
ar
X

iv
:1

00
7.

32
92

v1
 [

cs
.D

S]
 1

9
Ju

l 2
01

0

Lower Bounds on Query Complexity for Testing Bounded-Degree

CSPs

Yuichi Yoshida∗

School of Informatics, Kyoto University, and
Preferred Infrastructure, Inc.

yyoshida@lab2.kuis.kyoto-u.ac.jp

Abstract

In this paper, we consider lower bounds on the query complexity for testing CSPs in the
bounded-degree model.

First, for any “symmetric” predicate P : {0, 1}k → {0, 1} except EQU where k ≥ 3, we
show that every (randomized) algorithm that distinguishes satisfiable instances of CSP(P) from
instances (|P−1(0)|/2k − ǫ)-far from satisfiability requires Ω(n1/2+δ) queries where n is the
number of variables and δ > 0 is a constant that depends on P and ǫ. This breaks a natural
lower bound Ω(n1/2), which is obtained by the birthday paradox. We also show that every
one-sided error tester requires Ω(n) queries for such P . These results are hereditary in the sense
that the same results hold for any predicate Q such that P−1(1) ⊆ Q−1(1). For EQU, we give
a one-sided error tester whose query complexity is Õ(n1/2). Also, for 2-XOR (or, equivalently
E2LIN2), we show an Ω(n1/2+δ) lower bound for distinguishing instances between ǫ-close to and
(1/2− ǫ)-far from satisfiability.

Next, for the general k-CSP over the binary domain, we show that every algorithm that
distinguishes satisfiable instances from instances (1 − 2k/2k − ǫ)-far from satisfiability requires
Ω(n) queries. The matching NP-hardness is not known, even assuming the Unique Games
Conjecture or the d-to-1 Conjecture. As a corollary, for MIS on graphs with n vertices and a
degree bound d, we show that every approximation algorithm within a factor d/poly log d and
an additive error of ǫn requires Ω(n) queries. Previously, only super-constant lower bounds were
known.

∗This work was conducted while the author was visiting Rutgers University.

0

http://arxiv.org/abs/1007.3292v1

1 Introduction

Property testing [13] is a relaxation of decision. We call a randomized algorithm an (γ, ǫ)-tester
when, given an oracle access OΦ to an instance Φ, it accepts Φ if it is γ-close to a predetermined
property with a probability of at least 2/3 and rejects Φ if it is ǫ-far from the property with a
probability of at least 2/3. An (γ, ǫ)-tester is often referred to as a tolerant tester [21]. The
efficiency of an algorithm is measured by the query complexity, which is the number of accesses to
OΦ. The definition of farness depends on each model. A (0, ǫ)-tester is simply called an ǫ-tester.

In this paper, we study testers for k-CSP (constraint satisfaction problems) in the bounded-
degree model and show various lower bounds on the query complexity. An instance Φ of k-CSP
is a tuple of a set of variables and a set of constraints (functions) over k variables. Then, we test
whether there exists an assignment over variables that satisfies all the constraints. We only consider
Boolean CSPs. The degree of a variable x is the number of constraints in which x appears. In the
bounded-degree model [15], we only consider instances such that the degree of each variable is at
most d, where d is a predetermined parameter. By specifying a variable x and an index i(1 ≤ i ≤ d),
the oracle OΦ returns the i-th constraint in which x appears. If there exists no such constraint,
OΦ returns some unique symbol. An instance Φ is called ǫ-far from satisfiability if we must remove
at least ǫdn/k constraints to make Φ satisfiable. An instance Φ is called ǫ-close to satisfiability
if we can make Φ satisfiable by removing at most ǫdn/k constraints. Let P : {0, 1}k → {0, 1}
be a predicate (a function). Then, CSP(P) is a sub-problem of k-CSP in which every constraint
is specified by the same predicate P and literals on it (see Section 2 for details). For a concrete
predicate, we often use P as the name of a problem instead of writing CSP(P) (e.g., k-XOR).

The first contribution of this paper is the development of a new technique to show lower bounds
for testing a wide range of CSP(P). A predicate P is called symmetric if the following conditions
hold: (i) P (x) = P (y) for any x, y ∈ {0, 1}k such that |x| = |y|. (ii) P (x) = P (x) for any x ∈ {0, 1}k
where x = (1, . . . , 1)− x. We assume |P−1(1)| > 0 throughout this paper. The simplest symmetric
predicates might be k-EQU : {0, 1}k → {0, 1}, which is satisfied iff the variables are all zeros or
all ones, and k-NAE : {0, 1}k → {0, 1}, which is satisfied iff not all of the variables have the same
value. k-NAE is much related to coloring on k-uniform hypergraphs. We show the next theorem.

Theorem 1.1. Let P : {0, 1}k → {0, 1} be a symmetric predicate except k-EQU where k ≥ 3.
Then, for any ǫ > 0 and predicate Q : {0, 1}k → {0, 1} such that P−1(1) ⊆ Q−1(1), there exist
δ = O(1/ log(k/ǫ2)) and d = O(1/ǫ2) such that every (|Q−1(0)|/2k − ǫ)-tester for CSP(Q) with a
degree bound d requires Ω(n1/2+δ) queries,

We note that a (|Q−1(0)|/2k)-tester is trivial since no instance can be (|Q−1(0)|/2k)-far from
satisfiability and we can always accept. Thus, Theorem 1.1 excludes the possibility of efficient
non-trivial testers. We also stress that it is impossible to get rid of the condition of symmetry since
for a certain non-symmetric CSP, called Dicut, we have a constant-time non-trivial tester using
recent results [24, 28]. The lower bound Ω(n1/2+δ) is somewhat surprising since, as we will see in
Section 2.2, this lower bound implies that even if we find cycles in the instance, they do not help
at all to test the satisfiability.

k-XOR is a predicate of arity k, which is satisfied iff the parity of its variables is 1. We show a
similar lower bound for 2-XOR.

Theorem 1.2. For any ǫ > 0, there exist δ = O(ǫ/ log(k/ǫ2)) and d = O(1/ǫ2) such that every
(ǫ, 1/2 − ǫ)-tester for 2-XOR with a degree bound d requires Ω(n1/2+δ) queries.

If an ǫ-tester always accepts satisfiable instances, it is called a one-sided error tester. Otherwise,
it is called a two-sided error tester. We give a tight lower bound for one-sided error testers.

1

Table 1: Summary of results on query complexity of two-sided error (γ, ǫ)-testers for various prob-
lems. Here, P denotes any symmetric predicate with arity k ≥ 3 except k-EQU.

Problem γ ǫ Bound Reference

2-XOR 0 ǫ Θ̃(
√
n) [14, 15]

2-XOR ǫ 1/12 Θ(n) [29]

2-XOR ǫ 1/2 − ǫ Ω(n1/2+δ) Theorem 1.2

3-XOR 0 1/2 − ǫ Θ(n) [8]

k-EQU 0 ǫ Õ(
√
n) Theorem 1.4

k-EQU 0 ǫ Ω(
√
n) [15]

CSP(P) 0 P−1(0)/2k − ǫ Ω(n1/2+δ) Theorem 1.1

k-CSP 0 1− 2k/2k − ǫ Θ(n) Theorem 1.5

Theorem 1.3. Let P : {0, 1}k → {0, 1} be a symmetric predicate except k-EQU where k ≥ 3. Then,
for any ǫ > 0 and any Q : {0, 1}k → {0, 1} such that P−1(1) ⊆ Q−1(1), there exists d = O(1/ǫ2)
such that every one-sided error (|Q−1(0)|/2k − ǫ)-tester for CSP(Q) with a degree bound d requires
Ω(n) queries.

On the other hand, k-EQU is an easier problem as stated in the next theorem.

Theorem 1.4. For any ǫ > 0, d ≥ 1 and k ≥ 2, there exists a one-sided error ǫ-tester for k-EQU
with query complexity O(n1/2poly(dk log n/ǫ)).

Bipartiteness is the property of a graph such that the vertex set can be partitioned into two
disjoints sets U and V such that every edge connects a vertex of U and a vertex of V . Theorem 1.4
is almost tight since testing bipartiteness is a sub-problem of 2-EQU and the Ω(

√
n) lower bound

is known for this problem [15].
The second contribution of this work is a linear lower bound to distinguish satisfiable instances

of the general k-CSP from instances much further from satisfiability.

Theorem 1.5. For any ǫ > 0 and k ≥ 3, there exists d = O(1/ǫ2) such that every (1− 2k/2k − ǫ)-
tester for k-CSP with a degree bound d requires Ω(n) queries.

As a corollary, we show a linear lower bound for approximating Maximum Independent Set

(MIS). An independent set of a graph is a vertex set such that any two of its vertices are not
adjacent. MIS is the problem of finding the largest independent set in a graph. A value x is called
an (α, β)-approximation for a value x∗ if x∗ ≤ x ≤ αx∗ + β. We call a randomized algorithm an
(α, β)-approximation algorithm for MIS if, given an oracle access OG to a graph G, it computes an
(α, β)-approximation for MIS with a probability of at least 2/3. Similarly to k-CSP, by specifying
a vertex v and an index i(1 ≤ i ≤ d), the oracle OG returns the i-th edge in which v appears. We
show the next theorem.

Theorem 1.6. Every (d/poly log d, ǫn)-approximation algorithm for Maximum Independent Set on
graphs with n vertices and a degree bound d requires Ω(n) queries.

