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1 Introduction

In this paper we consider the ability of limited independence to fool polynomial
threshold functions (PTFs). We recall that a (degree-d) polynomial threshold
function is a function of the form f(x) = sgn(p(x)) for some n-dimensional
polynomial p of degree at most d. There has been recent interest in polynomial
threshold functions in several areas of computer science. This paper expands on
previous work in derandomizing polynomial threshold functions using limited
independence.

We say that a random variables X fools a family of functions with respect
to some distribution Y if for every function, f , in the family

|E[f(X)]− E[f(Y )]| = O(ǫ).

In this paper we will be interested in the case where the family is of all degree-d
polynomial threshold functions in n-variables, and Y is either an n-dimension
Gaussian distribution, and in particular the case where X is an arbitrary family
of k-independent Gaussian random variables. In particular, we prove that

Theorem 1. Let d > 0 be an integer and ǫ > 0 a real number, then there exists

a k = Od

(

ǫ−2O(d)
)

, so that for any degree d polynomial p and any k-independent

family of Gaussians X and fully independent family of Gaussians Y

|E[sgn(p(X))]− E[sgn(p(Y ))]| = O(ǫ).

There has been a significant amount of recent work on the problem of fool-
ing low degree polynomial threshold functions of Gaussian or Bernoulli random
variables, especially via limited independence. It was shown in [3] that Õ(ǫ−2)-
independence is sufficient to fool degree-1 polynomial threshold functions of
Bernoulli random variables, and show that this is tight up to polylogarithmic
factors. In [4] it was shown that Õ(ǫ−9)-independence sufficed for degree-2 poly-
nomial threshold functions of Bernoullis and that O(ǫ−2) and O(ǫ−8) suffices
for degree 1 and 2 polynomial threshold functions of Gaussians. The degree 1
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case was also extended by [1], who show that limited independence fools thresh-
old functions of polynomials that can be written in terms of a small number of
linear polynomials. Finally, in [9] a more complicated pseudorandom generator
for degree-d polynomial threshold functions of Bernoulli variables is developed
with seed length 2O(d) log(n)ǫ−8d−3. As far as we are aware, our paper is the
first result to show that degree-d polynomial threshold functions are fooled by
k-independence for any k depending only on ǫ and d for any d ≥ 3.

2 Overview

We prove Theorem 1 first by proving our result for multilinear polynomials, and
then finding a reduction to the general case. In particular we prove

Proposition 2. Let d > 0 be an integer and ǫ > 0 a real number, then there

exists a k = Od

(

ǫ−2O(d)
)

, so that for any degree d multilinear polynomial p :

R
n → R and any k-independent family of Gaussians X and fully independent

family of Gaussians Y

|E[sgn(p(X))]− E[sgn(p(Y ))]| = O(ǫ).

We define the notation A ≈ǫ B to mean |A−B| = O(ǫ).
The proof of Proposition 2 will be analogous to the proof of the main The-

orem in [4]. Our basic idea is as follows.
In Section 3 we prove bounds on the moments of multilinear Gaussian poly-

nomials. These results are essentially a reworking of the main result of [6].
In Section 4, we use these bounds to prove a structure Theorem for multi-

linear polynomials. In particular, we prove that we can write p(X) in the form
h(P1(X), P2(X), . . . , PN (X)) where h is a polynomial and Pi(X) are multilinear
polynomials with relatively small higher moments. More specifically, the poly-
nomials Pi will be split into d different classes, with the ith class consisting of ni

polynomials each of whose mth
i moments are Od(mi)

mi/2. This decomposition
allows us to write f(X) = sgn(P (X)) as sgn(h(P1(X), . . . , PN (X))).

From here we make use of the FT-Mollification method (see [4] for another
example of this technique). The basic idea will be to approximate sgn ◦ h
by some smooth function h̃, and let f̃(X) = h̃(P1(X), . . . , PN (X)), which we
do in Section 5. Our general strategy now will be to prove the sequence of
approximations:

E[f(Y )] ≈ǫ E[f̃(Y )] ≈ǫ E[f̃(X)] ≈ǫ E[f(X)].

The middle equality will be proved by approximation f̃ by one of it’s Taylor
polynomials. This is a polynomial, and hence its expectation is preserved under
limited independence. The Taylor error can again be bounded by a polynomial,
which will have small expectation since the Pi have small moments. We cover
this in Section 6.

The first approximation above holds roughly because f̃ approximates f ev-
erywhere except near places where f changes sign. The result will hold due
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to anti-concentration results for p(Y ). The last approximation similarly holds
because of anti-concentration of p(X). Although anticoncentration of the k-
independent X can be proven using the above techniques applied to some other
function g for which g̃ is an upper bound for f , we deal with the problem in-
directly. In particular, we show that E[f(X)] can be bounded on either side
by E[sgn(p(Y ) + c)] +O(ǫ) for c a small constant, and use anticoncentration of
p(Y ). We cover this in Section 7.

