,,) = ©(n?/space(P,) +n) but
optimal black-white pebbling®,, of G,, achieve a trade-offime(P,,) = ©((n/space(P,))? + n).

Theorem 1.4. Fix any non-constant Boolean functignand let Peb, [f] be pebbling contradictions over
the graphs in Lemm@.3. Then for any monotonically nondesang functions(n) = O(y/n) there are
resolution refutationsr,, of Peb; [f] in total spaceO(s(n)) and lengthO((n/s(n))?), beating the lower
boundQ2(n?/s(n)) for black-only pebblings of,,.

Focusing next on absolute bounds on space rather than fiaoe$rade-offs, the best known separation
between black and black-white pebbling for polynomiaksizaphs is the one shown by Wilber [Wil88].

Lemma 1.5 ((Wil88]). There are DAGYG(s)}52, of size polynomial iz with black-white pebbling price
BW-Peb(G(s)) = O(s) and black pebbling priceb(G(s)) = Q(slog s/ loglog s).

For pebbling formulas over these graphs wendbknow how to beat the black pebbling space bound—
we return to this somewhat intriguing problem in Secfibn T#sing instead graphs in [KS91] exhibiting
the same pebbling properties, we can obtain the desirelt.resu

Theorem 1.6. Fix any non-constant Boolean functigrand IetPebG(s) [f] be pebbling contradictions over
the graphsG(s) in [KS91] with pebbling properties as in Lemipall.5. Thendheme resolution refutations
T, Of Peby [f] in total spaceO(s), beating the lower bounf (s log s/ log log s) for black-only pebbling.

If we remove all restriction on graph size, there is a quadrsgparation of black and black-white
pebbling established by Kalyanasundaram and Schn[tge®1KS

2All graphs discussed in this paper are explicitly consthletand have bounded vertex indegree. Also, unless otherstated
they have a single, unique sink. We do not repeat this in tiredbstatements here in order not to clutter the text unrsacig
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Lemma 1.7 ((KS91]). There are DAGYG(s)}22, of sizeexp(O(slogs)) such thatBW-Peb(G(s)) <
3s + 1 butPeb(G(s)) > s2.

For pebbling formulas over these graphs, resolution agaitcimes the black-white pebbling bounds.

Theorem 1.8. Fix any non-constant Boolean functigrand IetPebG(s) [f] be pebbling contradictions over
the graphsGi(s) in LemmdLl7. Then there are resolution refutatiansof Peb, ) [f] in total spaceO(s),

beating the lower boun€(s?) for black-only pebbling.

In particular, Theorenis1l.6 ahdll.8 show that the lower baumgploof space for pebbling contradictions
in terms of black-white pebbling price ih [BNO8] is tight (tip constant factors).

Turning to our second set of results, we first note that iresgfithe theorems above, for general pebbling
formulas we still do not know of any way of simulating blackite pebbling in resolution. Instead, we are
limited to deriving upper bounds from black-only pebblingsile lower bounds have to be obtained in terms
of black-white pebblings. At first sight, this might not loto bad since the space gap between the two can
be at most quadratic, as shown by Meyer auf der Héide [Meydjvever, the translation given in [Mey81]
of a black-white pebbling in spaceto a black pebbling in spade (32) incurs an exponential blow-up in
pebbling time, destroying all hope of obtaining nontriiahe-space trade-off results for resolution in this
way. Hence, to get meaningful trade-offs for pebbling folasuve need graph families with strodgal
trade-offs for black and black-white pebbling simultarggu In this paper, we present such a family of
graphs, building on and strengthening previous work bysearand Savage [CS80, C$82].

Theorem 1.9. There is an explicitly constructible two-parameter graphnflyT'(c, ), for ¢, € N*, having
unique sink, vertex indegre® and sized (cr® + ¢3r?), and satisfying the following properties:

1. I'(c,r) has black-white pebbling pricBW-Peb(T'(¢,r)) = r + O(1) and black pebbling price
Peb(I'(¢, 7)) = 2r + O(1).

2. There is a black-only pebbling Bfc, ) in time linear in the graph size and in spaGc + r).

3. Suppose thaP is a black-white pebbling df (c, ) with space(P) < r + sfor0 < s < ¢/8. Then

time(P) > ()7 - r!.

The graph family in Theorefi_1.9 turns out to be surprisingdysatile. For instance, we can use it to
prove among other things the rather striking statementftinany arbitrarily slowly growingnon-constant
function, there are explicit graphs of such (arbitrarilyadinpebbling space complexity that nevertheless
exhibit superpolynomiatime-space trade-offs for black and black-white pebblimguétaneously.

Theorem 1.10. Let g(n) be any arbitrarily slowly growing monotone functions(1) = g(n) = O(nY/7),
and lete > 0 be an arbitrarily small positive constant. Then there is eily of explicitly constructible
single-sink DAGY G, }o° , of size©(n) such that the following holds:

1. The graph’,, has black-white pebbling pric@W-Peb(G) = g(n) + O(1) and black pebbling price
Peb(G) =2-g(n) + O(1).

2. There is a complete black pebbliffpf G,, withtime(P) = O(n) andspace(P) = O < V n/gQ(n)>

3. Any complete black-white pebbling Gf, in space at mos(n/gz(n))l/g_e requires pebbling time
superpolynomial im.
More examples of interesting trade-offs that can be obthfr@m the graphs in Theorem 1.9 are given
in Sectior6.

®Note that we also assumgén) = O(n1/7), i.e., thatg(n) does not grow to fast. This s just a simplifying technicalasption.
If we allow the minimal space to grow as fastsfor somee > 0, then it is easy to use our graph family with other parameter
settings to obtain even stronger results. Hence, the sttegeaspect here is tha{n) is allowed to grow arbitrarily slowly.
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2 Outline of Constructions and Proofs

1.2 Organization of This Paper

In Section2 we outline the main ideas behind our results, @extion[B provides all the necessary pre-
liminaries for the formal proofs of these results given ia tiest of the paper. Sectibh 4 proves our claims
about the limited type of black-white pebblings that can ineutated by resolution, and in Sectibh 5 we
show that there are such limited pebblings for some intieigsfraph families. In Sectidd 6, we discuss the
graphs exhibiting our new pebbling trade-off results, dmusshow different parameter settings yield strong
dual time-space trade-offs with upper bounds for black pe@land matching lower bounds for black-white
pebbling. We conclude in Secti@h 7 by discussing some rentpopen problems.

2 Outline of Constructions and Proofs

We will need to set up a fair amount of technical machinerpleive can give the full, formal proofs of our
results. In order not to obscure unnecessarily what aresieneg reasonably straightforward arguments, in
this section we try to give an overview of the main ideas, pmsing the technicalities for later.

2.1 Limited Black-White Pebblings That Can Be Simulated by Resolution

Let us start by discussing the tools used to establish Thesifie4 [T.b, anf1l8. The idea is to design a
version of the black-white pebble game that is tailor-mamtedsolution. This game is essentially just a for-
malization of the naive resolution simulation sketchedéct®n[1, but before stating the formal definitions,
let us try to provide some intuition why the rules of this neawrge look the way they do.

First, if we want a game that can be mimicked by resolutioanthlacements of isolated white vertices
do not make much sense. What a resolution derivation cantdadi@wnload axiom clauses, and intuitively
this corresponds to placing a black pebble on a vertex tegetiith white pebbles on its immediate pre-
decessors, if it has any. Therefore, we adopt such aggregates as the only admissible way of placing
new pebbles. For instance, looking at the graigtand pebbling contradictiofebyy, [V] in Figurell again,
placing a black pebble onand white pebbles om andy corresponds to downloading the axiom clauses
in (@0).

Second, note that if we have a black pebblezanith white pebbles on: andy corresponding to the
clauses in[{1]1) and a black pebblexowith white pebbles om andwv corresponding to the clausesinf1.2),
we can derive the clauses n{ll.3) corresponding bdack-pebbled and, v andy white-pebbled but no
pebble one. This suggests that a natural rule for white pebble remawvhldat a white pebble can be removed
from a vertex if a black pebble is placed that same vertefand not on its immediate predecessors).

Third, if we then just erase all clauses in{1.3), this cqroesls to all pebbles disappearing. On the face
of it, this is very much unlike the rule for white pebble rerabin the standard pebble game, where it is
absolutely crucial that a white pebble can only be removeents predecessors are pebbled. However, the
important point here is that not only do the white pebbleagliear—the black pebble that has been placed
on z with the help of these white pebbles disappears as well. Wigmeans is that we cannot treat black
and white pebbles in isolation, but we have to keep track oe&xh black pebble which white pebbles it
depends on, and make sure that the black pebble also is eéfasgdof the white pebbles supporting it is
erased. The way we do this is to label each black pebkléh its supporting white pebbldd’, and define
the pebble game in terms of moves of such labgtielble subconfigurations(\V').

Definition 2.1 (Pebble subconfiguration).For v a vertex andV a set of vertices, we say tha{lV) is a
pebble subconfiguratiowith a black pebble om supported by white pebbles &#i. The black pebble on
v is said to bedependenbn the white pebbles in itsupportiW. We refer tov((})) as anindependent black
pebble



ON THE RELATIVE STRENGTH OF PEBBLING AND RESOLUTION

Our next definition now formalizes the informal descriptiohour new pebble game. We remark that
this definition is quite similar to the pebble game definedNor09], and that we have borrowed freely from
notation and terminology there.

Definition 2.2 (Labelled pebbling). For G any DAG with unique sinkz, a (complete)abelled pebbling
of G isasequencé€ = {Ly,...,L.} of labelled pebble configurations such that= 0, L, = {z(0)}, and
for all t € [7] it holds thatl; can be obtained frorh;_; by one of the following rules:

Introduction L; = L;—; U {v(pred(v))}, wherepred(v) is the set of immediate predecessors of
Erasure Ly = L;—; \ {v(V)} forv(V) € L;_;.

Merger Ly =Li—1 U {v((VUW)\ {w})} for o(V),w(W) € L;—; with w € V. We denote this subcon-
figurationmerge(v(V'), w(WW)), and refer to it as anerger onw.

Let BI(L;) = U{v|v(W) € L,} denote the set of all black-pebbled verticesLinand Wh(L;) =
U{W | (W) € L;} the set of all white-pebbled vertices. Then the space of bellid pebblingl
{Lo,...,L;}ismaxpes{|BI(L) U Wh(L)|} and the time of_ istime(L) = .

Figured2(d) and Z(p) are both examples of subconfiguratemsting from introduction moves, and if
we merge the two we get the subconfiguration in Fifiurg 2(c).

The game in Definitiol2]12 might look quite different from thiandard black-white pebble game, but
it is not hard to show that labelled pebblings are esseytjadit a restricted form of black-white pebblings.
(The proof of this is deferred to Sectibh 4.)

Lemma 2.3. If G is a single-sink DAG and is a complete labelled pebbling 6f, then there is a complete
black-white pebblingP; of G with time(P.) < stime(L) andspace(P.) < space(L).

However, the definition of space of labelled pebblings da#ssaem quite right from the point of view
of resolution. Not only does the space measure fail to capgtue exponential blow-up in the number of
white pebbles discussed above. We also have the problerif tmet white pebble is used to support many
different black pebbles, then in a resolution refutationidating such a pebbling we have to pay multiple
times for this single white pebble, once for every black pelspported by it. To get something that can be
simulated by resolution, we therefore need to restrictabelled pebble game even further.

Definition 2.4 (Bounded labelled pebblings) An (m, .S)-bounded labelled pebbling a labelled pebbling
L = {Lo,...,L;} such that every., contains at most: pebble subconfigurationg/) and everyv (V)
has white support siZéV’| < S.

Observe that boundedness automatically implies low spag®iexity, since ar{m, S)-bounded peb-
bling £ clearly satisfiespace(£) < m(S + 1). And using the concept of bounded labelled pebblings, we
can show that if there is such a pebbling of a gréghthen this pebbling can be used as a template for a
resolution refutation of any pebbling contradicti®ab . [f]. (We again refer to Sectidn 4 for the proof.)

Lemma 2.5. Suppose that is any completdm, S)-bounded pebbling of a grap&y' and that f is any
nonconstant Boolean function of arity Then there is a resolution refutation: of the formulaPeb;[f]

in simultaneous lengtti () = time(L) - exp(O(dS)) and total spacelvtSp(mz) = m - exp(O(dS)).

In particular, fixing f it holds that resolution can simulaten, O(1))-bounded pebblings in a time- and
space-preserving manner.

The whole problem thus boils down to the question whetherethee graphs with (a) asymptotically
different properties for black and black-white pebbling fehich (b) optimal black-white pebblings can be
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2 Outline of Constructions and Proofs

@"@
Figure 3: Base case for Carlson-Savage graph with 3 spines and sinks.

carried out in the bounded labelled pebbling framework. @hswer to this question turns out to be yes,
and the space upper bounds for the pebbling contradictiod$eorem$_T14, 1.6, aid1L..8 are all proven
by exhibiting bounded labelled pebblings for the correslog graphs. The details concerning how these
graphs are constructed, as well as how they are pebbledpmendat intricate, however, and are therefore
presented separately in Sectidn 5.