Related work: There have been several works on testing CSPs. The summary of known results
is shown in Table 1. Max k-CSP is an optimization version of k-CSP in which we are to maximize
the number of satisfied constraints by an assignment. Let P be a predicate of arity k. We notice
that if there is an approximation algorithm for Max CSP(P) with a factor 1−ǫ

1−γ , we have (γ, ǫ)-tester

2

for CSP(P). Thus, a lower bound for testing CSP(P) implies a lower bound for approximating Max

CSP(P). The NP-hardness of approximation within a certain factor is often shown using a reduction
from 3-XOR. Using the same reduction, for a wide range of P , it is shown that there exists some
η > 0 such that any η-tester requires Ω(n) queries [29] (e.g., η = 1/12 for 2-XOR [16] and η = 1/16
for 3-NAE [31]). However, for ǫ > η, we did not have any lower bound for ǫ-testers. Theorems 1.1
and 1.2 tighten this gap and also imply the new lower bound Ω(n1/2+δ) for approximating Max

CSP(P) within a factor |P−1(1)|/2k + ǫ.
Assuming the Unique Games Conjecture [17], it is NP-hard to distinguish between instances

of Max k-CSP whose optimal solutions are 1− ǫ and (k + o(k))/2k + ǫ [5, 22]. Theorem 1.5 states
a somewhat stronger fact about sublinear time algorithms; i.e., it is hard to distinguish satisfiable
instances from instances whose optimal solutions are at most O(k)/2k with sublinear queries. No
matching NP-hardness is known, even assuming the d-to-1 Conjecture [17].

The concept of (α, ǫn)-approximation algorithms was introduced in [10] to approximate the
minimum spanning tree of a bounded-degree graph. Since then, numerous (α, ǫn)-approximation
algorithms have been developed for graph problems [1, 10, 18, 19, 20, 30]. For MIS, it is shown
that there exists a constant-time (O(d log log d/ log d), ǫn)-approximation algorithm, and every
(o(d/ log d), ǫn)-approximation algorithm requires a super-constant number of queries [1]. The-
orem 1.6 improve this to a linear lower bound at the cost of a slightly weaker approximation factor.

Motivations: Among all CSPs, we could say that k-XOR is the one whose behavior is best
understood. It is NP-hard to distinguish between instances whose optimal solutions (in the sense
of Max k-XOR) have values 1 − ǫ and 1/2 + ǫ [16]. This fact means that the random assignment
achieves the best approximation ratio one can obtain in polynomial time. The behavior of Max

k-XOR under linear programmings (LP) and semidefinite programmings (SDP) is also well-studied.
A quality of linear and semidefinite programming are measured by integrality gap, which is the ratio
of the optimum for those programs to the optimum for the original problem. The Lovasz-Schrijver
hierarchy (LS, LS+), Sherali-Adams hierarchy (SA), Lasserre hierarchy are sequences of relaxations
of those programs to obtain tighter approximations. For all of these hierarchies, the integrality gaps
remain 2− ǫ after Ω(n) rounds of relaxations [9, 11, 23].

Presumably, the reason why Max k-XOR is hard to approximate is that the accepting assign-
ments of k-XOR contain the support of a (k − 1)-wise independent distribution. These results
are extended to predicates whose accepting assignments contain the support of a pairwise inde-
pendent distribution [5, 11, 26]. For other predicates, however, we can approximate better than
the random assignment using SDP (e.g., 3-NAE). One motivation for this work is to investigate
why SDP helps with those predicates. Theorems 1.1 and 1.2 suggest that a few cycles are not
sufficient to approximate better than the random assignment. This holds not only for SDP, but
also for any algorithm. Also, Theorem 1.3 gives us a separation of the ability of polynomial-time
algorithms versus sublinear-time one-sided error testers since SDP approximates better than the
random assignment in polynomial time.

It is an interesting question whether we can approximate Max k-CSP within a certain factor by
sampling a small portion of an instance. We can approximate the optimal solution of Max k-CSP
within an additive error ǫnk by sampling poly(1/ǫ) variables and by solving the induced problems [2].
Thus, dense instances are easy to approximate with constant queries [2, 3, 4]. However, little is
known for sparse instances. Solving Max Cut of a sparse graph by sampling is demonstrated in [6].
They showed that the value of Goemans-Williamson SDP [12] for a randomly sampled subgraph of
linear size is approximately equal to the SDP value for the original graph. Our work is a complement
of their work. Theorem 1.1 implies that, to approximate symmetric Max k-CSP better than the

3

random assignment, we need to sample Ω(n1/2+δ) constraints from the instance.

Organization: In Section 2, we define notions used in this paper, followed by a proof overview of
Theorem 1.1, which is the main result of this paper. We give the proof of Theorem 1.1 in Section 3.
We mention other results in Section 4.

2 Preliminaries

2.1 Definitions

We define notions on hypergraphs. Let {v1, . . . , vp} be a vertex set and {e1, . . . , ep−1} be an edge
set such that ei contains vi and vi+1 for 1 ≤ i ≤ p − 1. Then, we call {e1, . . . , ep} a hyperpath. A
hypergraph is called connected if, for every two vertices, there is a hyperpath containing them. Let
{v1, . . . , vp} be a vertex set and {e1, . . . , ep} be an edge set such that ei contains vi and v(i mod p)+1 for
1 ≤ i ≤ p. Then, we call {e1, . . . , ep} a hypercycle. A connected hypergraph is called a hypertree if it
does not have any hypercycle. A hyperforest is a hypergraph such that each connected component
is a hypertree. Let H be a k-uniform hypergraph with n vertices, m edges and c connected
components. We define cy(H) = (k− 1)m−n+ c, which measures how many vertices are deficient
compared to a hyperforest (note that any hyperforest with m edges and c connected components
has (k − 1)m + c variables). We call H a (γ, η)-expander if the subgraph of H induced by any
s ≤ γn edges contains at least (k − 1− η)s vertices.

Let P : {0, 1}k → {0, 1} be a predicate. An instance Φ of CSP(P) is a tuple of a set of variables
and a set of constraints. Here, each constraint C is defined over a k-tuple of variables (x1, . . . , xk)
and is of the form P (x1 + b1, . . . , xk + bk) = 1 for some (b1, . . . , bk) ∈ {0, 1}k . We call (b1, . . . , bk) a
literal vector of C. Here, bi accounts for the possible negation of xi. The underlying hypergraph of
Φ is a k-uniform hypergraph H in which each variable of Φ corresponds to a vertex of H, and for
each constraint of the form P (x1 + b1, . . . , xk + bk) = 1 in Φ, we have an edge (x1, . . . , xk) in H.

Next, we introduce notions on distributions. Suppose that D is a distribution generating x1,x2

(and possibly others). Let D(x1) be the marginal distribution of x1 under D. Let D(x1|x2 = x2)
denote the marginal distribution of x1 conditioned on x2 = x2, i.e., PrD(x1|x2=x2)[x1] = PrD[x1|x2 =
x2]. We often omit the actual value of a random variable if it is unimportant. For example,
D(x1|x2 = x2) may be written as D(x1|x2) and

∑

x Pr[x = x] may be written as
∑

x
Pr[x]. Let

Supp(D) denote the support of D. If the random variables x1 and x2 become independent after
conditioning x3, we write x1 ⊥⊥ x2 | x3. Let {xv}v∈V be a set of random variables. Then, for
S ⊆ V , xS denotes the set {xv}v∈S .

Let D1 and D2 be distributions generating a random variable x. The total variation distance
between D1(x) and D2(x) is defined as

dTV [D1(x),D2(x)] =
∑

x

∣

∣

∣

∣

Pr
D1

[x]− Pr
D2

[x]

∣

∣

∣

∣

.1

We note that 0 ≤ dTV [D1(x),D2(x)] ≤ 2. Also, we define dTV [D(x)] = dTV [D(x),U(x)] where U is
the uniform distribution. When x is Boolean, 0 ≤ dTV [D(x)] ≤ 1.

2.2 Proof Overview

We give a proof overview of Theorem 1.1. To prove the lower bound, we use Yao’s minimax
principle [27]. Specifically, we design two distributions Dsat and Dfar of instances of CSP(P) so

1This is twice as large as the standard definition. We use this definition to avoid unnecessary calculations.

4

that all instances of Dsat are satisfiable, while almost all instances of Dfar are (|P−1(0)|/2k − ǫ)-
far from satisfiability. Then, we show that any deterministic algorithm with a sublinear number
of queries cannot distinguish between instances chosen from Dsat and instances chosen from Dfar.
For underlying hypergraphs of Dsat and Dfar, we use the same distribution of expanders. Thus,
if we ignore literal vectors and we only look at variables used in constraints, we have no hope of
distinguishing Dsat from Dfar. We describe how Dsat generates an instance. First, Dsat chooses an
underlying hypergraph H = (V,E). Then, the set of variables of the instance is {xv}v∈V . Then,
Dsat first chooses xv ∈ {0, 1} for each vertex v ∈ V uniformly at random. Here, the set {xv}v∈V
is the supposed solution for the instance. Next, Dsat chooses a literal vector be for each edge
e = (v1, . . . , vk) and adds a constraint Ce of the form P ((xv1 , . . . , xvk) + be) = 1. Dsat chooses
be so that the resulting instance is satisfiable by {xv}v∈V . In contrast, Dfar simply generates be

uniformly at random for each edge e after choosing an underlying hypergraph.
Any algorithm with query complexity ℓ can be seen as a mapping from query-answer history

(q1, a1), . . . , (qt−1, at−1) to qt for t ≤ ℓ and to {accept, reject} for t = ℓ. A query qt = (vt, it) is a
pair of a variable vt and an index it, and an answer at is a constraint or the information that there
is no constraint there. To analyze the distribution of the query-answer history of an algorithm
running under a distribution of instances, it is useful to think that there is a randomized process
behind the oracle. That is, when an algorithm asks a query of the oracle, the randomized process
generates the answer to the query according to some distribution. We later define a randomized
process Psat (resp., Pfar), which is equivalent to Dsat (resp., Dfar) in the sense that no matter how an
algorithm asks the oracle, the distribution of instances we finally obtain is the same as Dsat (resp.,
Dfar). Let Ksat (resp., Kfar) be the distribution of query-answer history induced by the interaction
between an algorithm A and Psat (resp., Pfar). We show that when the query complexity of A is
o(n1/2+δ) for some δ > 0, dTV [Ksat,Kfar] is negligibly small. Thus, it is impossible to distinguish
Dsat from Dfar with high probability.