Our application of FT-Mollification is complicated by the fact that our mo-
ment bounds on the Pj are not uniform in j. To deal with this, we will construct

h̃ to have different degrees of smoothness in different directions, and the param-
eter Ci will describe the amount of smoothness along the ith set of coordinates
(corresponding the the ith class of the Pj). This forces us to come up with

modified techniques for producing h̃ and dealing with the Taylor polynomial
and Taylor error.

In Section 8, we reduce the general case to the case of multilinear polynomials
by approximating p(X) by a multilinear polynomial in some larger number of
variables.

Finally, in Section 10, we discuss the actual requirements for k and the
possibility of extended our results to the Bernoulli setting.

3 Moment Bounds

In this Section, we prove a bound on the moments of arbitrary degree-d multi-
linear polynomials of Gaussians. Our bound is based on the main result of [6].
It should be noted that this result is the only reason that we restrict ourselves
for most of this paper to the case of multilinear polynomials, as it will make our
bound easier to state and work with.

Throughout this Section, we will refer to two slightly different notions that
of a multilinear polynomial and that of a multilinear form. For our purposes,
a multilinear polynomial p(X) (X has n coordinates) will be a polynomial so
that the degree of p with respect to any of the coordinates of X is at most 1.
A multilinear form will be a polynomial q(X1, X2, . . . , Xm) (here each of the
X i may themselves have several coordinates) so that q is linear (homogeneous
degree 1) in each of the X i. We call such a q symmetric if it is symmetric with
respect to interchanging the X i. Finally, we note that to every homogeneous
multilinear polynomial p of degree d, there is an associated multilinear form
q(X1, . . . , Xd), which is the unique symmetric multilinear form so that p(X) =
q(X, . . . , X).

Before we can state our results we need a few more definitions.

Definition. Let p : Rn → R be a homogeneous degree-d multilinear polynomial.
Let Xi, 1 ≤ i ≤ n be independent standard Gaussians. For a integers 1 ≤ ℓ ≤ d
define Mℓ(p) in the following way. Consider all possible choices of: a partition
of {1, . . . , n} into sets S1, S2, . . . , Sℓ; a sequence of integers di ≥ 1, 1 ≤ i ≤ ℓ

so that d =
∑ℓ

i=1 di; a sequence of multilinear polynomials pi, 1 ≤ i ≤ ℓ so that
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pi depends only on the coordinates in Si, pi is homogeneous of degree di, and
E[pi(X)2] = 1. We let Mℓ(p) be the supremum over all choices of Si, di, pi as
above of

(

E

[

p(X)

ℓ
∏

i=1

pi(X)

])1/2

.

Note that by Cauchy-Schwartz we have that Mℓ(p) ≤ E[p(X)2]1/4. We now
define a similar quantity more closely related to what is used in [6].

Definition. Let q : (Rn)d → R by a degree-d multilinear form. Let X i, 1 ≤ i ≤
d be independent standard n-dimensional Gaussians. For integers 1 ≤ ℓ ≤ d
define Mℓ(q) in the following way. Consider all possible choices of: a partition
of {1, . . . , d} into non-empty subsets S1, . . . , Sℓ, with Si = {ci,1, . . . , ci,di

}; and
a set of multilinear forms qi of degree-di with E[qi(X

ci,1 , . . . , Xci,di )2] ≤ 1. We
define Mℓ(q) to be the supremum over all such choices of Si and qi of

(

E

[

q(X1, . . . , Xd)
ℓ
∏

i=1

qi(X
ci,1, . . . , Xci,di )

])1/2

.

We now state the moment bound whose proof will take up the rest of this
Section.

Proposition 3. Let p be a homogenous degree d multilinear polynomial, and X
a family of independent standard Gaussians, and k ≥ 2. Then

E[|p(X)|k] = Θd

(

d
∑

ℓ=1

Mℓ(p)k
ℓ/2

)k

.

This is essentially a version of Theorem 1 of [6]:

Theorem ([6] Theorem 1). For q a degree-d multilinear form and X i indepen-
dent standard n-dimensional Gaussians and k an integer at least 2,

E[|q(X1, . . . , Xd)|k] = Θd

(

d
∑

ℓ=1

Mℓ(q)k
ℓ/2

)k

.

Proof of Proposition 3. The basic idea of the proof is the relate Mℓ(p) to Mℓ(q)
and E[|p|k] to E[|q|k] for q the symmetric multilinear form associated to a mul-
tilinear polynomial p.