2.2 A Graph Family with Tight Trade-offs for Black and Black-White Pebbling

Let us next outline the proof of our graph pebbling tradereffults in Theoreri 11.9. We remark that in
what follows, we will discuss a slightly different settindvare graphs may have multiple sinks, not just one,
and where we only require that a pebblivigits every sink once, touching it with a black or white pebble,
instead of leaving a black pebble on the sink until the endhefgebbling. It is straightforward to translate
results for such pebblings back to the setting in Thedrein($&8e Sectiohl3 for the technical details.)

Our graph family is built on a construction by Carlson andég@|CS80, CS82]. Carlson and Savage
only prove their trade-off for black pebbling, however, ahe extension of their results to black-white
pebbling requires changing the construction and doing &iw@l amount of extra work (as is usually the
case when one wants to lift a black pebbling result to blabktevpebbling). The formal definition of the
family of graphs, which we will refer to aSarlson-Savage graphss probably easier to parse if the reader
first studies the illustrations in FigurEs 3 did 4.

Definition 2.6 (Carlson-Savage graphs)The two-parameter graph family(c, r), for ¢, € N*, is defined

by induction over. The base casi(c, 1) is a DAG consisting of two sources, s2 andc sinks~1, ..., 7.
with directed edges$s;,v;), for: = 1,2 andj = 1,...,¢, i.e., edges from both sources to all sinks. The
graphI'(c,r + 1) hasc sinks and is built from the following components:

e cdisjoint copiesl‘[g), e ,ch) of a pyramid gra;ﬂof height2r with sinkszq, ..., z..

T

e one copy of'(¢, r), for which we denote the sinks by, . . ., ..

e cdisjoint and identicaspineswhere each spine is composedntectionsand every section contains
2c vertices. We let the vertices in tlith section of a spine be denotefl],, ..., v[i],,.

The edges in'(c,r + 1) are as follows:

¢ All “internal edges” inHS}, . ,Hg;) andI'(c,r) are present also ifi(c, r + 1).
e For each spine, there are eddesi];, v[i;, ) forall j = 1,...,2¢ — 1 within each section and
edges(v[i],,, v[i + 1], ) from the end of a section to the beginning of nextfer 1,...,cr — 1, i.e,,

for all sections but the final one, whergr|, is a sink.

» For each sectionin each spine, there are eddes, v[i] ;) from the jth pyramid sink to thgth vertex
in the section forj = 1,...,¢, as well as edge$y;, v[i]., ;) from the jth sink inT'(c, ) to the
(c + j)th vertex in the section fof = 1,...,c.






2 Outline of Constructions and Proofs

Let us focus on the trade-off lower bound in ddrt 3 of Thedte® Which is the hard part to prove, and
let us start by trying to provide some intuition why this bdwshould hold. For simplicity, consider first
black-only pebblings. Assume inductively that dart 3 of @feen[L.® has been proven fBfc,r — 1) and
considerT’(c, ). Any pebbling strategy for this DAG will have to pebble thgbuall sections in all spines.
Consider the first section anywhere, let us say on spitteat has been completely pebbled, i.e., there have
been pebbles placed on and removed from all vertices in tlimeeLet us say that this happens at time

But this means thdf (¢, — 1) and all pyramidﬂél(l_l), e ,Héc(l_l must have been completely pebbled
during this part of the pebbling as well. Fix any pyramid aotsider some point in time; < 7, when
there are at least+ 1 pebbles on its vertices, which must happen because of kneblolipg lower bounds

for pyramids [Coo74, Kla85]. At this point, the rest of theagh must contain very few pebbles (thinksof
here as being very small). In particular, there are very felbtes on the subgragh(c,» — 1) at timeo,

so for all practical purposes we can thinkltfc, » — 1) as being essentially empty of pebbles.

Consider now the next section in the spih¢hat is completed, say, at timg > 71. Again, we can
argue that some pyramid is completely pebbled in the timexvat [, 2], and thus has + 1 pebbles on it
at some timery > 71 > o;. This means thdf(c,» — 1) is essentially empty of pebbles at time as well.

But note that all sinks in the subgrapfic, » — 1) must have been pebbled in the time interjval, o2}, and
since we know thal'(c,r — 1) is (almost) empty at times; andos, this allows us to apply the induction
hypothesis. Sinc@ has to pebble through a lot of sections in different spinesyill be able to repeat the
above argument many times and apply the induction hypathoedi'(c, » — 1) each time. Adding up all the
lower bounds obtained in this way, the induction step goesutih.

This is the spirit of the proof of the black-only pebblingdeaoff in [CS82]. When we instead want
to deal with black-white pebblings, things get much more glicated. Black pebblings must by necessity
pebble through a graph in a bottom-up fashion, and it is fbezestraightforward to measure “how far” a
black pebbling has progressed. A black-white pebbling,dv@r can place and remove pebbles anywhere
in the DAG at any time. Therefore, it is more difficult to casitthe progress of a black-white pebbling, and
one has to use different ideas and work harder in the proof.

We establish palffl3 of Theoreln 1.9 by proving a slightly siemnlemma, dealing witltonditional
pebblings that start with some pebbles already presentegriiph, and can also leave some pebbles on
the graph at the end of the pebbling. A crucial ingredienthm proof is that we assume below (without
loss of generality) that all pebblings afieigal, meaning that no obviously redundant pebble placements
are made, but that all pebbles placed on the graph are usddct gther black pebbles on successors or
to remove white pebbles from successors. (Again, we ref8etdiorB for a more thorough discussion of
these pebbling technicalities.)

Lemma 2.7. Suppose thaP = {P,,...,P;} is a conditional black-white pebbling dr(c, r) such that
1. max{space(P,),space(P;)} < sfor0 < s <c¢/8—1.
2. P pebbles all sinks ift'(c, ) during the time intervalo, 7].

3. space(P) <r+s+2.

Then it holds thatime(P) =7 — o > (525)" - r!.

To establish this result we will need the following four taal lemmas, the proofs of which are post-
poned to Sectiofl6. LemmBSR.8 2.9 are easy, but LemnfhardlZ.TIl are somewhat less immediate
and provide the key to the proof.

“The formal definition will be given later in Definitidi 3.4, bas an example the graph in Fig{ire 1.(a) is a pyramid of héight
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ON THE RELATIVE STRENGTH OF PEBBLING AND RESOLUTION

Lemma 2.8. Suppose is a vertex with a patld) to some sink such that all vertices@hhave outdegreé.
Then any frugal black-white pebbling pebblegxactly once, and the path contains pebbles during one
contiguous time interval.

Lemma 2.9. Let H be a subgraph off such that the only edges betwdé(H ) andV (G) \ V (H) emanate
from the unique sink;, of H. Suppose thaP is a complete pebbling @ such thatH is completely empty
of pebbles at some time but at least one vertex dff has been pebbled during the time intery@l'].
ThenP must have pebbleff completely during the interval, 7'].

Lemma 2.10. At all times during a pebbling df(c, r) as in Lemm&2]7, strictly less thafs + 1) pyramids

Hg) contain pebbles simultaneously.

T

Lemma 2.11. At all times during a pebbling df (¢, ) as in Lemm&Z]7, strictly less thalts + 1) spine
sections contain pebbles simultaneously.

Proof of Lemm&Z]7Let P = {P,,...,P,} be a pebbling as in the statement of the lemma. We show that
time(P) > T(c,r,s) = (25)" - ! by induction over.

Forr = 1, the assumptions in the lemma imply that more than2s sinks are empty at timesandr.
These sinks must be pebbled, which trivially requires #yrimore than: — 2s > ($2%) = T'(c, 1, s) time
steps.

Assume that the lemma holds fb(c,» — 1) and consider any pebbling df(c, ). Less tharks spines
contain pebbles at time or time 7. All the other strictly more than— 2s spines are empty at timesandr
but must be completely pebbled durifig 7] since their sinks are pebbled during this time interval.i§Th
can be more formally argued by using LemimaB.12.)

Consider the first time’ when any spine gets a pebble for the first time. Let us den@&epine byQ’.

By LemmaZB we know thaf)’ contains pebbles during a contiguous time interval unis itompletely
pebbled and emptied at, say, time During this whole intervalo’, 7'] less thanis + 4 sections contain
pebbles at any one given time by Lemma®?.11, so in particeks thents + 4 spines contain pebbles.
Moreover, Lemm&Z2]8 says that every spine containing pebhiléremain pebbled until completed. What
this means is that if we order the spines with respect to the Wwhen they first receive a pebble in groups
of size4s + 4, no spine in the second group can be pebbled until the atdeasspine in the first group has
been completed.

We observe that this divides the spines that are empty atdbiming and end oP into strictly more
than Zs‘fj groups. Furthermore, we claim that completely pebbling guee empty spine requires at least
r-T(c,r — 1, s) time steps. Given this claim we are done, since it follows the total pebbling time must
then be lower-bounded b%ﬁr -T(c,r—1,s) = T(c,r,s). Thisis so since at least one spine from each
group is pebbled in a time interval totally disjoint from tti@e intervals for all spines in the next group.

It remains to establish the claim. To this end, fix any sgffeempty at times* andr* but completely
pebbled injc*, 7*]. Consider the first time; € [0*, 7*] when any section idQ)*, let us denote it by?;, has
been completely pebbled (i.e., all vertices has been tallsh@ebbles but are now empty again). During the
time interval[o*, 7] all pyramid sinkszy, . .., z. must be pebbled (since they are immediate predecessors).
Since less than - (4s + 4) < ¢ pyramids contain pebbles at time$ or r; (LemmalZ1D), at least one
pyramid is pebbled completely (LemMal2.9), which requires1 pebbles. Moreover, there is at least one
pebble on the sectioR; during this whole interval. Hence, there must exist a pairtime o, € [0, 7]
when there are strictly less th@n+ 2) + s — (r + 1) — 1 = s pebbles on the subgragtic,» — 1). Also,
at this timeo less thanis + 4 sections contain pebbles (Lemina=2.11), and in particuiarrtieans that
there are pebbles on less than+ 3 other section of our spin@*. This puts an upper bound on the number
of sections ofQ* that can have been touched by pebbles this far, since eveligrsés completely pebbled
during a contiguous time interval before being emptiedmgaid we chose to focus on the first sectidn
in Q* that was finished.
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Look now at the first sectio®, in Q* other than the less tha#s + 4 sections containing pebbles at
time o, that is completely pebbled, and let the time whnis finished be denoted, (clearly, 5 > 7).
During [o1, 72| all sinks ofI'(c, » — 1) must have been pebbled, and at time- 1 less thants + 3 other
section inQ* contain pebbles.

Finally, consider the first new sectidRs in our spine@* to be completely pebbled among those not
yet touched at time» — 1. Suppose thaR; is finished at timers. Then during[r, 73] some pyramid is
completely pebbled, and thus there is some time (72, 73) when there are at least- 1 pebbles on this
pyramid and at least one pebble on the sg)ieleaving less thar pebbles fol'(c,» — 1). But this means
that we can apply the induction hypothesis on the intepralos] and deduce thats — oy > T'(c,r — 1, s).
Note also that at times less thar8s 4+ 8 < ¢ sections inQ* have been finished.

Continuing in this way, for every group &s + 8 < ¢ finished sections in the sping* we get one
pebbling of'(¢,~ — 1) in space less than + s + 1 and with less thars pebbles in the start and end
configurations, which allows us to apply the induction hyjesis a total number of at leagt > r times.
(Just to argue that we get the constants right, note8hat 8 < ¢ implies that after the final pebbling of
the sinks ofl'(c,» — 1) has been done, there is still some empty section lef2'inWhen this final section
is taken care of, we will again get at least- 1 pebbles on some pyramid while at least one pebble resides
on @*, so we get the space di{c,r — 1) down belows as is needed for the induction hypothesis.)

This proves our claim that pebbling one spine takes timeaatte- T'(c,r — 1,s). LemmalZl now
follows. O

3 Preliminaries

In this section, we collect all the basic definitions andgagé need about resolution and pebbling.

3.1 The Resolution Proof System

A literal is either a propositional logic variable or its negationpnatedz andz, respectively. Aclause
C =a1V---Vaygis asetof literals. A clause containing at méditerals is called &-clause A CNF
formulaF = Cy A --- A Cyy, is a set of clauses. A-CNF formulais a CNF formula consisting df-clauses.
We say thatt” impliesC, denotedF' F C, if any truth value assignment satisfyidgmust also satisfy’.

When we want to study length and space simultaneously, tleeving definition of the resolution proof
system is very convenient.

Definition 3.1 (Resolution ([ABRWO0Z2])). A sequence otlause configurationgsets of clausesy =
{Cy,...,C,} is aresolution refutationof a CNF formulaf' if Cy = 0, C, contains the contradictory
empty claus® without any literals, and for al € [7], C; is obtained fromC;_; by one of the following
rules:

Axiom Download C; = C;_; U {C'} for someC € F (anaxiomclause).
Erasure C; = C;—1 \ {C} for someC € C;_;.

Inference C; = C;_; U {D} for someD inferred fromC,,Cy € C;_; by theresolution rule i.e., D =
Cy U Cy \ {z, 7} for some variabler such thatr € Cy andz € Cs.