If we ask at most O(n1/2) queries, from the birthday paradox, the query-answer history does
not contain hypercycles with high probability. From this fact, it is relatively easy to show that we
cannot distinguish Dsat from Dfar with O(n1/2) queries. However, if we ask Ω(n1/2+δ) queries, the
situation completely changes because of the effect of hypercycles. For example, suppose that the
predicate is EQU and A obtained a constraint Ce such that variables xu, xv ∈ Ce already appeared
in the query-answer history. Then, A can calculate the parity xu ⊕ xv, by the propagation, along
the constraint Ce and along a path in the query-answer history. If they are not the same, the
instance must come from Dfar. In other words, if we assume that the instance comes from Dsat, we
can guess be from the query-answer history.

Can we generalize this algorithm to other predicates? Though we do not exclude the possibility
of sublinear-time algorithms, we can show that, in general, we need quite a few hypercycles to
distinguish Dsat from Dfar. The reason why we were able to use the propagation is that the
value of a variable in a predicate EQU uniquely determines the values of other variables. For
other symmetric predicates, however, this is not true. In fact, the correlation between variables
exponentially decays along paths. Thus, even if variables xu and xv already appeared in the query-
answer history, the correlation between xu and xv is tiny (before obtaining Ce). Precisely, we
will show that dTV [Dsat(xu|xv,bE′),Dsat(xu|bE′)] is tiny where E′ is the edge set in the query-
answer history. Thus, be is almost identical to the uniform distribution. It follows that we cannot
distinguish Dsat from Dfar with O(n1/2+δ) queries.

To prove this, we use several facts about expanders. Note that the lengths of hypercycles
are large (roughly, g = Θ(logd n)) in an expander. Thus, for two adjacent vertices u and v, the
distance between them is at least g after removing the constraint containing them. Furthermore,
the neighborhood of v looks like a hypertree T with depth g. Note that any information from xu

5

comes through the leaves of T . Though the number of leaves of T is exponential in the depth, we
can show that the only tiny portion of them is connected to u (without passing v). Since such
leaves have an exponentially small correlation with xv, we conclude that the correlation between
xu and xv is negligibly small.

2.3 Properties of dTV

We show several lemmas about dTV and probability distributions. Due to the space limit, all the
proofs are deferred to Appendix A.

Lemma 2.1. Let D1 and D2 be distributions generating random variables x and y. Suppose
that dTV [D1(x),D2(x)] ≤ δx, and dTV [D1(y|x = x),D2(y|x = x)] ≤ δy for any x. Then,
dTV [D1(x,y),D2(x,y)] ≤ δx + δy.

Lemma 2.2. Let D a distribution generating xA,xB ,xC . Suppose that xA ⊥⊥ xC | xB. Then,

dTV [D(xC |xA)] ≤ dTV [D(xB |xA)] · dTV [D(xC |xB)].

Lemma 2.3. Let D be a distribution generating x,yi(1 ≤ i ≤ k). Suppose that PrD[x = x] is equal
for every x ∈ Supp(D(x)) and yi ⊥⊥ yj | x for every 1 ≤ i, j ≤ k. Then,

Pr
D
[x = x|{yi}ki=1] =

∏k
i=1 PrD[x = x|yi]

∑

x′∈Supp(D(x))

∏k
i=1 PrD[x = x′|yi]

.

3 An Ω(n1/2+δ) Lower Bound for Two-Sided Error Testers

In this section, we give a proof of Theorem 1.1. A reader can safely assume that a predicate P is
symmetric until the proof of Theorem 1.1.

3.1 Probabilistic Constructions of Expanders

We introduce a probability distribution Gn,d,k of d-regular k-uniform multi-hypergraphs with n
vertices. This distribution is used to define Dsat and Dfar. Here, we assume that dn is divisible by k
(otherwise, no d-regular k-uniform hypergraph exists). We construct a hypergraph H = (V,E) as
follows. We start with a set of dn vertices V ′ where a vertex v ∈ V is corresponding to d vertices in
V ′. Then, we partition V ′ into k-hyperedges randomly. Finally, we contract each d vertices of V ′

and let H be the resulting graph. The proof of the following lemma is deferred to Appendix B.1.

Lemma 3.1. Let H be a hypergraph chosen uniformly at random from Gn,d,k. For any η, there
exists γ such that H is a (γ, η)-expander with probability 1− o(1).

3.2 Hard instances

As in the proof overview, we introduce two distributions Dsat and Dfar of instances of CSP(P).
First, we define a distribution generating instances of CSP(P) given an underlying hypergraph.

Definition 3.2. Let H = (V,E) be a k-uniform hypergraph with n vertices. Define a distribution
DH generating an instance Φ of CSP(P) as follows. The variable set of Φ is {xv}v∈V . We choose
x ∈ {0, 1}n uniformly at random. For each edge e = (v1, . . . , vk) ∈ E, we choose be uniformly at
random from the set {b ∈ {0, 1}k | P ((xv1 , . . . ,xvk) + b) = 1}. Then, we add a constraint Ce of the
form P ((xv1 , . . . , xvk) + be) = 1 to Φ.

6

Definition 3.3. Given parameters n, d, k, define a distribution Dsat generating an instance of
CSP(P) as follows. First, we choose a hypergraph H from Gn,d,k. Then, an instance is output
according to DH .

Similarly, define a distribution Dfar generating an instance of CSP(P) as follows. First, we
choose a hypergraph H = (V,E) from Gn,d,k. Then, for each edge e = (v1, . . . , vk) ∈ E, we choose
b ∈ {0, 1}k uniformly at random and add a constraint Ce of the form P ((xv1 , . . . , xvk) + b) = 1.

We can describe the generating process of Dsat with a graphical model. Each vertex in the
graphical model corresponds to xv(v ∈ V) or be(e ∈ E), and each edge expresses the dependency
between two random variables. For an exposition of graphical models, see [7]. The important fact
derived from the graphical model is the following.

Observation 3.4. Let H be a hypergraph and G = (V,E) be a subgraph of H. Let A,B,C be sets
of vertices such that any path in G between A and C passes a vertex of B. Then, xA ⊥⊥ xC | xB

under DH(·|bE).

From the construction, any instance of Dsat is satisfiable. On the other hand, the following
lemma is well-known (e.g., [23, 26]). We provide a proof for completeness in Appendix B.2.

Lemma 3.5. For any ǫ > 0, there exists an integer d ≥ 1 for which the following holds. Let Φ
be an instance of CSP(P) chosen from Dfar where P : {0, 1}k → {0, 1} is a predicate. Then, Φ is
(|P−1(0)|/2k − ǫ)-far from satisfiability with a probability of 1− o(1).

3.3 Randomized processes equivalent to Dsat and Dfar

We show that, with high probability, any algorithm A with O(n1/2+δ) queries runs on distributions
Dsat, or Dfar can find at most O(n3δ) cycles and the lengths of those cycles are Ω(logdk n).

We define a randomized process Psat, which interacts with A, so that Psat answers queries from
A while constructing a random graph from Dsat. Thus, the interaction of Psat with A captures a
random execution of A on a graph uniformly distributed in Dsat. Similarly, we define a randomized
process Pfar, which imitates Dfar.

The process Psat has two stages. The first stage continues as long as A performs queries,
and Psat answers to those queries. In the second stage, Psat determines the rest of the instance.
Psat internally holds a supposed solution {xv}v∈V , which is hidden from A. Literal vectors are
determined so as not to contradict this solution.

First stage of Psat: Starting from t = 1, for each query qt = (vt, it) of A, Psat proceeds as follows.
For each vertex u, we define remaining degree r(u) as the number of constraints adjacent to u which
are not accessed yet by A. We choose u2, . . . , uk with a probability according to their remaining
degrees. Specifically, since the sum of remaining degrees of all vertices at the time that A specifies
vt is dn − (t− 1)k + 1, the probability that a vertex u is chosen as u2 is r(u)/(dn − (t− 1)k − 1).
Similarly, the probability that u is chosen as u3 is r(u)/(dn − (t − 1)k − 2) since the sum of the
remaining degrees decreases by one. This process continues until uk is chosen. Finally, form an
edge e = (u1 = vt, . . . , uk). For each chosen vertex ui ∈ e, if the supposed solution xui is not
determined yet, Psat chooses xui ∈ {0, 1} uniformly at random. Then, Psat chooses a literal vector
be ∈ {0, 1}k uniformly at random from {b ∈ {0, 1}k | P ((xu1 , . . . ,xut) + b) = 1}. Finally, Psat

returns the constraint Ce of the form P ((xu1 , . . . , xut) + be) = 1 to A.
Second stage of Psat: Among all possibilities of the rest of the underlying graph, Psat chooses

one of them uniformly at random. Then, Psat decides xv and be randomly in the same way as the
first stage.

7

The process Pfar proceeds in an almost identical manner. The only difference is that Pfar does
not keep track of the supposed solution and always chooses literal vectors uniformly at random. It
is easy to confirm that the following lemma holds using indunction on the number of queries, and
we omit the proof (see Lemma 7.3 of [15] for details).

Lemma 3.6. For every algorithm A, the process Psat (resp., Pfar) uniformly generates instances
of Dsat (resp., Dfar) when interacting with A.

The proofs of the following two lemmas are deferred to Appendices B.3 and B.4.

Lemma 3.7. Let δ ≥ 0 and G be the hypergraph induced by the query-answer history after
O(n1/2+δ) steps of interactions between an algorithm A and Psat (or Pfar). Then, with a prob-
ability of at least 1− o(1), cy(G) = O(k2n3δ).