Let q be the associated symmetric multilinear form associated to p. We
claim that for each ℓ that Mℓ(p) = Θd(Mℓ(q)). Suppose that p1 and p2 are
degree d multilinear polynomials, and q1 and q2 the associated symmetric mul-
tilinear forms. It is easy to see (by using the standard basis of coefficients) that
E[p1(X)p2(X)] = d!E[q1(X

1, . . . , Xd)q2(X
1, . . . , Xd)]. Similarly it is easy to see

that if p is a degree d multilinear polynomial, and pi are degree di multilinear
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polynomials on distinct sets of coordinates, and q, qi their associated symmetric
multilinear forms we have

E
[

p(X)
∏

pi(X)
]

=
1

∏

di!
E
[

q(X)
∏

qi(X
(i))
]

.

Where q(X) = q(X1, . . . , Xd), and qi(X
(i)) = qi(X

d1+...+di−1+1, . . . , Xd1+...+di−1+di).
This means that Mℓ(p) = Od(Mℓ(q)) since given the appropriate Si, di, pi we
can use the symmetrizations of the pi to get as good a bound for Mℓ(q) up to a
constant factor. To show the other direction we need to show that Mℓ(q) is not
changed by more than a constant factor if we require that the qi are supported
on disjoint sets of coordinates. But we note that if you randomly assign each
coordinate to a qi and take the part that only depends on those coordinates,
you loose a factor of at most dd on average.

Hence we have that

E[|q(X1, . . . , Xd)|k] = Θd

(

d
∑

ℓ=1

Mℓ(p)k
ℓ/2

)k

.

We just need to show that the moments of p to the moments of q are the same
up to a factor of Θd(1)

k. This can be shown using the main Theorem of [8]
which in our case states that there is some constant Cd depending only on d so
that for any such p, q and x,

Pr(|p(X)| > x) ≤ CdPr(|q(X1, . . . , Xd)| > x/Cd)

and
Pr(|q(X1, . . . , Xd)| > x) ≤ CdPr(|p(X)| > x/Cd).

Our result follows from noting that for any random variable Y that

E[|Y |k] =
∫ ∞

0

kxk−1Pr(|Y | > x)dx.

4 Structure

In this Section, we will prove the following structure theorem for degree-d mul-
tilinear polynomials.

Proposition 4. Let p be a degree-d multilinear polynomial where the sum of
the squares of its coefficients is at most 1. Let m1 ≤ m2 ≤ . . . ≤ md be
integers. Then there exist integers n1, n2, . . . , nd, ni = Od(m1m2 · · ·mi−1) and
non-constant, homogeneous multilinear polynomials h1, . . . , hd, Pi,j , 1 ≤ i ≤
d, 1 ≤ j ≤ ni so that:

1. hi is degree i

5



2. If Pi,a1 · · ·Pi,ai
appears as a term in hi(Pi,j), then the sum of the degrees

of the Pi,ai
is d

3. The sum of the squares of the coefficients of hi is Od(1)

4. The sum of the squares of the coefficients of Pi,j is 1

5. Each variable occurs in at most one monomial in hi

6. If Y is a standard Gaussian and k ≤ mi then E[|Pi,j(Y )|k] = Od(
√
k)k.

7. p(Y ) =
∑d

i=1 hi(Pi,1(Y ), Pi,2(Y ), . . . , Pi,ni
(Y )).

This will allow us to write p in terms of other polynomials each with smaller
moments. The basic idea of the proof follows from a proper interpretation of
Proposition 3. Essentially Proposition 3 says that the higher moments of p
will be small unless p has some significant component consisting of a product of
polynomials P1, . . . , Pℓ of lower degree. The basic idea is that if such polynomials
exist, we can split off these Pi as new polynomials in our decomposition, leaving
p − P1 · · ·Pℓ with smaller size than p. We repeatedly apply this procedure to
p and all of the other polynomials that show up in our decomposition. Since
each step decreases the size of the polynomial being decomposed, and produces
only new polynomials of smaller degree, this process will eventually terminate.
Beyond these ideas, the proof consists largely of bookkeeping to ensure that we
have the correct number of P ’s and that they have an appropriate number of
small moments.

Proof. We first prove our statement for homogeneous, multilinear polynomials p.
We reduce the general case to this one by writing p as a sum of its homogeneous
parts and decomposing each of them.