Definition 3.2 (Length and space).The length L(r) of a resolution derivatiorr is the total number of

axiom downloads and inferences maderin.e., the total number of clauses counted with repetitions
Theclause spacé&p(C) of a clause configuratio@ is |C|, i.e., the number of clauses @ and thetotal

spaceTotSp(C) is Y .c|C], i.e., the total number of literals i@ counted with repetitions. The clause
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space (total space) of a derivatianis the maximal clause space (total space) of any clause coafign
Cem.

Taking the minimum over all refutations of a formulg we defineL(F F 0) = min,.po{L(7)},
Sp(F +0) = ming.pro{Sp(m)}, and TotSp (F + 0) = min,.p o{ TotSp(w)} as the length, clause space,
and total space of refuting' in resolution, respectively.

It is sometimes technically convenient to addeakeningule to Definition[3.]L, allowing a resolution
derivation to derive a weaker claugg 2 C from C. We can allow or disallow this rule as we see fit, since
any such weakening steps can always be eliminated withotgasing the length or space of a refutation.
In particular, the following upper bounds on resolutiongdnand space are cleaner to state if we assume
that weakening can be used.

Proposition 3.3. SupposéC is a set of clauses and is a clause, both over a set of variables of siz& hen
C E C'if and only if there exists a resolution derivation@ffrom C. Furthermore, ifC can be derived from
C then it can be derived in length at m@t™' — 1 and total space at mosi(n -+ 2) simultaneously.

The proof of this proposition is standard and can be fountbirinstance,[[BNO9b].

3.2 Graph Terminology and Notation

We write G to denote a graph with verticd$(G) and edged2(G). All graphs in this paper are directed
unless otherwise stated, afd v) denotes a directed edge framo v.

We let succ(v) denote the immediate successors andl(v) denote the immediate predecessors of a
vertexv in G. We say that vertices af with indegree) aresourcesand that vertices with outdegr@eare
sinks (In the literature, sources are also referred tmpatsand sinks agsargetsor outputg. In the notation
just introduced, a source vertexn G is a vertex withpred(s) = (), and for a sink: we havesucc(z) = 0.
We will write S(G) to denote the source vertices@fand Z (G) to denote the sink vertices. For brevity, we
will sometimes refer to a DAG with a unique sink asiagle-sink DAG

Some more notational conventions are that the paramemotes the maximal indegree of a DAG, and
that when not stated otherwise,will denote the size, i.e., the number of vertices, of a DAG {fomore
convenient, the size to within a small constant factor). Witew) : v ~~ w to denote a patly starting at
the vertexv and ending at the vertax.

Thepyramid graphsalready mentioned several times in this paper are formaifyndd as follows.

Definition 3.4 (Pyramid graph). The pyramid graphll;, of heighth is a layered DAG withh + 1 levels,
where there is one vertex on the highest level (the s)hkwo vertices on the next level et cetera down to
h + 1 vertices at the lowest levél Theith vertex at levellL has incoming edges from thigh and(: + 1)st
vertices at levellL — 1.

3.3 Pebbling Technicalities

The flavour of the pebble game presented in Definifioh 1.1asvérsion that we are interested in for our
applications in proof complexity, but for the purposes atisig and proving our results we need a slightly
more general definition.

Definition 3.5 (General pebbling definition). Suppose thatr is a DAG with sourcesS and sinksZ (one

or many). Ablack-white pebblingrom (By, Wy) to (B,, W) in G is a sequence of pebble configurations
P = {Py,...,P,} such thatPy = (By, W), P, = (B, W;), and for allt € [r], P; follows fromP;_; by
one of the rules in Definitiof 1l 1. The space of a pebble cordiganP = (B, W) isspace(P) = |[B U W|
and the space of the pebblifiis space(P) = max, |, {space(P;)}.
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We say that a pebblin@ = {Py, ..., P, } is conditionalif Py # ((, #) andunconditionalotherwise.

A complete black-white pebblingisiting Z is a pebbling such thdt, = P, = (0, () and such that for
everyz € Z, there exists a time, € [r] whenz € B,, U W,,. The minimum space of such a visiting
pebbling is denoteBW-Peb’ (), and for the black pebble game we have the meaRebd (G).

A persistenipebbling ofG is a pebblingP such that®, = (Z, ). The minimum space of any complete
persistent black-white or black-only pebbling@fis denotedBW-Peb(G) andPeb(G), respectively.

We think of the moves in a pebbling as occurring at integraktintervalst = 1,2, ... and talk about
the pebbling move “at time” (which is the move resulting in configuratid®) or the moves “during the
time interval[t,, t2].”

A visiting pebbling touches all sinks but leaves the graplptymat timer, whereas a persistent pebbling
leaves black pebbles on all sinks at the end of the pebblihgs hasm sinks, then it clearly holds that
BW-Peb(G) < BW—Peb@éG) + m andPeb(G) < Peb?(G) + m. Also, if G has a unique sink, it is easy
to see thaPeb(G) = Peb”(G).

The only pebblings we are really interested in are complet#blings ofGG. However, when we prove
lower bounds on pebbling price it will sometimes be convenie be able to reason in terms of partial
pebbling move sequences, i.e., conditional pebblings. canehink of conditional pebblings as pebblings
that receive the start configurati@®;, 17;) “as a gift”, and are also allowed to leay&,, W) without
“cleaning up” when they finish. It is clear that we can assuh@ (B, W;) = (B1,0) and(Bg, Ws) =
(b, W5) since we can freely place white pebbles@rand freely remove black pebbles. The way the gift
can help us is that we get black pebbles at the beginning éer;, find are allowed to leave white pebbles
without having to do the hard work of removing them.

The reason we need visiting pebblings and not just persistees is that the graphs of interest will
be constructed in terms of smaller subgraph componentsus@ful pebbling properties, and that for such
subgraphs we have the following easy observation (the mrowhich is omitted).

Observation 3.6. Suppose thaf; is a DAG and thatP is any complete pebbling ¢f. LetU C V(G) be
any subset of vertices 6f and letH = H(G,U) denote the induced subgraph with vertidééH) = U
and edgesZ(H) = {(u,v) € E(G)|u,v € U}. Then the pebbling restricted to the vertices itV is a
complete visiting pebbling strategy féf.

Some proofs are facilitated by observing that visiting pielgis have a certain “duality” property. The
next proposition is an immediate consequence of the antrsgtric nature of the pebbling rules in Defini-
tion[L1 (just observe that the rules for placing and rempwrblack pebble are the duals of the rules for
removing and placing a white pebble, respectively).

Proposition 3.7 ((CS76)). If P is a black-white pebbling fromiB;, W) to (Bs, W5), then we can get a
dual pebblingP from (W3, By) to (W1, By) in exactly the same time and space by reversing the sequence
of moves and switching the colours of the pebbles. In pdaticif 7 is a complete visiting pebbling df,

then so isP.

For the applications in proof complexity, we often want tesatated for DAGs with one unique sink,
but most pebbling results are more natural to state and gmvBAGs with multiple sinks. This small
technicality is easily taken care of as follows.

Definition 3.8 (Single-sink version).Let G be a DAG with sinksZ(G) = {z1,...,zn} form > 1. The
single-sink versior&x of G consists of all vertices and edgesGhplus the extra vertices, ..., z;,_; and
the edgesz1, 21), (22, 21), (21, 23), (23, 23), (23, 23), (24, 23), €t cetera up 6z, o, 25, 1), (2, Z—1)-

That is,G consists of with a binary tree of minimal size added on top of the sinke Sigurd® for a
small example. The following observation is immediate.
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Figure 5: Schematic illustration of single-sink version G of graph G.

Observation 3.9. Let G be a DAG with sinkZ (G) = {z1,..., 2y} form > 1. Then for any flavour of
pebbling (visiting or persistent) it holds thBW-Peb (G) < BW-Peb(G) +1 andPeb(G) < Peb(G) + 1.
Moreover, if there is a pebbling strate@ (visiting or persistent) fot that can pebble the sinks in arbitrary
order, then there is a pebbling strate@A)yof the same type (black or black-white, visiting or persigtéor

G with time (P) < time(P) + 2m andspace(P) < space(P) + 1.

The next proposition is convenient when composing pebblofgsmaller subgraphs into a pebbling of
a larger graph.

Proposition 3.10. Suppose thatr is a DAG with unique sink. Then for any complete black or black-white
pebbling’P of G there is a complete pebbling’ with the same colours such thaane(P’) = time(P),
space(P’) = space(P), and there is a time during P’ whenz has a pebble but the pebbling space is
strictly less tharspace(P).

Proof. For black pebblings this statement is obvious. Once we mdaack pebble on the sink we can
remove all other pebbles from the DAG.

Suppose for a black-white pebblirfgthat the pebbling space reaches the maximsusnecisely when
a pebble is placed on at timet¢. Then the move at time+ 1 must be a pebble removal. If a pebble is
removed from a vertex other than we are done. Otherwise, fix some vertexc pred(z) having z as
its only successor. Suppose thatontains a white pebble during some interjealr] O [¢,t + 1] (and if
not, run the dual pebbling in Propositibn13.7 instead). TaiolP’, we changeP as follows. The pebble
placement onw at timeo is omitted. At timet, a white pebble is placed on In between timeg andt + 1,
w is white pebbled, and then the white pebblezas removed at time + 1. O

It is immediate from the definition of the black pebble gamat thlack pebblings always proceed in a
bottom-up fashion in the following sense.

Observation 3.11.Suppose tha®) : u ~ v is a path inG and thatP = {P,,P,41,...,P;} is a black-only
pebbling such that the whole pathis completely free of pebbles at timebut a pebble is placed on the
endpointv at timer. Then the starting point must have been pebbled during the time intefwalr).

A simple but important lemma, lying at the heart of esselgtall black-white pebbling lower bounds, is
the following generalization of Observatibn-3.11 to blackite pebbling: In order to pebble the endpaint
of a some path, one needs to pebble all vertices on this patima point prior ter after pebblingv.
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Lemma 3.12 ([GT78]). Suppose thaf) : u ~» v is a path inG and that? = {P,,Py,41,...,P,} is
a black-white pebbling such that the whole p&itis completely free of pebbles at timesand 7 but the
endpointv is pebbled at some point duririg, 7). Then the starting point is pebbled duringo, 7) as well.

Proof. By induction over the length of the path. The base case = v is trivial. For the induction step, let
w be the immediate successorwbn (). By the induction hypothesisy is pebbled and unpebbled again
some time durindo, 7). Thenu must be covered by a pebble either when the pebble @nplaced there
(if this pebble is black) or when it is removed (if it is whitéljhe lemma follows. O

When proving lower bounds on pebblings, it often helps tamssthat the pebblings under consideration
do not perform any obviously redundant moves. The followdejnition, which formalizes this notion, is a
generalization of [GLT80] from black-only to black-whitelgbling.

Definition 3.13 (Frugal pebbling). Let P be a complete pebbling of a DAG. To every pebble placement
on a vertexv at timeo we associate theebbling intervalo, 7), wherer = 7(o,v) is the first time aftetr
when the pebble is removed fromagain (orr = oo, say, if this never happens).

If a sinkz; € Z(G) is pebbled for the first time at time, then the pebble op; is essentiaduring the
pebbling intervalo, 7). A pebble on a non-sink vertexis essential durinf, ) if either an essential black
pebble is placed on an immediate successeraidring (o, 7) or an essential white pebble is removed from
an immediate successor ofluring (o, 7). Any other pebble placements on any vertices are non-éakent

The pebbling strateg is frugal if all pebbles inP are essential at all times.

Without loss of generality, we can assume that all pebblargsrugal.

Lemma 3.14. For any complete pebbling (black or black-white, visiting or persistent) there is adal
pebblingP’ of the same type such thiane(P’) < time(P) andspace(P’) < space(P).

Proof sketch.Just delete any non-essential pebbles and verify that whains is a legal pebbling. O

One minor technical snag is that we will need to assume ngtthat complete pebblings are frugal, but
that this also holds faronditional pebblinggDefinition[3.5). This is no real problem, however, since &e c
always assume that the conditional pebblings we are deaifithgare subpebblings of larger, unconditional
pebblings. In fact, an alternative way of defining frugal lpleigs (unconditional or conditional) is to say
that a pebble placement on a non-sink venteis essential if the pebble stays until either a black pebble
is placed on an immediate successow @t a white pebble is removed from an immediate successor of
If a pebbling contains non-essential moves, then it is easgé that such moves can be eliminated to get
a shorter pebbling that is still legal. This new pebbling Intigontain other non-essential moves, but after
applying the procedure a finite number of times we obtain &loalpwith only essential moves. Adding the
requirement that each sink should only be pebbled once, eowee Definitior3.113.

We conclude this section by recalling the following resiitspebblings of pyramid graphs.

Theorem 3.15 ([Coo74. Kla85]).The black pebbling price of the pyramid}, of heighth is Peb(IT;) =
h + 2, and there is a linear-time pebbling achieving this bound.

The black-white pebbling price f, is BW-Peb(II;) = h/2 + O(1). For pyramids of odd height the
exact boundW-Peb(I1y;.1) = h + 3 holds, and for even height we haB&V-Peb’ (I1,;,) = h + 2.