Lemma 3.8. Let δ ≥ 0 and G be the hypergraph induced by the query-answer history after
O(n1/2+δ) steps of interactions between an algorithm A and Psat (or Pfar). Then, with a prob-
ability of at least 1− o(1), the girth of G is at least g = (12 − 2δ) logdk n.

3.4 Correlation decay along edges of a hypertree

Let Φ be an instance of CSP(P) generated by Dsat. Suppose that T = (V,E) is a subgraph of the
underlying graph of Φ and T is a hypertree. Let v ∈ V be a (arbitrary) root of T and L be a subset
of leaves of T . In this subsection, we consider how the information of xL propagates into xv along
edges of T . Specifically, we calculate dTV [DH(xv|xL,bE),DH(xv|bE)]. A proof of the next lemma
is given in Appendix B.5.

Lemma 3.9. Let T = (V,E) be a subgraph of a hypergraph H. If T is a hypertree, then xv and
bE are independent for any v ∈ V under DH .

From Lemma 3.9, dTV [DH(xv|xL,bE),DH(xv |bE)] = dTV [DH(xv |xL,bE)] holds.
Next, we see how dTV [DH(xv |xL,bE)] propagates by connecting vertices at a vertex or an edge.

Proofs of next two lemmas are given in Appendices B.6, and B.7, respectively.

Lemma 3.10. Let T = (V,E) be a subgraph of a hypergraph H. Suppose that T is a hypertree.
Let T1, . . . , Tℓ be the set of the subtrees obtained by splitting v ∈ V and Li(1 ≤ i ≤ ℓ) be a subset of
the leaves of Ti. Then,

dTV [DH(xv|{xLi}ℓi=1,bE)] ≤
ℓ

∑

i=1

dTV [DH(xv|xLi ,bE)].

Lemma 3.11. Let T = (V,E) be a subgraph of a hypergraph H. Suppose that T is a hypertree. Let
T1, . . . , Tk−1 be the set of subtrees obtained by removing e = (v1, . . . , vk) ∈ E. Here, vi is the root
of Ti. Let Li(1 ≤ i ≤ k − 1) be a subset of the leaves of Ti. Then,

dTV [DH(xvk |{xLi}k−1
i=1 ,bE)] ≤ ρ(P)

k−1
∑

i=1

dTV [DH(xvi |xLi ,bE)].

Here, ρ(P) ≤ 1 is a constant, which only depends on the (symmetric) predicate P . In particular,
ρ(P) < 1 if P is not EQU.

8

3.5 Putting things together

Let ρ(P) be the constant determined in Lemma 3.11.

Lemma 3.12. Let G = (V,E) be a subgraph of a hypergraph H with girth g and let e ∈ E be an
edge. Then, for any v ∈ e and S ⊆ e− {v}, dTV [DH(xv |xS ,bE−e)] ≤ ρ(P)g(2cy(G− e) + k).

Proof. Let T = (VT , ET) be a subgraph of G induced by vertices whose distance from v in G − e
is at most g. Note that T is a hypertree rooted at v since the girth of G − e is g. For a leaf u of
T , let Cu be the resulting connecting component containing u after removing T . We define L as a
subset of leaves as follows. A leaf u is in L iff Cu contains a vertex of S or Cu is not a hypertree.
Once L is connected to all vertices of S, each leaf u ∈ L involves a cycle. Thus, |L| is at most
2cy(G− e) + k. From Lemma 2.2,

dTV [DH(xv|xS ,bE−e)] ≤ dTV [DH(xv|xL,bE−e)]dTV [DH(xL|xS ,bE−e)] ≤ 2dTV [DH(xv |xL,bE−e)].

For each leaf u 6= L of T , we can truncate edges of Cu since they have no information about xu from
Lemma 3.9. Also, bET

⊥⊥ bE−e−ET
| xL. Thus, dTV [DH(xv|xS ,bE−e)] ≤ 2dTV [DH(xv |xL,bET

)].
Now, to calculate dTV [DH(xv|xL,bET

)], we recursively use Lemmas 3.10 and 3.11 from leaves.
For each leaf u of T , we consider dTV [DH(xu|xLu ,bET

)] where Lu = {u} ∩ L. We note that
dTV [DH(xu|xLu ,bET

)] = 1 for u ∈ L, and dTV [DH(xu|xLu ,bET
)] = 0 for a leaf u 6∈ L. Then, it is

clear that dTV [DH(xv |xL,bET
)] ≤ ρ(P)g|L| ≤ ρ(P)g(2cy(G− e) + k).

Lemma 3.13. Let G = (V,E) be a subgraph of a hypergraph H with girth g and let e ∈ E be an
edge in a hypercycle of G. Then, dTV [DH(be|bE−e)] ≤ kρ(P)g(4cy(G− e) + 2k).

Proof. From Lemma 2.2, dTV (DH [be|bE−e]) ≤ dTV [DH(xe|bE−e)]dTV [DH(be|xe)] ≤ 2dTV [DH(xe|bE−e)].
Let e = (v1, . . . , vk). From Lemma 2.1, dTV [DH(xe|bE−e)] ≤

∑k
i=1 dTV [DH(xvi |{xvj}i−1

j=1,bE−e)].

From Lemma 3.12, we have dTV [DH(xvi |{xvj}i−1
j=1,bE−e)] ≤ ρ(P)g(2cy(G − e) + k) for 2 ≤ i ≤ k.

This inequality holds for i = 1 since DH(xv1 |bE−e) is a convex combination of DH(xv1 |xv2 =
0,bE−e) and DH(xv1 |xv2 = 1,bE−e). Thus, the lemma holds.

We show a weaker version of Theorem 1.1, which is only for symmetric predicates.

Theorem 3.14. Let P : {0, 1}k → {0, 1} be a symmetric predicate except k-EQU where k ≥ 3.
Then, for any ǫ > 0, there exist δ > 0 and d ≥ 1 such that every (|P−1(0)|/2k − ǫ)-tester for
CSP(P) with a degree bound d requires Ω(n1/2+δ) queries, where δ = O(1/ log(k/ǫ2)).

Proof. Suppose that there exists a deterministic (|P−1(0)|/2k − ǫ)-tester A for CSP(P) with query
complexity t = o(n1/2+δ). We choose δ > 0 later. From Lemmas 3.7 and 3.8, by union bound,
A finds vertices in the current query-answer history c = O(k2n3δ) times at most and the length
of found cycles is at least g = (1/2 − 2δ) logdk n with a probability 1 − o(1). In what follows, we
condition on these events.

We consider a decision tree Tsat generated by interactions between A and Psat. To define Tsat,
we suppose that an interaction between A and Psat proceeds in two steps; i.e., Psat first returns a
set of k variables X that will be used in the answer constraint, and then returns a literal vector b
for the constraint. Corresponding to these two steps, Tsat has two kinds of vertices, i.e., S-vertices
(state vertices) and I-vertices (intermediate vertices). In any path of the tree from the root to a
leaf, S-vertices and I-vertices appear alternately. Each S-vertex v corresponds to a particular state
of the query-answer history. When A obtains a set of variables X from Psat, the state proceeds to a
I-vertex u, which is a child of v. The edge (v, u) is associated with X and the transition probability.

9

After that, A obtains a literal vector b from Psat. Then, the state proceeds to an S-vertex v′, which
is a child of u. The edge (u, v′) is associated with b and the transition probability. The tree Tfar is
similarly defined. In particular, Tsat and Tfar are isomorphic.

We consider couplings of corresponding vertices in Tsat and Tfar (one is mapped to another by the
isomorphism). Suppose that vsat and vfar are a pair of coupled S-vertices. Since the distributions
of variables returned by the first step of an interaction are identical between Psat and Pfar, the
transition distributions to their children are identical. Next, suppose that vsat and vfar is a pair of
coupled I-vertices. If the constraint returned by the previous step does not form a new hypercycle,
the transition distributions to their children are identical. If the constraint forms a new hypercycle,
from Lemma 3.13, the total variation distance between the distributions of literal vectors is at most
k(4c+2k)ρ(P)g . With the probability corresponding to this distance, we suppose that A succeeds
in distinguishing Psat from Pfar and terminates. This always makes A more powerful. After this
modification, the transition distributions to their children become identical. After all, for any pair
of coupled leaves of Tsat and Tfar, the transition probabilities from the root to them are the same.
Thus, we cannot distinguish Psat from Pfar if we reach a leaf of the decision tree.

Thus, it amounts to calculate the sum of the discarded probabilities. Suppose any path p from
the root to a leaf of Tsat. Then, since A finds vertices in the query-answer history c times at most,
the sum of the discarded probability in p is at most ck(4c + 2k)ρ(P)g . Since the tree is a convex
combination of paths (with respect to transition probabilities), the total discarded probability is
at most ck(4c + 2k)ρ(P)g . By choosing δ = O(1/ log(k/ǫ2)), this value becomes a small constant.
Thus, dTV [Ksat,Kfar] ≪ 1 where Ksat (resp., Kfar) is the distribution of the query-answer history
induced by the t steps of interactions between A and Psat (resp., Pfar).

Since A is a (|P−1(0)|/2k − ǫ)-tester, Pr[A(Ksat) = accept] ≥ 2/3. On the other hand, since a
1−o(1) fraction of instances of Dfar is (|P−1(0)|/2k−ǫ)-far from satisfiability, Pr[A(Kfar) = accept] ≤
(1− o(1))13 + o(1) = 1

3 + o(1). This is, however, a contradiction since dTV [Ksat,Kfar] ≪ 1.

Proof of Theorem 1.1. Let Q : {0, 1}k → {0, 1} be a predicate such that P−1(1) ⊆ Q−1(1) for
a symmetric predicate P : {0, 1}k → {0, 1} except k-EQU. We slightly change the definition of
DH . That is, for each edge e = (v1, . . . , vk) of H, we choose be uniformly at random from the set
{b ∈ {0, 1}k | P ((xv1 , . . . ,xvk) + b) = 1} instead of {b ∈ {0, 1}k | Q((xv1 , . . . ,xvk) + b) = 1}. Then,
the rest of the proof is the same as the proof of Theorem 3.14.