We would like to simply use the decomposition P1,1 = p and h1 is the
identity, but the moments of p may be too large. On the other hand, we know
by Proposition 3 that this can only be the case if p has large correlation with
some product of smaller degree polynomials P1 · · ·Pk. So if c = E[p · P1 · · ·Pk],
we can write p′ = p − cP1 · · ·Pk. Now either p′ has small moments or we
can break off another product of polynomials. This process must eventually
terminate because when we replaced p by p′ we decreased the expectation of its
square by c2. We will then apply this technique recursively to each of the Pi.

We define a dot product on the space of multilinear polynomials 〈P,Q〉 =
E[P (Y )Q(Y )] where Y is a standard Gaussian. Note that the square of the
corresponding norm is just |P |2 equals the sum of the squares of the coefficients
of P .

We begin by letting q = p. We note that by Proposition 3 that the kth

moment of q for k ≤ m1 is Od(
√
k)k unless for some 2 ≤ ℓ ≤ d we have that

Mℓ(q) ≥ m
m1/2
1 /m

ℓ/2
1 , or equivalently, unless there exist polynomials P1, . . . , Pℓ

of norm 1, so that c = 〈q, P1 · · ·Pℓ〉 ≥ m
(1−ℓ)/2
1 . If this is the case, we replace

q by q′ = q − cP1 · · ·Pℓ. Note that |q′|2 = |q|2 − c2. We repeat this process
with q′ until finally we are left with a polynomial q so that for all k ≤ m1 the
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kth moment of q is Od(
√
k)k (this process must terminate since at each step we

decrease |q|2 by at least m1−d
1 ). We now can write p as q plus a sum of ci times

products of lower degree polynomials. It should be noted that the sum of the
squares of the ci is at most 1. Letting P1,1 = q and h1 be the identity, we can
now write

p(Y ) =
d
∑

i=1

hi(Pi,1(Y ), Pi,2(Y ), . . . , Pi,ni
(Y )).

Where |hi| = Od(1), |Pi,j | ≤ 1, ni = Od(m
i−1
1 ), and for k ≤ m1, the k

th moment

of P1,j is Od(
√
k)k. Unfortunately, the moments of the other P ’s might be too

large. We show by induction on s that we have such a decomposition where
all of the appropriate moments of the Pi,j for i ≤ s are bounded and so that
ni = Od(m1m2 · · ·mi−1) for all i.

We have already proved the s = 1 case. To prove the general case, we first
write p as

∑d
i=1 hi(Pi,1(Y ), Pi,2(Y ), . . . , Pi,ni

(Y )) using the induction hypothe-
sis. This satisfies all of our criteria except that the Ps,j might have moments
which are too large. We fix this by rewriting each of the Ps,j using the same
method we originally used to rewrite p, only guaranteing that the first ms mo-
ments are small. This will make it so that our new Ps,j have appropriately
bounded moments, but may introduce new terms in the ht for t > s (if some
term shows up in multiple monomials, define several Pi,t that are equal). We
need to make sure that we did not introduce too many new terms and that the
sum of the squares of the coefficients is not too large.

To show the latter note that our original procedure at most doubled the sum
of the squares of the coefficients. Therefore applying this to each Pi in a term
cP1 · · ·Ps will increase the sum of the squares of the coefficients by a factor of
at most 2s. Hence since the sum of the squares of the coefficients was Od(1)
before, it still is afterwards.

Finally we need to show that our new decomposition did not introduce too
many new terms. It is not hard to see that for each Ps,i we need to introduce
Od(m

t−s
s ) new Pt,j terms. Therefore the total number of such new terms is

O(mt−s
s ns) = Od(m1m2 · · ·mt−1).

Finally we note that our induction terminates at s = d. This is because the
Pd,j must be linear polynomials of bounded norm, and therefore automatically
satisfy the necessary moment bounds. This completes our inductive step and
proves the Proposition.

5 FT-Mollification

We let F be a degree-d polynomial threshold function F = sgn(p), where p
is a degree d multilinear polynomial in n variables whose sum of squares of
coefficients equals 1. We pick m1, . . . ,md (their exact sizes will be determined
later). For later convenience, we assume the mi are all even. We then have a
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decomposition of F given by Proposition 4 as

F (X) = sgn

(

d
∑

i=1

hi(Pi,1(X), . . . , Pi,ni
(X))

)

= f(P1(X), P2(X), . . . , Pd(X))

= f(P (X))

where Pi(X) is the vector-valued polynomial (Pi,1(X), . . . , Pi,ni
(X)), P is the

vector of all of them, and f is the function f(P1, . . . , Pd) = sgn(
∑

hi(Pi)).
Furthermore, we have that for k ≤ dmi the kth moment of any coordinate of
any coordinate of Pi is Od(

√
k)k. We also have that hi is a degree i multilinear

polynomial the sum of the squares of whose coefficients is at most 1.
Our basic strategy now will involve approximating f by a smooth function

f̃ , and letting F̃ (X) = f̃(P (X)). We will then proceed to prove

E[F (Y )] ≈ǫ E[F̃ (Y )] ≈ǫ E[F̃ (X)] ≈ǫ E[F (X)]. (1)

We will produce f̃ from f using the technique of mollification. Namely we will
have f̃ = f ∗ ρ for an appropriately chosen smooth function ρ. However, we will
need this ρ to have several other properties so we will go into some depth here
to construct it.