We remark that the exact bounds for black-white pebblingvakare not stated or proven by Klawe

in [KIa85], but can be read off from the exposition of Klawggoof in (the full-length version I[NHO8a]
of) [NHOSH].
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4 Labelled Black-White Pebblings and Resolution Simulations

Let us now prove the claims made in Sectionl 2.1 about thellabélack-white pebble game in Defini-
tion[Z2, namely that this game is just a limited version ahsiard black-white pebbling (LemrhaR.3) and
that resolution refutations of pebbling contradictions sanulate labelled pebblings if all labelled pebble
subconfigurations have bounded size (Leriimh 2.5).

4.1 Proof of LemmalfZ3

Recall that we want to prove that & is a complete labelled pebbling of a single-sink DA then we
can transformZ into a complete standard black-white pebblifg of G with time(P;) < 3time(L)
andspace(P.) < space(L). The proof of this fact is not hard, and much of the needed niadigan be
extracted from similar arguments [n [N0i09]. Since whatiially proven in[[Nor09] is something different
and slightly weaker, however, we provide a full, explicibpf of LemmdZB below.

The first modification of the pebble game when going from D&6in[I.1 to Definitio ZP is that in the
context of resolution, a more natural rule for white peblel@moval appears to be that a white pebble can be
removed from a vertex when a black pebble is placed on thag sentex. It seems intuitively fairly obvious
that this rule change should not really affect the pebbleegand indeed it does not.

Lemma 4.1. Let us say that auperpositionethlack-white pebbling of7 is a pebbling as in Definition 1.1,
except that a vertex may have both a black and a white pebhiseify and that rule[[¥) is changed to:

4’. A white pebble o can be removed only if there is a black pebblevon

Then for any complete superpositioned pebblihgf GG there is a standard complete black-white pebbling
P with time(P) < time(S) andspace(P) < space(S).

Proof. Suppose that we are given a superpositioned peblsling {So,...,S;} of G. We construct a
standard black-white pebblirg = {Py,...,P,} such that fol?, = (B, W;) andS; = (B}, W) it holds
that B, 2 B;, B, U W, = B; U W/ and (as required by Definitidn 1.5, N W; = (. In particular, this
means thaspace(P) = space(S), and that ifS is a complete pebbling, then sofs

The construction is by forward induction owsr We setP, = Sy = (), §) and then make the inductive
step by a case analysis over the pebbling moves.

1. If S places a black pebble anat timet + 1, the vertices irpred (v) must be pebbled if; and thus
by induction also irfi?,. If v € W}, we remove the white pebble fromin P. Then we place a black
pebble or.

2. If S removes a black pebble fromat timet + 1, by inductionwv is black-pebbled if?,. We remove
the black pebble from in P, unlessv € W} in which case we leave the black pebblewon

3. If S places a white pebble omat timet + 1, we place a white pebble there B if v ¢ B, and
otherwise do nothing.

4. When a white pebble is removed franin S it holds thatv € Bj. Thus, by inductiornv € B, so the
white pebble has already been removed froin P, or was never placed there.

It clearly holds thatime(P) < time(S), since? makes at most as many pebbling movesas O

The second step in the proof of LemMmal2.3 is to show that if we & complete labelled pebbling
L = {Ly,...,L;} of a DAG G and look at the vertice$BI(L;), Wh(IL;)) covered by black and white
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pebbles for allt € [r], we can extract a legal complete (superpositioned) blatkewpebbling ofG in
essentially the same time and space. We prove this formratlyg next two lemmas.

The first lemma says that without loss of generality we canrassthat all labelled pebblings anen-
redundantin the sense that if a subconfiguratioi”) is derived at time, then this subconfiguration is not
just thrown away but is used at some time- ¢ further on in the pebbling before being erased.

Lemma 4.2. Let £ = {Ly,...,L;} be any complete labelled pebbling of a DAG Then we can con-
struct a complete labelled pebblingl = {Lg,...,L/,} of G with time(L") < time(L£) andspace(L’) <
space(L£) that has the following property: I6(V') is erased at time in £/, i.e.,v(V) € Lj \ L;,,, then
this subconfiguration has been used in a merger or reversakrimamediately before being erased, and the
subconfiguration resulting from this move is preseritjn, .

Proof. This is easy if formally somewhat tedious, so let us first tryisualize the proof. For any labelled
pebblingL, we can construct a DAG ;. encoding the pebbling as follows. For every subconfigunatid”)
appearing attime, and staying in the graph until time when itis erased, we create a vertex\’), [t1, t2]).
For each merges(U) = merge(v(V'), w(W)), we draw edges from(V') andw (W) to u(U). The sources
in G are verticegv(pred (v)), [t1,t2]), and by assumption there is a sitK(), [t1, 7]). Note that without
loss of generality we can assume that we never derive a sfiporation that is already present in the graph,
so all vertices inG. have indegre® or 2 corresponding to introductions and mergers, respectively

Consider the subgraph @f consisting of all vertices from which the sink vertéx((), [t1,7]) is
reachable. We construdt’ to be the subpebbling corresponding exactly to the movehkismsubgraph,
except that we reorder moves if needed so that erasuresnagsgberformed as soon as possible. Since the
moves inL’ are a subset of the movesAh clearlytime(£') < time(L).

Formally, this amounts to the following. We construct thedified pebblingZ’ by backward induction
overl = {Lo,...,L;}. LetL! = L, = {z(0)}. Ourinduction hypothesis is tha{. C L for t* > ¢. The
backward induction step from+ 1 to ¢ is a case analysis over the movgs~ IL;11 in £. For simplicity,
we allow using fractional time steps in the interyial + 1] in the inductive constructions below.

Introduction L, = L; U {v(pred(v))}: Setl; = Lj.; \ {v(pred(v))}. Note that we might have
L; =1Lj,, if v(pred(v)) ¢ L;,,. In any case, the induction hypothesis holdsfpr

Merger Lyyy = Ly U {o((V U W)\ {wh}: f o(V U W)\ {w}) & Lj,,, setli = L;, ;. The
induction hypothesis trivially remains true. Otherwidethie merged subconfiguration is present in
Lj . setl; = (Ly,; U {o(V),w(W)}) \ {o((V U W)\ {w})}. We can go froniL; to L, in
at most three steps via intermediate L-configuratih@;l/g =L, U {o(VuUWw)\{w})} and

ng/g =1L; , U {w(W)} by first mergingu(V') andw (W), then possibly erasing(V") and finally

possibly erasingy(W).

Erasure L;,; =L, \ {v(V)}: All erasure moves i’ are taken care of in connection with mergers, so set

We claim that all moves i’ constructed in this way are legal. ForifU) € Lj, thenu(U) € L, and
we know that this subconfiguration must have been derivedraegoint in timet* < tin £. Thus the
backward construction af’ will yield a correct derivation ofi(U). Also note that by construction, when a
subconfiguration i’ is erased it has just been used in some merger move.

Finally, by constructiori; C L,, and for the intermediate fractional time step L-configoratL; , , b

in the merger moves ig’ we have]L;Jra/b C Ly41. It follows thatspace (L) < space(L). O

For labelled pebblings as in Lemral4.2, if we ignore all ieta between black and white pebbles in
the subconfigurations and consides!(L;), Wh(L;)) for t € [r], this is a legal superpositioned pebbling.
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Lemma 4.3. Suppose thaf is a complete labelled pebbling of a DA@G Then there is a complete super-
positioned pebbling of G such thatime(S) < ttime(£) andspace(S) < space(L).

Proof. By Lemm&4.P, without loss of generality we can assume thaied’) is erased fron precisely
after it has been used in a merger, and th@f) is erased before)(WW) when both subconfigurations are
eliminated after a move((V U W)\ {w}) = merge(v(V),w(W)), so that the white pebble om is
removed before the black pebble @n

It is clear that we are done if we can construct a superpositigpebblingS with moves matching the
moves inL exactly. LetSy, = (0, ) and construc$;,; inductively by looking at the moves ih; ~ L.

Introduction L;y; = L; U {v(pred(v))}: Place white pebbles opred(v) and then a black pebble an
inS.

Merger L;r1 =L U {o((V U W)\ {w})} forv(V), w(W) € L;: No pebbling moves i, but note that
if v(V) is now removed, the change in pebbles@in L is exactly the same as after an application
of rule (4]) onw.

Erasure L;y; = L; \ {v(V)}: This is the only nontrivial case. In general, an erasureenio\an labelled
pebbling can remove an arbitrary number of white pebblelsauitany black pebbles being even close
to these white pebbles, and there is no way we can match sucvaima superpositioned pebbling.
But since we can assume thatis an labelled pebbling as described in Lenima 4.2, we know tha
v(V') has just been used in a merger. Consequently, the only p#tatldisappears when going from
(BI(Ly), Wh(L¢)) to (Bl(L¢s1), Wh(Li41)) is either the black pebble an which is always a legal
pebble removal, or some white pebblewre V' which has just been eliminated in the merger move
by a black pebble, and this is a legal pebble removal acoptdimule [4]).

We see thatS generated in this way is a legal superpositioned pebblingeimodify each introduction
step into|pred (v)| + 1 pebble placement moves. Cleadpace(S) < space(L). To see thatime(S) <
%time(ﬁ), consider any vertex. The ways is constructed front, every timev is pebbled it is both black-
pebbled and white-pebbled, after which the pebbles arevedhorhis taked moves inS. In £, a single
introduction move can place pebbles on many vertices. Hewéw remove the pebbles fromrequires
3 moves, namelyt merger followed by2 erasures. This gives the time bound, and the lemma follows]

Now LemmdZB follows from combining Lemmask.1 4.3.

4.2 Proof of LemmalfZh

The assumption in Lemnia=2.5 is that we are given a completeS)-bounded labelled pebbling =
{Lo,...,L;} of a DAG G. We want to prove that for any nonconstant Boolean funcffoof arity d,
there is a resolution refutation; of Peb[f] in length L(w;) = time(L) - exp(O(dS)) and total space
TotSp(mz) = m - exp(O(dS)).

Let us first adopt the notation that for a vertexwe letv[f] denote the set of clauses obtained when
substitutingf (v, . . . , v4) for v and expanding to conjunctive normal form, and similarly#pf]. We extend
this notation to clauses by definidg' v D)(f] = {C' Vv D’ | C' € C[f], D’ € D[f]}. Note that if a clause
C containskK literals, thenC[f] has at mos2?® clauses containing at mogk literals each.

The proof is by induction over the pebblinyy We maintain the invariant thatif; is the set of subcon-
figurations at time, then thenr will contain exactly the clause§; = {(\/ e @ V ) [f] | v(W) € L¢}.
Since £ is an (1, S)-bounded pebbling, this means ti@&t will contain at mostn24+5) clauses, each
clause of size at mogl(1 + S). To simplify the notation in the proof, we will implicitly wsfractional time
steps inr, making sure that it never takes more thap (O(dS)) time steps to get fror;_; to C,.

Consider the pebbling move madefrat timet :
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1. If £ introducesv(pred(v)), we download all the axiom clauses(ivwepred(v) w V v)[f]. By assump-
tion we havepred (v)| < S, so the number of axiom clauses are at ngst™>).

2. SupposeC mergesv(V),w(W) € L, with w € V into v((V U W) \ {w}). By the inductive
hypothesis, we have the clauseg,., @V v)[f] and (V< T V w)[f] in memory. Together, these

clauses clearly imply\V/ ¢ vow ) @V v)[f]-

Let D be any clause in the sl vuwy ) @V v)[f]. By PropositiorZ313, we can deriv®
from the clauses corresponding«¢V) andw (W) in lengthexp (O(dS)) and additional total space

O((dS)?). Doing this in turn for all the2?1+5) clausesD € (V¢ vumwy fw) @V v)[f] establishes
the induction step.

3. If £ erases a subconfiguratiol’), we just erase all clauses fly w V v)[f] from memory.

wepred(v)

At the end of the pebbling, we haveC, = {z[f4]} for z the sink ofG. We conclude the refutation by
downloading all the sink axioms iB[f,;] and deriving the empty claugkin lengthexp(O(d)) and total
spaceO (d?). This proves the lemma.

5 Separations of Black Pebbling and Bounded Labelled Pebbling

The second component in our proof that resolution refutatiof pebbling contradictions can be strictly
more efficient than black pebblings of the correspondinglgsas to show that there are graph families
which separate black pebbling and bounded black-whitdl&bpebbling. In this section, we briefly review
the graph families exhibiting the separations betweenkidael black-white pebbling in LemmAsTi[3.]1.5,
and[LY, and then prove that the black-white pebblings fesdhgraphs can be carried out in the bounded
labelled pebbling framework. From this Theored L[4l 1réi[28 immediately follow by appealing to
LemmdZb. We first attend to Leminall.3 and Thedrein 1.4 in@d86ill, and then take care of Lemrhad 1.5
andLY and Theoreris 1.6 dndl 1.8 in Sediioh 5.2.

5.1 Bounded Pebblings for Time-Space Trade-offs

The trade-offs in Lemmi@a]l.3 are obtained for graphs buithfermutations in the following way.