4 Other Results

A proof of Theorem 1.2 is given in Appendix C. The proof is similar to the proof of Theorem 1.1.
The modifications we need are the construction of Dsat. Specifically, we introduce noise to the
literal vector of each constraint with probability ǫ so that we cannot use propagation anymore to
guess the value of variables. A proof of Theorem 1.3 is given in Appendix D. Any one-sided error
tester A cannot reject an instance Φ until A finds the evidence that Φ is not satisfiable. For a hard
instance, we use an instance obtained from Dfar, which is defined in Section 3.2. We show that it
is far from satisfiability while any linear size sub-instance of it is satisfiable. This leads to a linear
lower bound. A proof of Theorem 1.4 is given in Appendix E. We reduce k-EQU to the problem of
testing bipartiteness of a graph, and finally we use a tester for bipartiteness given in [14]. Proofs
of Theorems 1.5 and 1.6 are given in Appendix F. Similar to [26], we define a predicate P using
Hamming code. Using algebraic properties of Hamming code, we show that the CSP(P) is hard to
test with sublinear queries. Our proof can be seen as an extension of the proof of [8], which showed
a linear lower bound for testing 3-XOR. We prove Theorem 1.6 using a reduction from the hardness
of k-CSP.

10

Acknowledgements

The author thanks Daisuke Okanohara and Masaki Yamamoto for helpful comments.

References

[1] Noga Alon. On constant time approximation of parameters of bounded degree graphs, 2010.

[2] Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Ran-
dom sampling and approximation of max-csps. Journal of Computer and System Sciences,
67(2):212–243, 2003.

[3] Noga Alon and Asaf Shapira. Testing satisfiability. In Proc. of SODA 2002, pages 645–654,
2002.

[4] Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint satisfaction
programs on finite domains. Random Struct. Algorithms, 21(1):14–32, 2002.

[5] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise indepen-
dence. In Proc. of CCC 2008, pages 249–258, 2008.

[6] Boaz Barak, Moritz Hardt, Thomas Holenstein, and David Steurer. Subsampling semidefinite
programs and max-cut on the sphere. arXiv: 0911.5526, 2009.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[8] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing 3-colorability
in bounded-degree graphs. In Proc. of FOCS 2002, pages 93–102, 2002.

[9] Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann Pitassi.
Rank bounds and integrality gaps for cutting planes procedures. In Proc. of FOCS 2003, page
318, 2003.

[10] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum span-
ning tree weight in sublinear time. In Proc. of ICALP 2001, pages 190–200, 2001.

[11] Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. Optimal sherali-adams gaps from
pairwise independence. In Proc. of APPROX 2009, pages 125–139, 2009.

[12] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995.

[13] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

[14] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999.

[15] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2008.

[16] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

11

[17] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. of STOC 2002,
pages 767–775. ACM, 2002.

[18] Sharon Marko and Dana Ron. Approximating the distance to properties in bounded-degree
and general sparse graphs. ACM Trans. Algorithms, 5(2):1–28, 2009.

[19] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local im-
provements. In Proc. of FOCS 2008, pages 327–336, 2008.

[20] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theor. Comput. Sci., 381(1-3):183–196, 2007.

[21] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

[22] Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of variables, and pcps.
In Proc. of STOC 2006, pages 11–20, 2006.

[23] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In Proc. of FOCS
2008, pages 593–602, 2008.

[24] Luca Trevisan. Parallel approximation algorithms by positive linear programming. Algorith-
mica, 21(1):72–88, 1998.

[25] Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In Proc. of STOC 2001, pages 453–461, 2001.

[26] Madhur Tulsiani. Csp gaps and reductions in the lasserre hierarchy. In Proc. of STOC 2009,
pages 303–312, 2009.

[27] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity.
In Proc. of FOCS 1977, pages 222–227, 1977.

[28] Yuichi Yoshida. Optimal constant-time approximation algorithms and (unconditional) inap-
proximability results for every bounded-degree CSP, 2010. manuscript.

[29] Yuichi Yoshida and Hiro Ito. Query-number preserving reductions and linear lower bounds for
testing. IEICE Transactions on Information and Systems, 93(2):233–244, 2010.

[30] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation
algorithm for maximum matchings. In Proc. of STOC 2009, pages 225–234, 2009.

[31] Uri Zwick. Approximation algorithms for constraint satisfaction problems involving at most
three variables per constraint. In Proc. of SODA 1998, pages 201–210, 1998.

12

Appendix

A Proof of Subsection 2.3

A.1 Proof of Lemma 2.1

Proof.

∑

x,y

∣

∣

∣

∣

Pr
D1

[x,y] − Pr
D2

[x,y]

∣

∣

∣

∣

=
∑

x,y

∣

∣

∣

∣

Pr
D1

[x] Pr
D1

[y|x] − Pr
D2

[x] Pr
D2

[y|x]
∣

∣

∣

∣

=
∑

x,y

∣

∣

∣

∣

Pr
D1

[x]− Pr
D2

[x]

∣

∣

∣

∣

Pr
D1

[y|x] +
∑

x,y

Pr
D2

[x]

∣

∣

∣

∣

Pr
D1

[y|x] − Pr
D2

[y|x]
∣

∣

∣

∣

≤
∑

y

δx Pr
D1

[y|x] +
∑

x

Pr
D2

[x]δy = δx + δy.

A.2 Proof of Lemma 2.2

Proof. We consider the following value.

∑

xB

(Pr[xB |xA]− Pr[xB])(Pr[xC |xB]− Pr[xC])

=
∑

xB

((Pr[xB |xA]− Pr[xB]) Pr[xC |xB]− (Pr[xB |xA]− Pr[xB]) Pr[xC])

=
∑

xB

(Pr[xC ,xB |xA]− Pr[xB ,xC]) (from xA ⊥⊥ xC | xB)

= Pr[xC |xA]− Pr[xC].

Then,

dTV [D(xC |xA),D(xC)] =
∑

xC

|Pr[xC |xA]− Pr[xC]|

=
∑

xC

∣

∣

∣

∣

∣

∑

xB

(Pr[xB |xA]− Pr[xB])(Pr[xC |xB]− Pr[xC])

∣

∣

∣

∣

∣

≤
∑

xC

∑

xB

(|Pr[xB |xA]− Pr[xB]| · |Pr[xC |xB]− Pr[xC]|)

≤
∑

xB

|Pr[xB |xA]− Pr[xB]| ·
∑

xC

|Pr[xC |xB]− Pr[xC]|

≤ dTV [D(xB |xA)] · dTV [D(xC |xB)].

A.3 Proof of Lemma 2.3

Proof. We use induction on k. When k = 1, we have nothing to prove.

13

Suppose that the lemma holds when k < t. We will show that the lemma also holds when k = t.
In fact,

Pr[x = x|{yi}ti=1]

=
Pr[x = x|yt] Pr[{yi}t−1

i=1|x = x,yt]

Pr[{yi}t−1
i=1|yt]

=
Pr[x = x|yt] Pr[{yi}t−1

i=1|x = x]
∑

x′∈Supp(D(x)) Pr[x = x′|yt] Pr[{yi}t−1
i=1|x = x′]

(from yt ⊥⊥ yi | x)

=
Pr[x = x|yt] Pr[x = x|{yi}t−1

i=1] Pr[{yi}t−1
i=1]/Pr[x = x]

∑

x′∈Supp(D(x)) Pr[x = x′|yt] Pr[x = x′|{yi}t−1
i=1] Pr[{yi}t−1

i=1]/Pr[x = x′]

=
Pr[x = x|yt] Pr[x = x|{yi}t−1

i=1]
∑

x′∈Supp(D(x)) Pr[x = x′|yt] Pr[x = x′|{yi}t−1
i=1]

. (Pr[x = x] is equal for every x)

Substituting Pr[x = x|{yi}t−1
i=1] =

∏t−1
i=1 PrD [x=x|yi]

∑
x′∈Supp(D(x))

∏t−1
i=1 PrD[x=x′|yi]

, we get the desired result.

B Proof of Section 3

B.1 Proof of Lemma 3.1

Proof. Fix a set of s (random) hyperedges S and a set of cs vertices X where c = k − 1 − η. We
consider the probability that every hyperedge of S is contained in X. Since cs vertices are involved
with at most csd hyperedges, s hyperedges determine at most ks neighbors, This is upper-bounded
by

(

csd

ks

)

/

(

nd

ks

)

≤
(

(csd)ks

(ks)!

)

/

(

(nd− ks)ks

(ks)!

)

≤
(

csd

nd− ks

)ks

≤
(

csd

(d− kγ)n

)ks

.

For a fixed s, X can be chosen in
(n
cs

)

ways and S can be chosen in
(dn
s

)

ways. Thus, the
probability that such an event occurs is upper-bounded by

(

n

cs

)(

dn

s

)(

csd

(d− kγ)n

)ks

≤
(en

cs

)cs
(

edn

s

)s(csd

(d− kγ)n

)ks

≤
[(s

n

)η
ek−ηc1+ηdk+1(d− kγ)−k

]s

≤
(

sβ

n

)ηs

for some β.
By summing over 1 ≤ s ≤ γn,

γn
∑

s=1

(

sβ

n

)ηs

≤
logn
∑

s=1

(

sβ

n

)ηs

+

γn
∑

s=logn+1

(

sβ

n

)ηs

= O

(

βη log n

nη

)

+O
(

(γβη)η logn
)

.

The first term is o(1) and the second term is also o(1) by taking γ small enough.