Lemma 5. Given an integer n ≥ 0 and a constant C, there is a function
ρC : Rn → R so that

1. ρC ≥ 0.

2.
∫

Rn ρC(x)dx = 1.

3. For any unit vector v ∈ R
n, and any non-negative integer k,

∫

Rn |Dk
vρC(x)|dx ≤

Ck, where Dk
v is the kth directional derivative in the direction v.

4. For D > 0,
∫

|x|>D |ρ(x)|dx = O
(

(

n
CD

)2
)

.

Proof. We prove this for C = 2 and we note that we can obtain other values of
C by setting ρC(x) = (C/2)nρ2(Cx/2). We begin by defining

B(ξ) =

{

1− |ξ|2 if |ξ| ≤ 1

0 else

We then define

ρ2(x) = ρ(x) =
|B̂(x)|2
|B|22

.

Where B̂ denotes the Fourier transform of B. Clearly ρ is non-negative. Also
clearly

∫

Rn

ρ(x)dx =
|B̂|22
|B|22

= 1
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by the Plancherel Theorem.
For the third property we note that

Dk
vρ =

1

|B|22

k
∑

i=0

(

k

i

)

Di
v(B̂)Dk−i

v (B̂).

Letting ξ be the dual vector corresponding to v we have that

∣

∣Dk
vρ
∣

∣

1
≤ 1

|B|22

k
∑

i=0

(

k

i

)

∣

∣

∣Di
v(B̂)Dk−i

v (B̂)
∣

∣

∣

1

≤ 1

|B|22

k
∑

i=0

(

k

i

)

∣

∣

∣Di
v(B̂)

∣

∣

∣

2

∣

∣

∣Dk−i
v (B̂)

∣

∣

∣

2

≤ 1

|B|22

k
∑

i=0

(

k

i

)

∣

∣ξiB
∣

∣

2

∣

∣ξk−iB
∣

∣

2

≤ 1

|B|22

k
∑

i=0

(

k

i

)

|B|22

=
k
∑

i=0

(

k

i

)

= 2k.

For the last property we note that it is enough to prove that

∫

Rn

|x|2ρ(x)dx = O(n2).

We have that

∫

Rn

|x|2ρ(x)dx =
1

|B|22

n
∑

i=1

|xiB̂|22

=

∑n
i=1

∣

∣

∣

∂B
∂ξi

∣

∣

∣

2

2

|B|22
.

Now ∂B
∂ξi

is 2ξi on the unit ball and 0 outside. Hence the sum of the squares

of these is 2|ξ|2 on |ξ| < 1 and 0 outside. Hence since both numerator and
denominator above are integrals of spherically symmetric functions, their ratio
is equal to

∫

Rn

|x|2ρ(x)dx =
2
∫ 1

0 rn+1dr
∫ 1

0
rn−1(1− r2)2dr

.
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Using integration by parts, the denominator is

∫ 1

0

rn−1(1− r2)2dr =
4

n

∫ 1

0

rn+1(1− r2)dr

=
16

n(n+ 2)

∫ 1

0

rn+3dr

=
16

n(n+ 2)(n+ 4)
.

Hence
∫

Rn

|x|2ρ(x)dx =
n(n+ 4)

8
= O(n2).

We are now prepared to define f̃ . We pick constants C1, . . . , Cd (to be
determined later). We let

ρ(P1, . . . , Pd) = ρC1(P1) · ρC2(P2) · · · ρCd
(Pd). (2)

Above the ρCi
is defined on R

ni . We let f̃ be the convolution f̃ = f ∗ ρ.

6 Taylor Error

In this Section, we prove the middle approximation of Equation 1 for ap-
propriately large k. The basic idea will be to approximate f̃ by its Tay-
lor series, T . T (P (X)) will be a polynomial of degree at most k and hence
E[T (P (Y ))] = E[T (P (X))]. Furthermore, we will bound the Taylor error by
some polynomial R and show that E[R(P (Y ))] = E[R(P (X))] is O(ǫ) for ap-
propriate choices of mi, Ci. In particular, we let T be the polynomial consisting
of all of the terms of the Taylor expansion of f̃ whose total degree in the Pi

coordinates is less than mi for all i. Note that a polynomial of this form is
about the best we can do since we only have control over the size of moments
up to the mth

i moment on the ith block of coordinates. Our error bound will be
the following

Proposition 6.

|T (P )− f̃(P )| ≤
d
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

− 1.