Definition 5.1 (Permutation graph (J[LT82])). Let = denote some permutation ¢6,1,...,n — 1}. The
permutation graph\(n, 7) overn elements with respect tois defined as followsA (n, ) has2n vertices
divided into alower row with verticesug, u1, . .., u,_1 and anupper rowwith verticeswg, w1, . . . , Wy_1.
Foralli =0,1,...,n—2, there are directed edgés;, u;+1) and(w;, w;+1), and foralli = 0,1,...,n—1,
there are edgegu;, w(;)) from the lower row to the upper row.

Thus, the only source it (n, 7) is ug and the only sink isv,,—;. All vertices in the lower row except
the leftmost one have indegreéeand all vertices in the upper row except the leftmost one halegree2.

Any DAG of fan-in 2 must have pebbling price at leastlt is not too hard to see that the graphén, )
have pebblings in this minimal space: keeping one pebbleedexw; of the upper row, move two pebbles
consecutively on the lower row until.-1(;, 1) is reached, and then pebhlg, ;. Generalizing this pebbling
strategy leads to the following upper bound on the time-spexe-off for any permutation grah.

SAll results reviewed below are frofi[LIB2, Section 2]. Ouatstments of the results differ slightly in the constantsuth,
since there are some (minor) technical differences in tlimitlens in [LT82] as compared to the present paper. Probfhe
lemmas and theorems as stated here can be fouhd in [Nor10a].
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000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Figure 6: Bit reversal graph A(8,rev) on 8 elements.

Lemma 5.2 ([LT82]). Let A(n, 7) be the permutation graph overelements for any permutation Then
the black pebbling price al(n, ) is Peb(A(n, 7)) = 3, and for any space, 3 < s < n, there is a black
pebbling strategyP for A(n, 7) with space(P) < s andtime(P) < 5%22 + 2n.

To prove lower bounds for permutation graphs, Lengauer amgii focus on permutations defined in
terms of reversing the binary representation of the inef@rl, ... ,n — 1} whenn is an even power df.

Definition 5.3 (Bit reversal graph (JLT82])). The m-bit reversalof 7, 0 < i < 2™ — 1, is the integer
rev,, (i) obtained by writing then-bit binary representation afin reverse order. Thbit reversal graph
A(2™, rev,,) is the permutation graph over= 2™ with respect taev,,.

We will denote the bit reversal graph By(n, rev) for simplicity, implicitly assuming that = 2™. An
example of a bit reversal graph can be found in Fi@lire 6.
For bit reversal graphs, the trade-off in Lemimd 5.2 for blaekbling is asymptotically tight.

Theorem 5.4 ([LT82]). Suppose thaP is any complete black pebbling of the bit reversal grapn, rev)
overn = 2™ elements such thapace(P) = s for s > 3. Thentime(P) > g—z

Note, in particular, that if we want to black-pebkien, rev) in linear time, then linear space is needed.
The proof of Theoreri B4 relies on the fact that a black pebhinust always proceed through a graph in
topological order. For a black-white pebbling this is nogentrue, since pebbles may be placed anywhere
at any time. Adjusting the argument used in the proof of Teedb.4 accordingly, one instead gets the
following, weaker lower bound.

Theorem 5.5 ([CT82]). Let P be any complete black-white pebblingfn, rev) with space(P) = s for
s > 3. Thentime(P) > {2, + 2n.

When first looking at the proof of Theorelm b.5, it might seemt tiine bound should not really have
to be weaker than in Theordmb.4 but that this could plaugibljust a consequence of the analysis being
harder to carry out in the black-white pebbling case. Sonagwtirprisingly, however, Lengauer and Tarjan
prove that Theorefi 3.5 is in fact tight. That is, one can docfmbetter using white pebbles in addition to
the black ones. In particular, there is a linear-time blatkte pebbling strategy faf (n, rev) using only
order of \/n pebbles. Moreover, it is possible to transform the pebbdingtegy in[[LT82] into a bounded
labelled pebbling. We conclude our discussion of permurtegiraphs by stating and proving this as a formal
theorem.

Theorem 5.6.Let A(n, rev) be the bit reversal graph over = 2" elements. Then for any space parameter
s > 3 there is a completé2 + 2s/3, 2)-bounded labelled pebbling of A(n, rev) with space(£) < s and
time(L£) < 2882 + 22n.

S
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Theoren 5k is an easy corollary of the next lemma. We estalilie lemma first and then explain how
it implies the theorem. We also remark that our proof follgwE82] fairly closely. Thus, our contribution
consists in adapting the argument to the bounded labelleblipg framework.

Lemma 5.7. For all 5,3 < s < 3y/n, there is a completé2 + 2s/3, 2)-bounded labelled pebbling of
A(n,rev) with space(L£) < s andtime(L£) < 288’;—5 + 6n.

Proof of Lemm&35]7Write m = logn and letr be the non-negative integer such tBaR” < s < 3-2"+1,
Divide the upper row ofA(n,rev) into 2" intervals

I = {wjgm g | k=0,1,...,2"7" —1} (5.1)
of size2™~" for j = 0,...,2" — 1 and then subdivide each interval irt® 2" chunksby defining
CJZ = {wj~2mfr+i.2r+k’ | k=0,1,...,2" - 1} (5.2)

fori =0,...,2m 2" — 1. (Note tha2™~2" > 1 sinces < 3,/n by assumption.) Figuid 7 exemplifies these
definitions on the32-element bit reversal DAG with? intervals and chunks per interval.

The pebbling strategy will proceed #1*~2" phasesorresponding to th2—2" chunks in each interval,
and in2" stageswithin each phase corresponding to the different intervAlsthe phases in the pebbling
are completely analogous except for some minor tweaks ifitsteand final phases, which we refer to as
theOth and(2™~2" — 1)st phases, respectively. To help the reader parse theargtate note that in what
follows superscriptg will correspond to phases/chunks and subscrifts stages/intervals. We reser¥e
independent black pebbles for the lower r@k,dependent black pebbles for the “current chunks” in the
upper row, an®” — 1 supporting white pebbles for theses dependent black pebbleese white pebbles
will be placed on the rightmost verticesin I, . .., Io>r_5. By the way we chose, this leaves one auxiliary
pebble to help with advancing the other pebbles.

We start thedth stage in théth phase by doing what is in essence a complete black-onlglipghof
the lower row, leavin@” independent black pebbles on

U(()) = {urovm(k)<®> | k=0,1,... >2T - 1} . (5.3)

More formally, this is done as follows. Introduce the subfirationsug(()) andu;(ug), and then merge
them to getu; (#). Next, introduceus(u;) and merge withu; (#) to getus(()). We continue in this way
along the lower row, erasing all subconfiguratien$u;_1) as we go, as well as all subconfiguratiansi)
not found inUy.

Once we have the independent black pebble§jnwe use them to “sweep” a black pebble past the
Oth chunk oflj in the upper row, leaving it on the rightmost vertey-_;. In formal notation, we introduce
wo(ug), merge withug(0) to getwy(0), and then erasen (ug). Next, we introducew: (wo, tyey,, (1)) and
merge first withwg (0) and then withu,,, . (1y(0), resulting inw; (§). The dependent black pebbles on
are then erased. Next, we introdue@(w, tyey,,(2)) and mergew; (§) and u,e,, (2)(0) to getw,(d),
after which the dependent black pebbleswsnare erased. Moving right in this fashion, we finally derive
wyr_1 (D), noting that all the independent black pebhles, . ;) (0) that we need for this are presentli.
This concludes théth stage of our labelled pebbling.

In the next stage, we move all independent black pebblé¥ ian the lower row exactly one step to the
right to the verticesy, for k = 1,rev,, (1) + 1,rev,,(2) + 1,...,rev,, (2" — 1) + 1. Fork = 1, this is done
by introducingu; (ug), merging withuo(0) to getu;(0), and then erasing; (uo) anduo(@). The general
case is of course completely analogous. Using the factithatev,, (rev, (1) - 2~"), we see that we now
have independent black pebbles on

U? = {urevm(revr(l),zmﬂ_kk) <@> ‘ k=0,1,...,2" — 1} , (5.4)
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Figure 7: Intervals I; for r = 2 in A(32,rev) and Oth chunks in Iy and I,.., (1) = I> with inverse images.

which by [5:2) is the set of all predecessors in the lower rbth@0th chunkOfeW(l) of the intervall,., (1)-
This crucial fact is illustrated in Figufd 7.

Intuitively, what we want to do now is to place a white pebble the rightmost vertex of the in-
terval I, (1)-1 and use this white pebble plus the lower-row black pebbled/Brto sweep a black
pebble all the way to the rightmost vertex in thth chunk of I, (). To accomplish this, first intro-
dUCeW, ey, (1).2m—r (Wrey, (1).2m—r —1; Urey,, (rev, (1)-2m—r) ) @Nd Merge this subconfiguration with the indepen-
dent black pebblex,.,, ey, (1).2m-)(0), Which is present i/}, to derivew,ey, (1).2m—r (Wrey, (1).2m—r_1)-
Then introduceurevr(l),szrﬂ<wrev7‘(1),2m4,urevm(rev7‘(1).2m4+1)> and merge to get the subconfiguration
wmvr(l)_zmqﬂ<wmvr(1)_2m4_1>. Continuing in this way, erasing dependent black pebblésampper row
as soon as they are no longer needed, we advance a black piitgell the vertices of theth chunk of the
interval I,.,, (1), finally arriving at the pebble subconfigurati@qow(1).2%7427-_1<wmvr(1),2nw_1>. This
concludes stagé of phaseD.

The rest of the stages of phasare completely analogous. In thith stage, we can move the lower-row
pebbles froni/?_, to U? where this notation is generalized to mean

UJO = {urOVm(rCVr(j)'27rr7‘+k) <(Z)> ‘ k=0,1,... ’27” - 1} (55)

for all j < 2" — 1, and then place black pebbles on the rightmost vertex inyesfeunk C’roew ; with
the help of a white pebble on the rightmost vertex/ip,, (;)—1, i.e., , derive pebble subcon%igurations
wrew(j)gmfmrzr_l<wrew(j),2m7r_1>. At the end of the final stage of phaSgwe thus have black pebbles
on the rightmost vertices of ath chunks and white pebbles on the rightmost verticeg ofy, . . . , Ior _o.
Later phases will move the black pebbles to the right, chunkhunk, while leaving the white pebbles in
place. We observe that during phaseve made at most introduction moves and merger moves on the
lower row to get the pebbles into “starting positidii?, and then exactlg” introductions and mergers more
on the lower row in each of the othgf — 1 stages.

Inductively, suppose at the beginning of phadeat there are dependent black pebbles on the rightmost
vertices in all(i — 1)st chunks, i.e., subconfigurationg.,, (jy.om-rtj.or—1(Wyey, (j).2m-r—1) for all j > 0
andw,-.gr_1<®> for j = 0. Let us extend the lower-row pebble configuration notatioove to full generality
and define

ljjZ = {urevm(revr(j),2m7r+i.2r+k) <®> | k = 07 ]., e 727. — 1} = {U<®>"U S reV;nl (CrZCVT(j))} s (56)
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where the second equality is easily verified frdm1(5.2). Bget) of phasei, we rearrange the lower-row
black pebbles to obtain the configuratiorlif. Since there are already independent black pebbles present
somewhere on the lower row, this can be achieved with at mest” introductions and mergers (essentially
by moving the black pebbles to the closest new position taitite—we refer to [[LT82] for the details).
This allows us to advance the independent black pebblg on the upper row from the rightmost vertex
in chunki — 1 to the rightmost vertex in chunk Moving the independent black pebbleslif) one step to
the right in each following stage 0!, U%, et cetera, we can sweep dependent black pebbles acrash the
chunks of the other intervals in the orderl,c,, (1), lrev,.(2)s - - - » Irev, (2r—1) = f2r—1. All in all, we make

at most(n — 2") + (2" — 1) - 2" introductions and merger moves on the vertices in the loarduring
phasei for i > 1.

In the final (2™~2" — 1)st phase, we note that there are supporting white pebblebeonightmost
vertex of the chunk in every interval except_; (where the rightmost vertex is the sink). Therefore, in
every stage except the final one, when we make an introduatiove on a rightmost vertex, we merge
the introduced subconfiguration with the subconfiguratimmés two predecessors of this vertex to remove
the white pebble. In the very final stage, we obtain an indégenblack pebble on,,_;. Removing all
other pebbles from the DAG, which are all independent blatibtes, we have obtained a complete labelled
pebbling ofA(n, rev).