14

B.2 Proof of Lemma 3.5

Proof. Let us fix an assignment x ∈ {0, 1}n over variables and Xe be a random variable indicating
that the constraint Ce is satisfied by the assignment. Then, E[Xe] = |P−1(1)|/2k and all Xe

are mutually independent since every be is mutually independent. Let X =
∑

Xe, then from
Hoeffding’s inequality, Pr[|X − E[X]| ≤ ǫE[X]] < exp(−Ω(ǫ2dn)). By choosing d = Ω(1/ǫ2), the
union bound over all 2n possible assignments over variables yields the desired results.

B.3 Proof of Lemma 3.7

Proof. After the t-th interaction, the number of vertices in the query-answer history is at most kt.
Thus, the sum of the remaining degrees of those vertices is at most dkt. On the other hand, the
sum of the remaining degrees of other vertices is at least dn− dkt. Thus, the probability that the
i-th vertex (1 ≤ i ≤ k) at the edge for the t-th answer is contained in the query-answer history is
at most dkt/(dn − dkt) ≤ 2dkt/dn when t ≤ n/2k. Therefore, the expected number of cy(G) is at
most

O(n1/2+δ)
∑

t=1

k · 2dkt
dn

≤ O(k2n2δ).

From Markov’s inequality, the lemma follows.

B.4 Proof of Lemma 3.8

Proof. Let qt = (vt, it) be the t-th query by A. After the t-th interaction, the number of vertices in
the query-answer history is at most kt. Since the degree is bounded by d, the number of vertices
in the query-answer history whose distance from vt is at most g is at most (dk)g. Thus, the sum
of the remaining degrees of such vertices is at most d(dk)g . On the other hand, the sum of the
remaining degrees of other vertices is at least dn − d(dk)g . Thus, the probability that the i-th
vertex (1 ≤ i ≤ k) of the edge for the t-th answer is contained in the query-answer history is at
most d(dk)g/(dn − d(dk)g) ≤ 2d(dk)g/dn. The last inequality is from g ≤ (logdk n)/2. Therefore,
by union bound, the probability that such an event occurs is at most,

k
2d(dk)g

dn
O(n1/2+δ) = O(2kn−δ) = o(1).

B.5 Proof of Lemma 3.9

First, for an edge e and a vertex v ∈ e, we show that xv and xe are independent.

Lemma B.1. Let H be a hypergraph and let e be an edge of H. Then, for any vertex v ∈ e, xv

and be are independent under DH .

Proof. We show that be is uniform after we choose the value of xv . Let e = (v1, . . . , vk) and we
assume that xv1 = 0 without loss of generality. Then, DH generates xv2 , . . . ,xvk uniformly at
random. Let x ∈ {0, 1}k−1 be the vector of chosen values. Then, DH chooses be from the set
Sx = {b | P ((0, x) + b) = 1}. Let s = |P−1(1)| be the size of S. Here, we separate P−1(1) into
s/2 couples of vectors (p, p). Let (p1, p1), . . . , (ps/2, ps/2) be the set of such couples. Then, Sx is
partitioned into Sx,i = {b | (0, x) + b = pi or (0, x) + b = pi}(1 ≤ i ≤ s/2). We consider the

15

set Si =
⋃

x∈{0,1}k−1 Sx,i. Then, it is easy to see that Si = {0, 1}k , i.e., every vector from {0, 1}k
appears exactly once in Sx,i(1 ≤ i ≤ s/2). Thus, eventually, be is distributed uniformly at random
in {0, 1}k .

Proof of Lemma 3.9. We use induction on the number of edges of T . When T consists of one edge,
the lemma holds from Lemma B.1.

Let m ≥ 2 be an integer. Assume that, for any hypertree T = (V,E) with |E| < m and v ∈ V ,
xv and bE are independent under DH . Let T = (V,E) be a hypertree with |E| = m and v be
the supposed vertex. Since m ≥ 2, there exists an edge e such that e contains a leaf, but does
not contain v as a leaf. Let w be the unique vertex that connects T − e and e. Note that w may
coincides with v. Then,

Pr[be|bE−e]

=
∑

xw

Pr[be|xw] Pr[xw|bE−e] (from be ⊥⊥ bE−e | xw)

=
∑

xw

Pr[be] Pr[xw|bE−e] (from Lemma B.1)

= Pr[be].

Thus,

Pr[xv|bE] =
∑

xw

Pr[xv ,xw,bE]

Pr[bE]
=

∑

xw

Pr[xv,bE−e|xw,be] Pr[be|xw] Pr[xw]

Pr[bE−e] Pr[be|bE−e]
.

Since Pr[xv,bE−e|xw,be] = Pr[xv,bE−e|xw], Pr[be|xw] = Pr[be] from Lemma B.1 and Pr[be|bE−e] =
Pr[be], this is equal to

∑

xw

Pr[xv,bE−e|xw] Pr[be] Pr[xw]

Pr[bE−e] Pr[be]
=

∑

xw

Pr[xv,xw,bE−e]

Pr[bE−e]
= Pr[xv|bE−e].

From the assumption of the induction, we have Pr[xv|bE] = Pr[xv].

B.6 Proof of Lemma 3.10

Lemma B.2. Let D and Di(1 ≤ i ≤ k) be distributions generating x ∈ {0, 1}. And, suppose that
PrD[x = x] is given by

Pr
D
[x = x] =

∏k
i=1 PrDi [x = x]

∏k
i=1 PrDi [x = 0] +

∏k
i=1 PrDi [x = 1]

.

Then, dTV [D(x)] ≤ ∑k
i=1 dTV [Di(x)]. The equality only holds when (at least) k−1 of dTV [Di(x)](1 ≤

i ≤ k) are 0.

Proof. We use induction on k. When k = 1, we have nothing to prove.
Suppose that the lemma holds when k < t. Now, we show that the lemma also holds when k = t.

For notational simplicity, we define pix =
∏i

j=1 PrDj [x = x]. Then, PrD[x = x] = ptx/(p
t
x + pt1−x).

Let D′ be a distribution generating x ∈ {0, 1} in such a way that

Pr
D′
[x = x] =

pt−1
x

pt−1
x + pt−1

1−x

.

16

From the assumption, we have dTV [D′(x)] ≤
∑t−1

i=1 dTV [Di(x)]. Also,

Pr
D
[x = x] =

ptx
ptx + pt1−x

=
pt−1
x PrDt [x = x]

pt−1
x PrDt [x = x] + pt−1

1−x PrDt [x = 1− x]

=
PrD′ [x = x] PrDt [x = x]

PrD′ [x = x] PrDt [x = x] + PrD′ [x = 1− x] PrDt[x = 1− x]
.

Let δ′ = PrD′ [x = 0]− 1/2 and δt = PrDt [x = 0]− 1/2 where −1/2 ≤ δ′, δt ≤ 1/2. Then,

∣

∣

∣

∣

Pr
D
[x = 0]− 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(12 + δ′)(12 + δt)

(12 + δ′)(12 + δt) + (12 − δ′)(12 − δt)
− 1

2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

δ′ + δt
1 + 4δ′δt

∣

∣

∣

∣

≤ |δ′|+ |δt|. (1)

Similarly, |PrD[x = 1]− 1/2| ≤ |δ′| + |δt|. Thus, dTV [D(x)] ≤ 2(|δ′| + |δt|) ≤ dTV [D′(x)] +
dTV [Dt(x)] ≤

∑t
i=1 dTV [Di(x)].

We finally remark about the condition that the equality holds. We note that the case δ′ = 1/2
and δt = −1/2 or vice versa cannot happen since in this case we cannot decide the value of x.
Thus, the equality of (1) only holds when δ′ or δt equals zero. Also, dTV [D(x)] becomes non-zero
if dTV [D′(x)] or dTV [Dt(x)] is non-zero. Thus, the claim holds.

Proof of Lemma 3.10. We note that xLi ⊥⊥ xLj | xv for 1 ≤ i, j ≤ ℓ under DH(·|bE). Since
DH(xv |bE) is uniform from Lemma 3.9, we have from Lemma 2.3 that

Pr[xv = x|{xLi}ℓi=1,bE] =

∏ℓ
i=1 Pr[xv = x|xLi ,bE]

∑

x′

∏ℓ
i=1 Pr[xv = x′|xLi ,bE]

.

Then, by applying Lemma B.2, we have the desired result.

B.7 Proof of Lemma 3.11

Proof. Let px = Pr[xe = x|{xLi}k−1
i=1 ,bE] for x ∈ {0, 1}k . Also, we let δi = Pr[xvi = 0|xLi ,bE]−1/2

where −1/2 ≤ δi ≤ 1/2 and S = Supp(DH(xe|bE)) ⊆ {0, 1}k. Then, from Lemma 2.3,

px =

∏k−1
i=1 (1/2 + (−1)xiδi)

∑

x′∈S

∏k−1
i=1 (1/2 + (−1)x

′
iδi)

.

Let Sv = {x ∈ S|xk = v}, then

dTV [DH(xvk |{xLi}k−1
i=1 ,bE)] =

∣

∣

∣

∣

∣

∣

∑

x∈S1

px −
∑

x∈S0

px

∣

∣

∣

∣

∣

∣

≤
∑

x∈S1

|px − px| =
∑

x∈S1

(px + px)
|px − px|
px + px

.

For each x ∈ S1, we can think of a random (Boolean) variable that takes 1 with probability
px/(px + px) and 0 with probability px/(px + px). Then, |px − px|/(px + px) can be seen as the
total variation distance of this random variable. Since the probability distribution of this random

17

variable exactly matches the condition of Lemma B.2 (note that the denominator of px is canceled
out), we have

dTV [DH(xvk |{xLi}k−1
i=1 ,bE)] ≤

∑

x∈S1

(px + px)

k−1
∑

i=1

dTV [DH(xvi |xLi ,bE)] (2)

=

k−1
∑

i=1

dTV [DH(xvi |xLi ,bE)].