First we prove a Lemma dealing with Taylor error for a single batch of
coordinates,

Lemma 7. If g is a multivariate function, g̃ = g ∗ ρC and T is the polynomial
consisting of all terms in the Taylor expansion of g̃ is degree less than m, then

|g(x)− T (x)| ≤ |g|∞Cm|x|m
m!

.
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Proof. Let v be the unit vector in the direction of x. Let L be the line through 0
and x. We note that the restriction of T to L is the same as the first m−1 terms
of the Taylor series for g̃|L. Using standard error bounds for Taylor polynomials
we find that

|g(x)− T (x)| ≤ |Dm
v g̃|∞|x|m

m!
.

But

|Dm
v g̃|∞ = |g ∗Dm

v ρC |∞
≤ |g|∞|Dm

v ρC |1
≤ |g|∞Cm.

Plugging this in yields our result.

Proof of Proposition 6. The basic idea of the proof will be to repeatedly apply
Lemma 7 to one batch of coordinates at a time. We begin by defining some
operators on the space of bounded functions on R

n1 ×R
n2 ×· · ·×R

nd . For such
g, define gĩ to be the convolution of g with ρCi

along the ith set of coordinates.

Define gTi to be the Taylor polynomial in the ith set of variables of gĩ obtained by
taking all terms of total degree less than mi. Note that for i 6= j the operations
ĩ and Ti commute with the operations j̃ and Tj since they operate on disjoint

sets of coordinates. Note that f̃ = f 1̃2̃···d̃ and T = fT1T2···Td . For 1 ≤ i ≤ d let
fi = f 1̃2̃···̃i and Ti = fT1T2···Ti .

We prove by induction on s that

|Ts(P )− fs(P )| ≤
s
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

− 1.

As a base case, we note that the s = 0 case of this is trivial.
Assume that

|Ts(P )− fs(P )| ≤
s
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

− 1.

We have that

|Ts+1(P )− fs+1(P )|
≤ |T Ts+1

s (P )− T
˜s+1

s (P )|+ |T ˜s+1
s (P )− f

˜s+1
s (P )|.

Note that
T

˜s+1
s (P )− f

˜s+1
s (P ) = (Ts − fs)

˜s+1
(P ).

Therefore since ˜s+ 1 involves only convolution with a function of L1 norm 1 we
have that

|T ˜s+1
s (P )− f

˜s+1
s (P )| ≤ |Ts(P )− fs(P )|∞,s+1

11



where the subscript denotes the L∞ norm over just the s+1st set of coordinates.
By the inductive hypothesis, this is at most

s
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

− 1.

On the other hand, applying Lemma 7 we have that

|T Ts+1
s (P )− T

˜s+1
s (P )| ≤ C

ms+1

s+1 |Ps+1|ms+1

ms+1!
|Ts|∞,s+1 .

By the inductive hypothesis,

|Ts|∞,s+1 ≤ |fs|∞,s+1 + |Ts − fs|∞,s+1

≤
s
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

.

Combining the above bounds, we find that

|Ts+1 − fs+1| ≤
s
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

− 1

+
C

ms+1

s+1 |Ps+1|ms+1

ms+1!

s
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

=

s+1
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

− 1.

We can now prove the desired approximation result

Proposition 8. If F̃ , P, T as above with mi = Ωd(niC
2
i ), mi ≥ log(2d/ǫ) for

all i, and if k ≥ dmi for all i, then for X and Y are k-independent families of
standard Gaussians,

E[F̃ (Y )] ≈ǫ E[F̃ (X)].

Proof. We note that since T ◦ P is a polynomial of degree at most k we have
that E[T (P (X))] = E[T (P (Y ))]. Hence, it suffices to show that

E[|F − T |(P (X))],E[|F − T |(P (Y ))] = O(ǫ).

We will show this only for X as Y is analogous. By Proposition 6 we have that
|F − T | is bounded by

d
∏

i=1

(

1 +
Cmi

i |Pi|mi

mi!

)

− 1.

12



This is a sum over non-empty subsets S ⊆ {1, 2, . . . , d} of

∏

i∈S

(

Cmi

i |Pi|mi

mi!

)

.

Since there are only 2d − 1 such S, it is enough to show that each term individ-
ually has expectation O(ǫ/2d). On the other hand, we have by AM-GM that
each term is at most

1

|S|
∑

i∈S

(

Cmi

i |Pi|mi

mi!

)|S|
.