The space of this pebbling #s 2" < s by construction. All subconfigurationgW') have white support
size|W| < 2, and there are always at m@s” < 2s/3 “static” subconfigurations plusauxiliary ones. As
to the time bound, it is easy to verify that we make an intrdidacfor each upper row vertex exactly once,
and2 mergers are needed to eliminate the white pebbles in theosupithe introduced subconfiguration.
The number of introductions and mergers in the lower row imast2n + (2" — 1) - 2"+ during phaseé
and at mos2(n — 27) + (2" — 1) - 27! for each of the othe2™~%" — 1 phases, and summing up we get a
total of at most

277 (20 — 27T + (20 = 1) - 27T) + 27 4 30 < 277 (20 4 27F) 4 30

< ﬁ (2n + 2(s/3)%) + 3n

’I’L2
S

(5.7)

< 144 3 + 3n

introduction and merger moves in total, where we used2ftat” > 1, 2" < s/3 < 2"+, ands < 3\/n.
Multiplying by 2 to take the removal moves into account gives the time bouwatddin the lemma. O

Proof of Theoreri Bl6For s < 3,/n this was proven in Lemnia3.7. To get the statemens for3,/n, use
the same pebbling strategy as in the proof of Lerimh 5.7 budsghoso that,/n/2 < 2" < \/n. Then the
number of chunk@™~2" is at most, and the time bound derived frofi{b.7) reduceg2n. O

To obtain the graphé&:,, of size©(n) in Lemma LB, we set. = [log, n] and letG,, = A(2™,rev,,).
As noted at the beginning of this section, Theorenm 1.4 nowovd if we combine Lemm&=2.5 with
Lemmd&Y.

5.2 Bounded Pebblings for Absolute Separations of Pebbling Space

To obtain results for resolution matching the pebbling s&f@ns of Lemma&Tl5 by [Wil88] and Lemrhall.7
by [KS91], it is sufficient to consider a more general graphifa studied in the latter paper. To describe
how this graph family is constructed we first need an auxildafinition.

Definition 5.8 (m-line and (n, m)-spiral mesh). An m-line is a DAG with vertex sety, vs, ..., v, and
edge sef(v;,vi41) |i=1,2,...,m — 1}.
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An (n, m)-spiral meshs a DAG on verticeqv; ; | i € [n],j € [m]} with edgeSv; ;,v; j+1) fori € [n]
andj S [m — 1], (’Ui,javi—i-l,j) for i € [’I’L — 1] andj € [’I’)’L], and (Ui,myvi+1,1) for i € [’I’L — 1] Theith
columnof the (n, m)-spiral mesh consists of the verticgs; for j € [m].

We now present the three-parameter graph farhily, ¢, k) in [KS91]. The construction is by induction
overgq.

Definition 5.9 (A(p, 0, k)-graph). The graphA(p,0, k) is a (1,p)-mesh, that is, a-line, thefirst row
fi, f2, ..., fp andlastrowly, s, . .., 1, of which are both defined to be the vertices of thkne.

For ¢ > 0, the graphA(p, ¢, k) consists of a number of identical building blocR&p, ¢, k), which
all contain a copy each af(p,q — 1, k). In the recursive definitions below, we will be somewhat plop
with the indices in order not to clutter the notation. In madar, if we wanted to be formally correct, all
subgraphs and vertices below should be labelled by theiel'lef recursion”q within the construction, as
well as by a number indicating which of the identical copiesrecursion level the vertex resides in, but
we believe that adding these extra indices would lead to mmméusion than clarity.

The N (p, q, k)-block graph construction, defined next, is illustrated iguFe[8. We remark that this
graph has been slightly modified as compared_{o [I«lﬁgl].

Definition 5.10 (N (p, ¢, k)-block [KS91]). Suppose thak(p, ¢ — 1, k) has been defined. Theock graph
N(p,q, k), wherek < p, consists of the following components:

e acopy ofA(p,q — 1, k) with first row f1, fa, ..., fr, @and last rowiy, lo, . . ., iy,

e a((p+1)2 p)-spiral meshB on verticesh; ;,i € [(p+1)?], j € [p],

e a((p+1)3 p)-spiral meshA on verticess; j, i € [(p+1)%], j € [p],

e kcopiesRy,..., Ry of a(p + 1)-line, with theith copy having vertices, ; for j € [p + 1].

For ease of notation, in what follows we will write, = (p + 1)? andn,, = (p + 1)? for the number of rows
in B andA.

The subgraph components are connected by edges as folldwesgwe use the notatic(m; v) for the
edge fromu to v for clarity):

bnb,j; f]) forj € [p].

(

(bnyj 5 Tipr2—j) fori € [k] andj € [p],
e (lj;a1;) for j e [p],

. (lLip/kJH"i,l) fori € [k], and

o (ript1; a1y) foralli € [k] and allj such thati — 1)p/k < j < ip/k.
Theith column of N (p, ¢, k) consists of théth columns ofB, A(p,q — 1, k), and A.

We glue theN (p, q, k)-blocks together to form the grapt(p, ¢, k) as follows.

Again, proofs of the results as stated here can be fourid Iril¥g.
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Figure 8: Building block N(p, ¢, k) in graph separating black and black-white pebbling (here k = p/2).
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Definition 5.11 (A(p, ¢, k)-graph [KS91]). Forq < p andk < p, the graph\(p, ¢, k) consists of p/k] +1
copies of the block grapl (p, ¢, k), which we denoteV ™M) (p, ¢, k), N® (p, ¢, k), ..., NUP/EFIFD (p ¢, k).

The edges between the blocks ém%i) : b(”l)) fori=1,...,[p/k]landj = 1,...,p, i.e., the last vertex

aj? "Lj
in every column in theth N-block is connected to the first vertex in the same column é(tht 1)st
N-block.

We define the first rowf1, f2, ..., fm Of A(p, ¢, k) to consist of the first rovbﬁ, bf;, e ,bf;, of the

first N-block and the last rowiy, Iy, . .., L,n, to consist of the last row,”/*1*1) a,&[f’/f“”, ... a{dPIFIEy

of the lastN-block. Theith column ofA(p, ¢, k) is defined to be the union of théh columns of all the
N-blocks.

Let us now first state the properties that we need from\tie ¢, k)-graphs, then show how Lemn{as]1.5
and[L.Y and Theorenis_1.6 andl1.8 follow from these propedied finally give the proof that there are
efficient bounded labelled pebblings of the graphs.

Proposition 5.12 ([KS91]). The graphs\(p, ¢, k), have siz& (poly(p)(p/k)q), maximal vertex indegre®
and a unique sink.

Theorem 5.13 (IKS91]). Any complete black pebbling &f p, ¢, k) requires at leaspq pebbles.
Theorem 5.14. Every graphA(p, ¢, k) has a completép + kq + 2, 3)-bounded labelled pebbling.

If we setk = ploglogp/logp andq = logp/loglogp in Definition 511, it follows from Propo-
sition [ 12 and Theorem 5113 that we obtain graphs of sizgnpatial in p with black pebbling price
Q(plogp/loglogp), as claimed in LemmBZl.5. Since these graphs tié{g), O(1))-bounded labelled
pebblings by Theoreln 5114, we can appeal to Lerima 2.5 to datiat resolution refutations of pebbling
contradictions over these graphs can match the black-vpeibdling space bounds, which proves Theo-
rem[L®. If we instead chooge= 1 andq = p in Definition[5.11, we get graphs of sizep(©(plogp))
that have black pebbling pricﬁ(p2) but admit(O(p), O(1))-bounded labelled pebblings. This gives us
LemmdLY and Theorein1.8.

Hence, all that remains is to establish Theofeml5.14, andowelude this section by doing so. Again,
we point out that the pebbling strategy presented belovovalthe one in[IKS91] closely, and that our
contribution is thus not in designing a completely new pelgostrategy, but in taking an existing strategy
and turning it into a bounded labelled pebbling.

Before presenting the formal proof, let us sketch the maga.idDbserve that if there were bgraphs
in A(p, ¢, k) but only the vertices in the columns, then it would be straightforward to do a complete
bottom-up black-only pebbling with justt- 1 pebbles. However, this strategy is impossible to implerrent
the black pebble game. Very briefly, the reason for this isdhg black pebbling has to pebble the graph in
topological order, but since the predecessors of the eartittheR-graphs have their order reversed—uwith
the source of? having its predecessor if(p, g — 1, k), whereas the successor vertices have predecessors
in the preceding subgrapB—this constantly throws the black pebbling off-balance.ingshe power of
white pebbles, however, we can avoid this problem and pl&k pebbles on the sinks of all grapRs,

i € [k], at all levels of recursion in the graph construction, arahttio the black bottom-up pebbling of the
vertices in the column-part of the graph. The formal detailow.

Proof of Theorei 5. 14The labelled pebbling strategy is constructed by inductieer . The base case is
trivial sinceA(p, 0, k) is just ap-line. For the the sake of our induction hypothesis, let usatoe extra work
and note that we can in fact even fill the whpléne with independent black pebbles and still stay withim o
space bounds. Thatis/lif, ..., [, are the vertices ak(p, 0, k), we can introducé, (#) andi,(l;) and merge
them to getly(()), after whichiy(l;) is erased, then introdudg(l;) and merge with,(()) to obtainis(0),
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after whichls(l,) is erased, et cetera, until we have the whole {éw(0) | j € [p]} of independent black
pebbles.

Inductively, suppose that we have constructedX(y, ¢ — 1, k) a pebblingC starting with independent
black pebbles{f;(0) | j € [p]} on the first row, ending with independent black pebb|gs0) | j € [p]}
on the last row, and never using more tha# k(¢ — 1) + 2 subconfigurations (1¥) at any time, all with
bounded white support siz8/| < 3. It is sufficient to construct front a labelled pebbling’’ for the block
graph N (p, ¢, k) moving independent black pebbles from the first rowBofo the last row ofA using no
more tharp + kq + 2 subconfigurations with bounded support size. Such a pebplidithen easily extended
to pebbling for all ofA(p, ¢, k) by pebbling the blocks one by one in a bottom-up fashion. {Thso since
we can easily shift independent black pebbles from the @gtaf an N-block to the first row of the next
N-block using the same kind of labelled pebbling moves th#itheidiscussed more in detail below.)

Thus, suppose that we have independent black pelbles?®) | j € [p]} on all vertices in the first
row of B. We move these pebbles up one row as follows. First intrody@ébl,l, bl,p> and merge with
b1,1(0) andby ,(0) to getby 1 (D), erasingy; 1 (0) and the dependent black pebblesben. Next, introduce
ba,2(b21,b1,2) and merge withb; »(0) and the newly derived subconfiguratiés, (0) to getbs o (0), after
which the dependent black pebblesgn, are erased, as well &s,(()). Continuing in this way, erasing
pebble subconfigurations as soon as they are no longer naadedsing only2 auxiliary subconfigurations,
we can shift the whole row, and we keep on shifting the pebtoesby row, from left to right for each row,
until the last row ofB has all vertices covered by independent black pebfdlgs;(0) | j € [p]}.

Next, we want to place black pebbles on the sinks of all fhesubgraphs. Fix someand consider
R;. Introducer; »(r; 1, by, ») and merge wittb,, ,(0) to obtainr; »(r; 1), erasingr;2(ri1,bn,p). CON-
tinue by introducingr; 3(r; .2, bn, p—1) and merging it withb,,, ,_1 (@) to obtainr; 3(r; »), and then merge
this subconfiguration withr; 5(r; 1) to deriver; 3(r; 1), where the subconfigurations s(r; 2, bn, p—1).
ri3(riz2), andr;o(r; 1) are erased as soon as they are no longer needed. Working guupaa; in
this fashion, we finally derive; ,11(r;1). Note that we use here that we have all the independent black
pebblesb,, ;(0), j € [p], available. We repeat these pebbling moves for all ygraphs to obtain
{ri7p+1<r,-71> | i € [p+ 1]}. For this part of the pebbling we again udauxiliary subconfigurations, and
we end up with a total of subconfigurations on all the subgrapRs i € [k].

Now, shift the independent black pebblgs, ;(0) | j € [p]} from the last row ofB to { f;(0) | j € [p]}
on the first row ofA(p, ¢ — 1, k) (by the same kind of moves that have been described in détiky, and
then appeal to the induction hypothesis to obtain a pebbtioging these black pebbles further upward
to {1;(0) | j € [p]} on the last row of\(p, ¢ — 1, k). By the induction hypothesis, such a pebbling uses at
mostp + k(¢ — 1) + 2 pebble subconfigurations. We note that addingiheebble subconfigurations on
the R;-subgraphs, the total number of subconfigurations exactgtethe upper bound we are aiming for
in the inductive step.

To finish the pebbling ofV(p, ¢, k), we first want to eliminate all the white pebbles on, i € [£],
which is possible since there are (independent) black pelii the predecessors of these vertices in the last
row of A(p,q — 1,k). Thus, for alli € [k] in turn, introducer; 1 (1,5 ) and merge; ;1 (r;,1) with the
introduced subconfiguration as well as with), ;; (0) to deriver; ,,1(0), where we erase; (|;,/x|) and
rip+1{ri,) and any intermediate subconfigurations as soon as they donger needed. Next, we shift
the black pebble$l; (1) | j € [p]} from the last row ofA(p, ¢ — 1, k) to {a;1 ;(0) | j € [p]} on the first row
of A. This is done in the same way as previous “shifting” movesd,\&a use that in addition to the pebbles
on the last row of\(p, ¢ — 1, k) we also have independent black pebbles on the sinks &f;adubgraphs.
In this part of the pebbling we will need subconfigurationghwivhite support size3, since that is the
indegree of the vertices in the first row df When we are done shifting, we erase the pebblgs (0)
from the sinks of thek;-subgraphs. Finally, we move all the black pebbleglirow by row upward, using
2 auxiliary subconfigurations, until the last row dfhas all vertices covered by independent black pebbles.
This concludes the inductive step, and the theorem follows. O
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6 Carlson-Savage Graphs and Strong Dual Trade-offs

In this section, we present a full proof of TheorEml 1.9 andwshow the Carlson-Savage graphs can be used
to obtain graphs with strong dual pebbling trade-offs whikesupper bounds are in terms of black pebbling
and the lower bounds are in terms of black-white pebbling.