This already indicates that ρ(P) ≤ 1.
We fix P 6= EQU and let δ = (δ1, . . . , δk−1). Let Dǫ = {δ ∈ [−1/2, 1/2]k−1 | ∑k−1

i |δi| ≤ 1 + ǫ}
for ǫ > 0 chosen later. This excludes singular points implied by the left hand side of (1). We define

ρ(δ) =
dTV [DH(xvk |{xLi}k−1

i=1 ,bE)]
∑k−1

i=1 dTV [DH(xvi |xLi ,bE)]

=

∣

∣

∑

x∈S1
px −

∑

x∈S0
px
∣

∣

∑k−1
i=1 2|δi|

.

We can safely state that ρ(δ) < 1/(1 + ǫ) in [−1/2, 1/2]k−1 −Dǫ.
Next, we only consider the domain D+

ǫ = Dǫ∩ [0, 1/2]k−1. Other domains (i.e., Dǫ− [0, 1/2]k−1)
can be treated in the same manner. After a calculation, we can see that the limit at δ = (0, . . . , 0)
exists and the value is less than one when P 6= EQU. Thus, ρ(δ) is continuous in D+

ǫ . In particular,
ρ(δ) is uniformly continuous.

We will show that there exists a universal constant ρ < 1 such that ρ(δ) ≤ ρ regardless of δ ∈ D+
ǫ .

This concludes the lemma. For ǫ > 0, we define Hǫ = D+
ǫ ∩{δ ∈ [0, 1/2]k−1 | all but one of δi ≤ ǫ}.

When δ 6∈ Hǫ, considering the inequality (2) in the proof of Lemma B.2, there exists some constant
ρ < 1 such that ρ(δ) ≤ ρ.

The remaining case is δ ∈ Hǫ. We will show that there exists a constant ρ < 1 such that
ρ(δ) ≤ ρ for δ ∈ H0. From the uniform continuity of ρ(δ), by choosing ǫ > 0 small enough, we
establish the desired result.

Let δ ∈ H0. Without loss of generality, we can assume that δ1 ≥ 0 and δ2 = · · · = δk−1 = 0.
For ρ ≥ 0, we consider the following function of ρ and δ.

f(ρ, δ) = ρ
k−1
∑

i=1

dTV [DH(xvi |xLi ,bE)]− dTV [DH(xvk |{xLi}k−1
i=1 ,bE)]

= ρ

k−1
∑

i=1

2|δi| −

∣

∣

∣

∣

∣

∣

∑

x∈S1

px −
∑

x∈S0

px

∣

∣

∣

∣

∣

∣

= min



ρ
k−1
∑

i=1

2δi −





∑

x∈S1

px −
∑

x∈S0

px



 , ρ
k−1
∑

i=1

2δi +





∑

x∈S1

px −
∑

x∈S0

px









=: min (f1(ρ, δ), f2(ρ, δ)) .

We let g(ρ, δ1) = f(ρ, δ1, 0, . . . , 0). If the minimum of g(ρ, δ1) over 0 ≤ δ1 ≤ 1/2 is non-negative,
we can say that ρ(δ) ≤ ρ for δ ∈ H0. Since the denominator of g (after factoring) is non-negative,
we only consider its numerator ĝ =: min{ĝ1, ĝ2}. We note that ĝ1, ĝ2 are odd functions and the
degrees of ĝ1, ĝ2 are at most two. Thus, ĝ1, ĝ2 is a linear function of δ1 when we fix ρ. Suppose

18

that ĝ(ρ, δ1) < 0 for some δ1 ∈ [0, 1/2]. Then, by moving δ1 to 0 or 1/2, we obtain a smaller
value. Thus, it suffices to check the case δ1 = 0 and δ1 = 1/2. When δ1 = 0, we have already seen
that ρ(0, . . . , 0) < 1. The case δ1 = 1/2 corresponds to the following question: how much can we
guess the value of xvk when we know the actual value of xv1 and we do not know values of other
variables? For any symmetric predicate except EQU, the choice of xvk is not unique. Thus, we can
choose ρ < 1 that only depends on P .

C An Ω(n1/2+δ) Lower Bound for Testing 2-XOR

In this section, we give the proof of Theorem 1.2. To make hard instances that are ǫ-close to
satisfiability, we slightly modify the construction of Dsat. We use the same Dfar as defined in
Section 3.

Definition C.1. Let H = (V,E) be a graph with n vertices. Let ǫ be an error parameter. Define a
distribution DH,ǫ generating an instance Φ of 2-XOR as follows. The variable set of Φ is {xv}v∈V .
We choose x ∈ {0, 1}n uniformly at random. For each edge e = (u, v) ∈ E, we choose be uniformly
at random from the set {b ∈ {0, 1}2 | P ((xu,xv) + b) = 1} with probability 1 − ǫ, and from the set
{b ∈ {0, 1}2 | P ((xu,xv) + b) = 0} with probability ǫ. Then, we add a constraint Ce of the form
P ((xu, xv) + be) = 1 to Φ.

Definition C.2. Given parameters n, d, ǫ, define a distribution Dsat generating an instance of 2-
XOR as follows. First, we choose a graph H from Gn,d,2. Then, an instance is output according to
DH,ǫ.

The following lemma is immediate.

Lemma C.3. For any ǫ > 0 and d ≥ 1, the following holds. Let Φ be an instance of 2-XOR chosen
from Dsat. Then, Φ is (ǫ/2)-close to satisfiability with a probability of 1− o(1).

We use Dsat defined above instead of Dsat defined in Section 3 to prove Theorem 1.2. The proof
is almost same as the proof of Theorem 1.1. A modification occurs only in the proof of Lemma 3.11.
The following is an analogue of Lemma 3.11 for the distribution DH,ǫ

Lemma C.4. Let T = (V,E) be a subgraph of a graph H. Suppose that T is a tree. Let Tu be the
subtree obtained by removing e = (u, v) ∈ E. Here, u is the root of Tu. Let L be a subset of the
leaves of Tu. Then,

dTV [DH,ǫ(xv |xL,bE)] ≤ (1− 2ǫ)dTV [DH,ǫ(xu|xL,bE)].

Proof. For simplicity, we assume that be = 0. We can prove other cases in the same manner. It
holds that

Pr[xv = 0|xL,bE] =
∑

xu

Pr[xv = 0|xu,bE] Pr[xu|xL,bE]

= (1− ǫ) Pr[xu = 1|xL,bE] + ǫPr[xu = 0|xL,bE].

Let δ = Pr[xu = 0|xL,bE]− 1/2. Then,
∣

∣

∣

∣

Pr[xv = 0|xu,bE]−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

(1− ǫ)(
1

2
− δ) + ǫ(

1

2
+ δ) − 1

2

∣

∣

∣

∣

= (1− 2ǫ)|δ|.

Similarly, |Pr[xv = 1|xL,bE]− 1/2| ≤ (1 − 2ǫ)|δ|. Thus, dTV [DH,ǫ(xv|xL,bE)] ≤ 2(1 − 2ǫ)|δ| ≤
(1− 2ǫ)dTV [DH,ǫ(xu|xL)].

19

Proof of Theorem 1.2. Combining the proof of Theorem 1.1 and Lemma C.4, the theorem holds.
Since we use 1−2ǫ instead of ρ(P) as a decaying factor, we need to choose δ = O(ǫ/ log(k/ǫ2)).

D A Linear Lower Bound for One-Sided Error Testers

Theorem D.1. Let P : {0, 1}k → {0, 1} be any symmetric predicate except EQU where k ≥ 3.
Then, for any ǫ > 0, there exists d ≥ 1 such that any one-sided error (|P−1(0)|/2k − ǫ)-tester for
CSP(P) with a degree bound d requires Ω(n) queries.

Proof. Let Φ be a given instance. Since a one-sided error tester must accept Φ when Φ is satisfiable,
it cannot reject Φ unless it has found an unsatisfiable sub-instance of Φ. We show that for any
ǫ > 0 there exists d for which the following holds: there exists an instance Φ of CSP(P) with a
degree bound d such that any linear-size sub-instance is satisfiable while Φ is (|P−1(0)|/2k − ǫ)-far
from satisfiability. The lemma clearly holds from this fact.

From Lemma 3.5, for any ǫ > 0 and η > 0, there exist d ≥ 1, γ > 0, and an instance Φ
with a degree bound d such that Φ is (|P−1(0)|/2k − ǫ)-far from satisfiability and the underlying
hypergraph is a (γ, η)-expander. Let Φ′ be a sub-instance of Φ, and let V (Φ′) and E(Φ′) denote the
set of variables and constraints of Φ′, respectively. We show that Φ′ is satisfiable when |E(Φ′)| ≤ γn
by induction on |E(Φ′)|.

Clearly, any sub-instance with no constraint is satisfiable. Suppose that any sub-instance of
Φ with less than m constraints is satisfiable. Let Φ′ be a sub-instance of Φ with m constraints.
Then, since H is a (γ, η)-expander, |V (Φ′)| ≥ (k − 1 − η)|E(Φ′)|. Since η < 1, there exists some
constraint C ∈ E(Φ′) such that C shares at most two variables with E(Φ′) − C. Suppose that C
shares two variables xu, xv with E(Φ′)− C. Note that P is a symmetric predicate except EQU. If
P accepts x ∈ {0, 1}k with |x| = 1, then P accepts x with |x| = k − 1. If not, there exists some
2 ≤ w ≤ k − 2 such that P accepts x with |x| = w. Thus, P accepts x ∈ {0, 1}k with |x| = w for
some 2 ≤ w ≤ k − 1. Hence, regardless of the values of xu, xv, we can satisfy C by appropriately
choosing the values of the rest of the variables in C. Other cases are similar. Thus, the induction
completes and the theorem follows.