Now the expectation of |Pi|mi|S| is at most n
mi|S|
i times the average of the

mi|S|th moments of the coordinates of Pi. These by assumption areOd(
√

mi|S|)mi|S|.

There are ni coordinates so the moment of |Pi| is at most Od(
√

nimi|S|)mi|S|.
Hence the error is at most

O(2d)max
i,s

{

Od

(

Ci
√
nimis

mi

)mis}

= O(2d)max
i,s

{

Od

(

Ci
√
ni√

mi

)mis}

≤ O(2d)e−mini mi = O(ǫ).

7 Approximation Error

In this Section, we will prove the first and third approximations in Equation 1.
We begin with the first, namely

E[F (Y )] ≈ǫ E[F̃ (Y )].

Our basic strategy will be to bound

|E[F (Y )]− E[F̃ (Y )] ≤ E[|F (Y )− F̃ (Y )|].

In order to get a bound on this we will first show that F − F̃ is small except
where p(Y ) is small, and then use anti-concentration results to show that this
happens with small probability. This will be true because ρ is small away from
0. We begin by proving a Lemma to this effect.

Lemma 9. Let ρ be the function defined in Equation 2. Then for any D > 0
we have that

∫

(x1,...,xd)∈R
n1×···×R

nd

∃i:|xi|>Dni

√
d/Ci

|ρ(x)|dx = O(D−2)

This will hold essentially because of the concentration property held by each
ρCi

.

13



Proof. We integrate over the region where |xi| > Dni

√
d/Ci for each i. This is

a product over j 6= i of
∫

R
nj ρCj

(xj) times
∫

|x|>Dni

√
d/Ci

|ρ(x)|dx. By Lemma

9 the former integrals are all 1, and the latter is O(D−2/d). Summing over all
possible i yields O(D−2).

Recall that f was sgn ◦ h, where h =
∑

hi given in the decomposition of
p from Proposition 4. Recall that f̃ = f ∗ ρ. We want to bound the error in
approximating f by f̃ . The following, is a direct consequence of Lemma 9.

Lemma 10. Suppose x = (x1, . . . , xd) ∈ R
n1 × · · ·×R

nd. Suppose also that for
some D > 0 and for all y = (y1, . . . , yd) ∈ R

n1 × · · · × R
nd so that |xi − yi| ≤

Dni

√
d/Ci that h(x) and h(y) have the same sign, then

|f(x)− f̃(x)| = O
(

min{1, D−2}
)

.

Proof. To show that the error is O(1), we note that since ρ ≥ 0 and
∫

ρ(x)dx = 1

that f̃(x) = (f ∗ρ)(x) ∈ [inf(f), sup(f)] ⊆ [−1, 1]. Therefore |f− f̃ | ≤ |f |+|f̃ | ≤
2.

For the latter, we note that f̃(x) =
∫

y
f(y)ρ(x − y)dy. We note that since

the total integral of ρ is 1 that

f(x)− f̃(x) =

∫

y

(f(x)− f(y))ρ(x− y)dy.

We note that by assumption unless |xi − yi| > Dni

√
d/Ci for some i that the

integrand is 0. But outside of this, the integrand is at most 2ρ(x − y). By
Lemma 9 the total integral of this is O(D−2).

We now know that f is near f̃ at points x not near the boundary between the
+1 and −1 regions. Since we cannot directly control the size of these regions, we
want to relate this to the region where |h(x)| is small. This should work since
unless x is very large, h will have derivatives that aren’t too big. In particular,
we prove the following.

Lemma 11. Let x ∈ R
n. Suppose that we have Bi ≥ 0 so that |Pi,j(x)| ≤ Bi

for all i, j. We have that |F (x)− F̃ (x)| is at most the minimum of O(1) and

Od



max







(

|p(x)|
∑d

i=1 n
2
iB

i−1
i /Ci

)−2

,

(

BiCi

ni

)−2








 .

Proof. The bound of O(1) follows immediately from Lemma 10. For the other
bound, let

D = min

{

|p(x)|
d2d

∑d
i=1 n

2
iB

i−1
i /Ci

,min
i

{

BiCi

ni

√
d

}

}

.
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By Lemma 10, it suffices to show that for anyQ = (Q1, . . . , Qn) ∈ R
n1×· · ·×R

nd

so that |Qi −Pi(x)| ≤ Dni

√
d/Ci that h(P (x)) = p(x) and h(Q) have the same

sign. To do this, we write h = h1 + · · ·+ hd and we note that

|h(P (x))− h(Q)| ≤
d
∑

i=1

|Pi(x)−Qi||h′
i(z)|.