We first list the statements that we want to prove in order taldish Theoreni_119 in Lemm&sb.1,
62, and 6B below. Note that the lemmas are stated for thghdemmily I'(c, ) in Definition[Z®. It is
straightforward to translate the lemmas to what is neededtieoren{_LB by using the single-sink version
of I'(¢,r) in Definition 338 and appealing to Observationl3.9. Then, hanshow these lemmas yield
pebbling time-space trade-offs. Finally, we provide therfal proofs of the lemmas.

Let us start by recalling the size and pebbling price bounds.

Lemma 6.1. The graphd’(c,r) are of sizgV (I'(c,r))| = ©(cr® + *r?), and have black-white pebbling
price BW-Peb? (T'(c, 7)) = r + 2 and black pebbling pric®eb” (I'(c, 7)) = 2r + 1.

Note that Lemm&®&l1 says that the minimum pebbling spaceareshgrows linearly with the recursion
depthr but is independent of the number of spines the DAG.

Next, we need the fact that there is a linear-time complditgk pebbling of’(c, r) in space linear in
¢+ r. This is in fact a strict improvement (though easily obtdinef the corresponding result in [CS82].

Lemma 6.2. The graphd’(c, r) have persistent black pebbling strategies in simultanepageO (¢ + r)
and time linear in the size of the graphs.

Our main result for the Carlson-Savage graphs is the foligwiade-off for black-white pebbling, which
provides us with a variety of pebbling trade-off results & ehoose the parameterandr appropriately.

Lemma 6.3. Suppose thaP is a complete visiting black-white pebblinglofe, ) with
space(P) < BW-Peb? (T(¢, 7)) + 5= (r +2) + s

for 0 < s < ¢/8 — 1. Then the time required to perforf is lower-bounded by

time(P) > (C_28>r.r! .

4s+4

Observe that Lemnia®.3 is just a special case of Lemnha 2 dipebtby settin@®, = P, = (0, ), and
we already gave a proof of Lemrhal2.7 in Secfiod 2.2, assuntmg fauxiliary technical lemmas. Hence,
for LemmdZ¥ all we need to do is to establish the lemmasdstaithout proof in Sectiof2]2.

Before showing any lemmas, however, let us now see how wercae heoreni 1,10 by appealing to

Lemmad 6l 612, alld 6.3.

Theorem[1I0 (restated).Let g(n) be any arbitrarily slowly growing monotone functiar{1) = g(n) =
O(n'/7), and lete > 0 be an arbitrarily small positive constant. Then there is anflg of explicitly
constructible single-sink DAGE~,, }°2 , of size©(n) with constant vertex indegree such that:

1. The graph’,, has black-white pebbling pric@W-Peb(G) = g(n) + O(1) and black pebbling price
Peb(G) =2-g(n) + O(1).

2. Thereis a complete black pebbliftof G,, withtime(P) = O(n) andspace(P) = O < V n/gz(n)>

3. Any complete black-white pebblifjof G,, in space at mos@m/gz(n))l/?’_E

superpolynomial im.

requires pebbling time
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Proof. Consider the graphs(c, r) in Definition[Z®. We want to choose the parameteasdr in a suitable
way so that get a family of graphs in size= © (cr® + ¢3r2) (using the bound on the size Bfc,r) from
LemmaG.l). If we choose = 7(n) = g(n) for g(n) = O(n'/7), this forcesc = c(n) = ©(3/n/g?%(n)).
Consider the graph familyH,,}2° ; defined byH,, = I'(¢(n),r(n)) as above and let,, = H, be the
single-sink version off,,. This is a family of single-sink DAGs of siz®(n).

By Lemma&.]l combined with Observatibnl3.9, it holds teb(G,,) = g(n) + O(1). Also, the black
pebbling of H,, in LemmalB.R yields a linear-time pebbling 6f, in spaceO({/n/g?(n)). Now set the
parameters in LemmalB.B tos = ¢!~¢ for ¢ = 3e. Then for large enough we haves < ¢/8 — 1 and
Lemma6.B can be applied. We get that if the pebbling spaceesa’sthar(n/gz(n))l/?)_e, then the required

time for the black-white pebbling grows 48 (c<'))" = ((n/g2(n)))“™ which is superpolynomial in
for anyg(n) = w(1). The theorem follows. O

We also note that using different parameter settings, weob#ain graphs with veryobusttrade-offs
in the sense that the lower bound in the trade-off applies awery wide space range, namely all the way
fromlogn up to~ ¥/n.

Theorem 6.4. There is a family of explicitly constructible single-sinkGs{G,,}5° ; of size®©(n) with
constant vertex indegree such that:

1. Peb(G,,) = O(logn).

2. There is a complete black pebblifgpf G,, withtime(P)=0(n) andspace(P)=0 (f/ n/ log? n> :

3. There is a constank’ > 0 such that any complete black-white pebbliRgof G;,, in space at most

KW must take time2(loglogn)

Proof. Consider the graphs(c, r) in Definition[Z6 with parameters chosen so that 2". Then the size of
[(c,r)is ©(r?2%") by LemmdElL. Let(n) = max{r : r?2% < n} and define the graph famil§G,, }°2
to be the single-sink version ©f(2", r) for r = r(n).

Translating fromG,, back tol'(c,7) we have parameters= O(logn) andc = ©((n/log®n)/3), so
Lemmal&.ll yields thaPeb(G,,) = O(logn). Hence, the linear-time persistent black pebbling=6fin
LemmdE.P has spac((n/log”n)/?).

Settings = ¢/8—1 in Lemmd&.B shows that there is a constarsuch that if the space of a black-white
pebbling? drops belowk - (n/log?n)'/? < (r + 2) + s, then we must have

time(P) > O(1)" - r! = pfloglosn) (6.1)
(where we used that= ©(log n) for the final equality). The theorem follows. O

As a final application of Theoreln_1.9, we show that it can beluseconstruct DAGs with not only
superpolynomial but even exponential trade-offs. A singaenting argument can be used to show that we
can never expect to get exponential trade-offs from DAGh witlylogarithmic pebbling price. However, if
we move to graphs with pebbling pri€En°) for some constart > 0, such graphs could potentially exhibit
exponential trade-offs. We obtain such a family of graphadpin adjusting the parameters in Definifiod 2.6
appropriately.

Theorem 6.5. There is a family of explicitly constructible single-sinkGs{G,,}°° ; of size©(n) with
constant vertex indegree such that:

1. Peb(G,) = O(¥/n).
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2. There is a complete black pebblifyof G,, withtime(P) = O(n) andspace(P) = O(/n).

3. Thereis a constank” > 0 such that any complete black-white pebbling=fin space at mosk' ¢/n

must take time §/n)! .
Proof. Use the single-sink version of(c, ) as above with parameters= /n andr = /n. O

We remark that there is nothing magic in our particular cha€ parameters andr in Theoren&5.
Other parameters could be plugged in instead and yieldtlligifferent results. Note also that again we
have a certain robustness in the trade-off results in thatlits for space from/n to /n, at which point it
drops sharply to allow a linear-time pebbling.

We now turn to the proofs of LemmBSH.1.16.2, 6.3. In thefprare will need a few useful auxiliary
lemmas, the first of which gives us information about how thiaess in the Carlson-Savage DAGs are being
pebbled. We will use this information repeatedly in whatdafs.

Lemma 6.6 (Rephrasing of Lemmd2I8).Suppose thatF is a DAG and thatv is a vertex inG with a
path @ to some sink; € Z(G) such that all vertices i) \ {z;} have outdegreé. Then any frugal black-
white pebbling strategy pebblesxactly once, and the path contains pebbles during one contiguous time
interval.

Proof. By induction from the sink backwards. The induction baserimediate. For the inductive step,
supposey has immediate successorand thatw is pebbled exactly once.

If w is black-pebbled at time, thenv has been pebbled before this and the first pebble placaed on
stays until times. No second placement of a pebblewafter timeos can be essential sineehas no other
immediate successor than If w is white-pebbled and the pebble is removed at tim#hen the first pebble
placed orw stays until timer and no second placement of a pebblevatfter timeos can be essential.

Thus each vertex on the path is pebbled exactly once, andntieeirttervals when a vertex and its
successotv have pebbles on them overlap. The lemma follows. O

The second auxiliary lemma speaks about subgr@ple a DAG G whose only connection to the rest
of the graphG \ H are via the sink of{. Note that the pyramids ifi(c, r) satisfy this condition.

Lemma 6.7 (Rephrasing of LemmdZB).Let G be a DAG andH a subgraph inG such thatH has a
unique sinkz;, and the only edges betwe&f(H) and V' (G) \ V(H) emanate frony,. Suppose thaP is
any frugal complete pebbling 6f having the property thal is completely empty of pebbles at some given
time 7’ but at least one vertex df has been pebbled during the time intery@|7’]. ThenP pebblesH
completely during the intervdd, 7'].

Proof. Suppose that € V(H) is pebbled at time’ < 7’. Note that all paths starting inmust hitz;, sooner

or later, sincez, is the unique sink o and there is no other way out &f into the rest ofG. Consider the
longest path fromv to z;,. If this path has length, clearly z;, must be pebbled before timésince otherwise
the pebble placement anis non-essential. The same statement follows forany induction over the path
length. But since is empty at time$) andr’ and z;, is pebbled durind0, 7’), H is completely pebbled
during this time interval. O

Let us now establish that the size and pebbling price of tits@aSavage DAGs are as claimed.

Proof of Lemm&®6]1The base case gragHc, 1) in Definition[Z6 has size + 2. A pyramid of heighth
has(h + 1)(h +2)/2 vertices, so the pyramids of heigh®(r — 1) in I'(¢, r) contributecr(2r — 1) vertices.
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Thec spines wither sections of2c vertices each contribute a total 28 vertices. And then there are the
vertices inl*(c,» — 1). Summing up, the total number of verticedlifr, r) is

(c+2)+ i(cz’(% — 1) +2¢%) = O(cr® + *r?) (6.2)
=2

as is stated in the lemma.

Clearly, BW-Peb?(I'(¢, 1)) = Peb?(T'(c,1)) = 3, since pebbling a vertex with fan-i requires3
pebbles and’(c, 1) can be completely pebbled in this way by placing pebbles eriio sources and then
pebbling and unpebbling the sinks one by one.

Suppose inductively th@&W-Peb’(I'(c, 7)) = r + 2 and consideF (¢, + 1). It is straightforward to

see thaBW—Peb@(F(c, r+1)) <r+3. Every pyramidﬂgjr) can be completely pebbled witht+ 2 pebbles

(Theoren:3.15). We can pebble each spine bottom-up in th@iiolg way, section by section. Suppose
by induction that we have a black pebble on the last verfex- 1], in the (i — 1)st section. Keeping the

pebble orw[i — 1],., perform a complete visiting pebbling ﬁlg). At some point during this pebbling we
must have a pebble on the pyramid sinkand at most other pebbles on the pyramid (by ProposifionB.10).
At this time, place a black pebble efi], and remove the pebble fronfi — 1],.. Complete the pebbling of

Hé}), leaving the pyramid empty. Performing complete visitiraipplings ofﬂg), e ,Héf) in an analogous
fashion allows us to move the black pebble alofi,, . . ., v[i] ., never exceeding total pebbling space3.
In the same way, for every visiting pebblifof I'(¢c, r) there must exist times; foralli = 1,..., ¢, when
space(P,,) < space(P) and the sinky; contains a pebble. Performing a minimum-space pebbling of
I'(c,r), possiblyc times if necessary, this allows us to advance the black peddbhgu[i].,, ..., v[i]y.
never exceeding total pebbling space3. This shows thak'(c, » + 1) can be completely pebbled with-3
pebbles. A simple syntactic adaptation of this argumentbléxrk pebbling (appealing to Theorém3.15 for
the black pebbling price of pyramids) also yielasb@(l“(c, r)) < 2r+3.

To prove that there are matching lower bounds for the peploiimstructed above, it is sufficient to show
that some pyramidﬂgjr) must be completely pebbled while there is at least one peirtdigc, » + 1) outside
of ngr). To see why, note that if we can prove this, then simply byaitire the fact thaBW—Peb@(ng) =

r + 2 and BW—Peb@(HgT) = 2r + 2 and adding one for the pebble outsiderﬂi) we have the matching
lower bounds that we need. We present the argument for blhde pebbling, which is the harder case.
The black-only pebbling case is handled completely anaisigo

Suppose in order to get a contradiction that there is a migitiebbling strategyP for I'(c,7 + 1) in
spacer + 2. By Observatiofi_316P performs a complete visiting pebbling of every pyrarﬂi%i). Consider

the first timer; when some pyramid has been completely pebbled and let thisry beHg{}). Then at
some timer; < 711 there arer + 2 pebbles orﬂg}) and the rest of the gragh(c, » + 1) must be empty of
pebbles at this point.