Proof of Theorem 1.3. Let Q : {0, 1}k → {0, 1} be a predicate such that P−1(1) ⊆ Q−1(1) for a
symmetric predicate P{0, 1}k → {0, 1} except k-EQU. As the proof of Theorem 1.1, We change the
definition of DH . Thus, for each edge e = (v1, . . . , vk) of H, we choose be uniformly at random from
the set {b ∈ {0, 1}k | P ((xv1 , . . . ,xvk) + b) = 1} instead of {b ∈ {0, 1}k | Q((xv1 , . . . ,xvk) + b) = 1}.
Then, the rest of the proof is the same as the proof of Theorem D.1.

E An ǫ-Tester for k-EQU

In this section, we prove Theorem 1.4. The idea is to transform an instance of k-EQU into a graph
and use a bipartiteness tester given in [14].

We define a reduction ϕ, which maps an instance Φ of k-EQU to an instance Φ′ of 2-EQU. The
set of variables of Φ′ is the same as Φ. For each constraint in Φ of the form ℓ1 = ℓ2 = . . . = ℓk, where
each ℓi is a literal, we simply introduce k(k−1)/2 constraints in Φ′ of the form ℓi = ℓj(1 ≤ i ≤ j ≤ k).

Lemma E.1. If Φ is a satisfiable instance of k-EQU, then ϕ(Φ) is satisfiable. On the contrary, if
Φ is ǫ-far from satisfiability, then ϕ(Φ) is ǫ′-far from satisfiability where ǫ′ = 2ǫ/k.

Proof. Let Φ′ = ϕ(Φ). The former part is obvious. Furthermore, if Φ′ is satisfiable, then Φ is
satisfiable.

20

We show the latter part. Suppose that Φ′ is not ǫ′-far from satisfiability. Since the degree
bound of Φ′ is (at most) d′ = dk, we can make Φ′ satisfiable by removing less than ǫ′d′n/2 = ǫdn/k
constraints. Let Φ′

rm be the resulting instance.
We simulate this removal in Φ. That is, for each removed constraint in Φ′, we remove the

corresponding constraint in Φ. Let Φrm be the resulting instance of k-EQU. The number of removed
constraints is at most ǫdn/k. The important fact is that ϕ(Φrm) is a sub-instance of Φ′

rm. Since
Φ′
rm is satisfiable, Φrm is also satisfiable. However, this contradicts the fact that Φ is ǫ-far from

satisfiability.

Next, we define a reduction ϕG, which maps an instance Φ of 2-EQU to a graph G. First, each
literal of Φ forms a vertex in G. Next, for each variable x of Φ, we introduce an edge (x, x) in
G. We call these edges variable edges. Furthermore, for each constraint in Φ of the form ℓ1 = ℓ2
where ℓ1 and ℓ2 are literals, we introduce two edges (ℓ1, ℓ2) and (ℓ1, ℓ2) in G. We call these edges
constraint edges. The supposed bipartition of G is into the set of literals whose values are 1 (true)
and 0 (false) in the solution of Φ.

Lemma E.2. If Φ is a satisfiable instance of 2-EQU , then ϕG(Φ) is satisfiable. On the contrary,
if Φ is ǫ-far from satisfiability, then ϕG(Φ) is ǫ′-far from satisfiability where ǫ′ = ǫ/(4d).

Proof. Let G = (V,E) = ϕG(Φ). The number of vertices of G is 2n, where n is the number of
variables of Φ and the degree bound d of G is the same as Φ. The former part of the lemma is
obvious. Furthermore, if G is bipartite, then Φ is satisfiable.

We show the latter part. Suppose that G is not ǫ′-far from satisfiability. Let E′ ⊆ E be the set
of edges such that G becomes bipartite by removing E′ and |E′| < ǫ′d(2n)/2. First, we canonicalize
E′ so that E′ does not contain variable edges. This is done as follows. If E′ contains a variable
edge (x, x), we exclude the edge from E′, and instead we add to E′ every constraint edge of the
form (x, ℓ) and (x, ℓ) where ℓ is a literal. This preserves the property that G becomes bipartite by
removing E′. Since the degree bound of G is d, after canonicalizing E′, the size of |E′| is at most
2d · ǫ′d(2n)/2 = ǫdn/2. Let Grm be the resulting graph after removing E′.

We simulate this removal in Φ. That is, for each removed edge inG, we remove the corresponding
constraint in Φ. This can be done since we excluded variable edges. Let Φrm be the resulting
instance of 2-EQU. The number of removed constraints is at most ǫdn/2. Again, ϕ(Φrm) is a sub-
instance of Grm. Since Grm is bipartite, Φrm is satisfiable. However, this contradicts the fact that
Φ is ǫ-far from satisfiability.

Finally, we use the following algorithm for testing bipartiteness.

Lemma E.3. [14] There exists a one-sided error ǫ-tester for bipartiteness whose running time is
O(

√
npoly(log n/ǫ)), where n is the number of vertices.

Proof of Theorem 1.4. Combining Lemmas E.1, E.2, and E.3, the theorem holds.

F A Linear Lower Bound for Testing k-CSP

In this section, we show that there exists a certain predicate P such that, CSP(P) requires lin-
ear number of queries to distinguish satisfiable instances from instances (1 − 2k/2k − ǫ)-far from
satisfiability. Then, we show the hardness of MIS. We use a matrix to define the predicate.

Definition F.1. For a matrix A ∈ {0, 1}h×k, a predicate PA : {0, 1}k → {0, 1} is defined as

PA(x1, . . . , xk) = 1 ⇔ A · (x1, . . . , xk)T = 0.

21

The matrix A is called a generator matrix of PA.

Since A(x+ b) = Ax+Ab, we posit that a constraint of an instance of CSP(PA) is of the form
A · (x1, . . . , xk)T = (b1, . . . , bh)

T .
As a hard generator matrix, we use a linear code. A linear code of distance 3 and length k

over {0, 1} is a subspace of {0, 1}k such that every non-zero vector in the subspace has at least 3
non-zero entries. We refer to the code below as Hamming code of length k.

Fact F.2. Let 2r−1 − 1 < k ≤ 2r − 1. Then, there exists a linear code of distance 3 and length k
over {0, 1} with dimension h = k − r.

In particular, |P−1
A (1)| = 2r ≤ 2k holds for Hamming code A.

We define two distributions Dsat and Dfar of instances of CSP(PA) using Hamming code A.
From Lemma 3.1, for any η > 0 and d ≥ 1, there exists γ > 0 such that we have a k-uniform
(γ, η)-expander H = (V,E) with n vertices and a degree bound d. We use H as an underlying
hypergraph of instances generated by Dsat and Dfar.

• Dsat: We choose xv ∈ {0, 1} for each v ∈ V uniformly at random. Then, for each edge e =
(v1, . . . , vk) ∈ E, we introduce a constraint of the form A·(xv1 , . . . , xvk)T = A·(xv1 , . . . ,xvk)

T .

• Dfar: For each edge e = (v1, . . . , vk) ∈ E, we choose be ∈ {0, 1}h uniformly at random and
introduce a constraint of the form A · (xv1 , . . . , xvk) = be.

From the construction, any instance of Dsat is satisfiable. On the other hand, from Lemma 3.5, for
any ǫ > 0, by appropriately choosing d, 1−o(1) fraction of instances of Dfar is (|P−1(0)|/2k−ǫ)-far,
i.e., (1− 2k/2k − ǫ)-far.

Theorem F.3. Let A be Hamming code. Then, for any ǫ > 0, there exists d ≥ 1 such that every
(1− 2k/2k − ǫ)-tester for CSP(PA) with a degree bound d requires Ω(n) queries.

Proof. Let Φ be an instance chosen from Dsat. One constraint of CSP(PA) consists of a chunk of
h linear equation. Thus, in total, there exists mh linear equations in Φ, where m is the number of
constraints of Φ. We can write these equations in the form Mx = b using a matrix M ∈ {0, 1}mh×n

and a vector b ∈ {0, 1}mh. Here, M is uniquely determined by the underlying hypergraph H
regardless of b.

We show that for any set of s ≤ γn constraints of Φ, the corresponding rows in M are linearly
independent. Suppose that there exists a set R of s constraints whose corresponding rows are
linearly dependent. Let S denote the set of variables incident to R. Since every chunk equation
comes from a distance-3 code, every linear combination of rows within a chunk must have at least
three elements. Hence, the linear combination required to derive 0 must include at least three
elements from each of the s constraints. To derive 0, each of these elements must occur an even
number of times, and hence s constraints can involve at most ks− 3s/2 = (k − 1− 1/2)s variables
in total. If we choose η < 1/2, this is impossible.

Let M ′x = b′ be a sub-instance obtained by choosing any γn constraints. Since the rows of M ′

are linearly independent, M ′x is also uniformly distributed when x ∈ {0, 1}n is chosen uniformly
at random. Thus, no algorithm can distinguish instances of Dsat from instances of Dfar with γn
queries. The theorem follows.

Proof of Theorem 1.6. Using a modified version of the FGLSS reduction from Max k-CSP to MIS

used in [25], which is tailored for bounded-degree instances, we have this theorem.

22

	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Proof Overview
	2.3 Properties of dTV

	3 An (n1/2+) Lower Bound for Two-Sided Error Testers
	3.1 Probabilistic Constructions of Expanders
	3.2 Hard instances
	3.3 Randomized processes equivalent to Dsat and Dfar
	3.4 Correlation decay along edges of a hypertree
	3.5 Putting things together

	4 Other Results
	A Proof of Subsection ??
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??
	A.3 Proof of Lemma ??

	B Proof of Section ??
	B.1 Proof of Lemma ??
	B.2 Proof of Lemma ??
	B.3 Proof of Lemma ??
	B.4 Proof of Lemma ??
	B.5 Proof of Lemma ??
	B.6 Proof of Lemma ??
	B.7 Proof of Lemma ??

	C An (n1/2+) Lower Bound for Testing 2-XOR
	D A Linear Lower Bound for One-Sided Error Testers
	E An -Tester for k-EQU
	F A Linear Lower Bound for Testing k-CSP