We claim that this implies that no vertex (¢, » + 1) outside of the pyramidﬂg}) has been pebbled

before times;. Let us prove this crucial fact by a case analysis.

1. No vertexv in any other pyramidIgf) can have been pebbled before time For if so, Lemma®&l7

says thaﬂg:) has been completely pebbled before time contradicting our choice df[g}) as the
first such pyramid.

2. No vertex on a spine has been pebbled before &imeThis is so since Lemma®.6 tells us that if
some vertex on a spine has been pebbled, then the whole spsidave been pebbled in view of the
fact that it is empty at time;. But then Lemm&3.12 implies that all pyramid sinks must Hasen
pebbled. This case has already been excluded.
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3. Finally, no vertexv in T'(c,r) can have been pebbled before time Otherwise the frugality of
P implies (by pattern matching on the arguments in the probisesenmad3IP anf8.6) that some
successor of must have been pebbled as well, and some successor of thassac et cetera, all the
way up to wherd'(c, r) connects with the spines. But we have ruled out the podgiliiilat a spine
vertex has been pebbled.

This establishes the claim, and we are now almost done. fiohcthe argument, we need a couple of
final observations. Note first that by frugality, at some timehe interval(c,71) some vertex in some
spine must have been pebbled. This is so since the pyrankid sitas been pebbled before timg all of

H(jl) is empty at timer;, and all spines are empty at timg < 7. But then Lemm&%®l6 tells us that there
WI|| remain a pebble on this spine until all of the spine hasrbeompletely pebbled.

Consider now the second pyran‘rlié7 completely pebbled by, say, at timer,. At some point in time

oo < T9 We haver + 2 pebbles orﬂgT ), and moreovery > 11 smcel‘[éT) is empty at timer;. But now

it must hold that either there is a pebble on a spine at thistpor, if all spines are completely empty, that
some spine has been completely pebbled. If some spine hasbempletely pebbled, however, this in turn
implies (appealing to Lemnia_3112 again) that there must beeqmebble somewhere in some other pyramid
ngr) at timeos. Thus the pebbling space exceeds?2 and we have obtained our contradiction. The lemma
follows. O

Studying the pebbling strategies in the proof of Lenimad &.1s not hard to see that they are very
inefficient. The subgraphs in(c, ») will be pebbled over and over again, and for every step in¢bansion
the time required multiplies. We next show that if we are anmie generous with the pebbling space, then
we can get down to linear time.

Proof of Lemm&&]2We want to prove thaf(c, ) has a persistent black pebbling stratégyhat pebbles
every vertex il'(c, r) exactly once and uses spagéc + ). Suppose that there is such a pebbling strategy
P, for I'(c, ). We describe how to construct a pebbliRg, ; for I'(c, » + 1) inductively. Note that the base
case fol'(c, 1) is trivial.

The construction of, . is very straightforward. First use, to make a persistent pebbling Bfc, )
in spaceO(c + r). At the end ofP,., we havec pebbles on the sinkg, ... ,~.. Keeping these pebbles in

place, pebble the pyramidig), . ,Hgi) persistently one by one in spa€gr) with a strategy pebbling
each vertex exactly once (for instance, by pebbling themiddottom-up level by level). We leave pebbles
on all pyramid sinks1, . .., z.. This stage of the pebbling only requires spaéxe + r) and at the end we
have2c black pebbles on all pyramid sinks, . . ., z. and all sinksyy,...,~. of I'(c,r). Keeping all these
pebbles in place, we can pebble @ipines in parallel in linear time with+ 1 extra pebbles. O

It remains to fill in the gaps in the proof of Lemrhal2.7 and itespl case LemmB8.3. Recall that
the proof of Lemm&=217 presented in Secfiod 2.2 hinged onlthms that not too many pyramids can be
pebbled simultaneously in a space-efficient pebbling, hadthis is true for the spines as well. Assuming
these two claims, we could show that that as any spine wadgqaklibe pebbling had to alternate back and
forth between time intervals when there are a lot of pebblesame pyramid and time intervals when all
sinks inT'(¢, r) are pebbled. This allowed us to apply the induction hypashmasiltiple times and obtain the
required lower bound.

Hence, all that remains to complete the proof of Lerimh 2.@ é&stablish the two technical lemmas that
upper-bound how many pyramids and spine sections can ogogdbles simultaneously at any one given
time in a pebbling subjected to space constraints as in Lefharhe claims in the two lemmas are very
similar in spirit, as are the proofs, so we state the lemmgetker and then present the proofs in sequence.
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Lemma 6.8 (Rephrasing of Lemmd2.710) Suppose thaP = {P,,...,P,} is a conditional black-white
pebbling onl’(¢, r) and thats is a constant satisfying the conditions in Lenima 2.7. Thexi &imes during

the pebblingP strictly less thant(s + 1) pyramidsl‘[g") contain pebbles simultaneously.

Lemma 6.9 (Rephrasing of Lemmd2.1]1) Suppose thaP = {P,,...,P,} is a conditional black-white
pebbling onl'(¢, r) and thats is a constant satisfying the conditions in Lenima 2.7. Thexi &imes during
the pebblingP strictly less thani(s + 1) spine sections contain pebbles simultaneously.

Note that Lemm&®&l9 provides a total bound on the number dlpdisections in alt spines. There
might be spines containing several sections being pebliedtaneously (in fact, this is exactly what one
would expect a black-white pebbling to do to optimize thedtigiven the space constraints), but what
Lemmd®&.D says that if we fix an arbitrary time [0, 7], add up the number of sections containing pebbles
at timet in each spine, and sum over all spines, we never ex¢ged 1) sections in total.

Proof of Lemm&®&Il8Suppose that on the contrary, there is some tiine (o, 7) when at leastls + 4
pyramidsII\?) in I'(¢,r) contain pebbles. Of these pyramids, at least 4 are empty both at time and
at time 7 sincespace(P,) < s andspace(P,) < s. By Lemma&J, these pyramids, which we denote
o®, ... 11?s+9 are completely pebbled durirfg, 7]. Moreover, we can conclude that for eveiy),
j=1,...,25 +4, there is an interval;, 7;] C [, 7] such that* € (o;,7;) andTIV) is empty at times;
andr; but contains pebbles throughout the interiegf, 7;) during which it is completely pebbled.

For eachiTV/) there must exist some timé € (o;, 7;) when there are at leastt 1 = BW-Peb” (I10)
pebbles. Fix such a timg for every pyramidlI¥) and assume that alf,j =1,...,2s + 4, are sorted in
increasing order. We have two possible cases:

1. Atleast half of allt; occur before (or at) time*, i.e., they satisfy; < ¢*. If so, look at the largest
t5 < t*. Atthis time there are at leastt- 1 pebbles ori1") and at leass* — 1 = s+ 1 pebbles on

other pyramids, which means thetace (Pt;) > (r + 2) + s. In other words;P exceeds the space
restrictions in LemmB2l7. Contradiction.

2. Atleast half of ali; occur after time™, i.e., they satisfy’; > ¢*. If we consider the smalles} larger
thant* we can again conclude thspace (]P’t;) > (r+ 1)+ (s + 1), which is again a contradiction.

Hence, if P is a pebbling that complies with the restrictions in Lenimia, & can never be the case that
4s + 4 pyramidsII\?) in I'(¢,r) contain pebbles simultaneously. O

Proof of Lemm&&]9Suppose that at some timé € (o, 7) at leastds + 4 sections contain pebbles. At
least2s + 4 of these sections are empty at timesand 7. Let us denote these sectiofy, ..., Ros14.
Appealing to Lemm&%l6, we conclude that there are intefwgls;] C [0, 7] for j = 1,...,2s + 4, such
thatt* € (o;,7;) andR; is empty at timesr; and7; but contains pebbles throughout the interia), 7;)
during which it is completely pebbled.

By Lemmal&.B, we know that less thds + 4 pyramids contain pebbles at tinag and similarly at
time 7;. Since allc pyramids inI'(c,r) must have their sinks pebbled durifg;, 7;) but it holds that
2. (4s +4) < c by the assumptions in LemriaPR.7, we conclude from Leinma @i7doh every sectiorR;
we can find some pyramid) that is completely pebbled during the interyal;, 7;). This, in turn, implies
that there is some tim& € (o, 7;) when the pyramidI\) contains at leasBW-Peb? (TI0)) = 7 4 1
pebbles. (We note that many can be equal and even refer to the same pyramid, but this & prablem.)

As in the proof of Lemm&%&l8, we now sort the j = 1,...,2s + 4, in increasing order and consider
the two possible cases. If at least half oftgllsatisfytj. < t*, we look at the Iargeﬁg < t*. At this time

there are at least+ 1 pebbles odI¥) and at Ieas@ = s+ 2 pebbles on different sections, which means
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thatspace (]P’t;) > r+ s + 3 exceeds the space restrictions. If, on the other hand, st egf of all ¢;

satisfyt; > t*, then for the smallegt; larger than’™ we can again conclude thspace (]P’t;) >r+s+3,
which is a contradiction. The lemma follows. O

As we discussed at the start of this section, Thedremn 1.9 nbenfs by applying Observatidn—3.9 on
the single-sink version df(c, 7).

As a final note, we remark that not only do our proofs get muchenimvolved when going from the
black-only pebbling trade-off in [CS82] to our black-whitebbling trade-off, but the added complications
also lead to our bound for black-white pebbling being slightorse than the one i I[CSB2] for black
pebbling. More specifically, Carlson and Savage are abledeegtheir results for DAGs having oniy(r)
sections per spine, whereas we néxdr) sections irl’(c, ). This blows up the number of vertices, which
in turn weakens the trade-offs measured in terms of gragh #izvould be interesting to find out whether
our proof could in fact be made to work for graphs with ofilyr) sections per spine. If so, this would
immediately improve the trade-offs for the graphs in Thew&.ID[GH, and 8.5, as well as the resolution
trade-offs derived from these graphs|in [BND9b].

7 Concluding Remarks

It is known that the black-white pebbling price is always wéo bound on the resolution space of refuting
pebbling contradiction®’eb ;[ f] with respect to the “right” functiong, as proven in[[BNO8]. Also, for all
graphs studied in this context so far there have been showrigb refutations of the corresponding peb-
bling contradictions in space upper-bounded by the blackenpebbling price—trivially for graphs where
the black and black-white pebbling prices coincide, andarioterestingly for the graphs in the current
paper where the black-white pebbling price is asymptdticathaller than the black pebbling price. This
naturally raises the question whether it holds in genewlttie refutation space of pebbling contradictions
is asymptotically equal to the black-white pebbling prié¢he underlying graphs.

Open Question 1.1s in true for any DAGQ~ with bounded vertex indegree and any (fixed) Boolean fumgtio
that the pebbling contradictio®eb ;[ f] can be refuted in total spage(BW-Peb(G))?

More specifically, one could ask—as a natural first line cdicittif one wants to investigate whether
the answer to the above question could be yes—if it holdshibahded labelled pebblings are in fact as
powerful as general black-white pebblings. In a sense,ishisking whether only a very limited form of
nondeterminism is sufficient to realize the full potentibtack-white pebbling.

Open Question 2.Does it hold that any complete black-white pebbliagof a single-sink DAGH with
bounded vertex indegree can be simulated 6§ éspace(P)), O(1))-bounded pebbling?

Note that a positive answer to this second question wouldadiately imply a positive answer to the
first question as well by Lemnia2.5.

We have no strong intuition either way regarding Open QaeEli but as to Open Questibh 2 it would
perhaps be somewhat surprising if bounded labelled pafsbturned out to be as strong as general black-
white pebblings. Interestingly, although the optimal klahite pebblings of the graphs in Lemiall.7 can
be simulated by bounded pebblings, the same approachndbegork for the original graphs separating
black-white from black-only pebbling il [Wil88]. Indeedhdse latter graphs might be a candidate graph
family for answering Open Questi@h 2 in the negative, ileoysng that standard black-white pebblings can
be asymptotically stronger than bounded labelled pebbling

Finally, we are intrigued by the question of whether the prtips of the formulas’eb;[f] shown to
hold in [BNO&,[BNO9b] for “the right kind” of functiongf in fact extend to the simpler formuldeb ;[ V|
defined in terms of non-exclusive or.
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Open Question 3.Is it true for any DAGG that any resolution refutatiom of Peb[V] can be translated
into a black-white pebbling ai with time and space upper-bounded asymptotically by thegtteand space
of r?

Earlier results in[[Nor09, NHO8b] can be interpreted asdatihg that this should be the case, but the
results there only apply to limited classes of graphs ang ocapture space lower bounds, not time-space
trade-offs. And the papers IBNDO8, BN09b] do not shed anytl@ghthis question, as the techniques used
there inherently cannot work for formulas defined in termaaf-exclusive or.

If the answer to Open Questibh 3 is yes—which we would casljoexpect it to be—then this could be
useful for settling the complexity of decision problems flesolution proof space, i.e., the problem given a
CNF formulaF and a space boundto determine whetheF' has a resolution refutation in space at most
Reducing from pebbling space by way of formulgsb[\] would avoid the blow-up of the gap between
upper and lower bounds on pebbling space that cause prokleersusing, for instance, exclusive or.
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