Where h′
i(z) is the directional derivative of hi in the direction from Pi(x) to

Qi, and z is some point along this line. First, note that |Qi − Pi(x)| ≤ Bi.
Therefore, each coordinate of z is at most 2Bi. Note that hi is a sum of at
most ni monomials of degree i with coefficients at most 1. The derivative of
each monomial at z is at most

√
d2dBi−1

i . Therefore, |h′
i(z)| ≤

√
d2dniB

i−1
i .

Therefore,

|h(P (x)) − h(Q)| ≤
d
∑

i=1

|Pi(x) −Qi||h′
i(z)|

≤
d
∑

i=1

(Dni

√
d/Ci)(

√
d2dniB

i−1
i )

≤ D

d
∑

i=1

d2dn2
iB

i−1
i /Ci

≤ |h(P (x))|.

Therefore h(P (x)) and h(Q) have the same sign, so our bound follows by Lemma
10.

We take this bound on the approximation error and prove the following
Lemma on the error of expectations.

Lemma 12. Let Z be a random variable valued in R
n. Let Bi > 1 be real

numbers. Let M =
∑d

i=1 n
2
iB

i−1
i /Ci. Then

|E[F (Z)]− E[F̃ (Z)]| =
Od(Pr(∃i, j : |Pi,j(Z)| > Bi) +M + Pr(|p(Z)| ≤

√
M)).

Furthermore,

E[F (Z)] ≤E[F̃ (Z)]

+Od(Pr(∃i, j : |Pi,j(Z)| > Bi) +M)

+ 2Pr(−
√
M < p(Z) < 0),

and

E[F (Z)] ≥E[F̃ (Z)]

+Od(Pr(∃i, j : |Pi,j(Z)| > Bi) +M)

− 2Pr(0 < p(Z) <
√
M).

15



Proof. We note that |F (Z) − F̃ (Z)| = O(1). Also note that 1
M ≤ BiCi

ni
for

all i. The first inequality follows by noting that Lemma 11 implies that unless
|Pi,j(Z)| > Bi for some i, j that the following hold:

1. If |p(z)| <
√
M , |F (Z)− F̃ (Z)| ≤ 2.

2. If |p(z)| ≥
√
M , |F (Z)− F̃ (Z)| = Od(M).

The other two inequalities follow from noting that if p(z) < 0, then F (Z) ≤
F̃ (Z) and if p(Z) > 0 then F (Z) ≥ F̃ (Z).

We are almost ready to prove the first of our approximation results, but
we first need a theorem on the anticoncentration of Gaussian polynomials. In
particular a consequence of [2] Theorem 8 is:

Theorem 13 (Carbery and Wright). Let p be a degree d polynomial, and Y a
standard Gaussian. Suppose that E[p(Y )2] = 1. Then, for ǫ > 0,

Pr(|p(Y )| < ǫ) = O(dǫ1/d).

We are now prepared to prove our approximation result.

Proposition 14. Let p, F, F̃ , h,mi, ni, Ci be as above and let ǫ > 0. Let Bi =
Ωd(
√

log(ni/ǫ)) be some real numbers. Suppose that mi > B2
i and that Ci =

Ωd(n
2
iB

i−1
i ǫ−2d) for all i. Then, if the implied constants for the bounds on Bi

and Ci are large enough,

|E[F (Y )]− E[F̃ (Y )]| = O(ǫ).

Proof. We bound the error using Lemma 12. We note that the probability that
|Pi,j(Y )| ≥ Bi can be bounded by looking at the log(dni/ǫ) = kth moment,

yielding a probability of Od(
√
k)k

Bk
i

≤ e−k = ǫ
dni

. Taking a union bound over all j

gives a probability of ǫ
d . Taking a union bound over i yields a probability of at

most ǫ.
Next we note that

M =

d
∑

i=1

n2
iB

i−1
i /Ci = Od(ǫ

2d).

Hence if our constants were chosen to be large enough, by Theorem 13

Pr(|p(Y )| <
√
M) = O(ǫ).

This proves our result.

If we could prove Proposition 14 for X instead of Y , we would be done. Un-
fortunately, Theorem 13 does not immediately apply for families that are merely
k-independent. Fortunately, we can work around this to prove Proposition 2.
In particular, we will use the inequality versions of Lemma 12 to obtain upper
and lower bounds on E[F (X)] in terms of E[sgn(p(Y ) + c)], and make use of
anticoncentration for p(Y ).
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Proof of Proposition 2. Let Bi = Ωd(
√

log(1/ǫ)) with sufficiently large con-

stants. Define mi and Ci so that Ci = Ωd

(

(

∏i−1
j=1 mj

)2

Bi−1
i ǫ−2d

)

and mi ≥

Ωd

((

∏i−1
j=1 mj

)

C2
i

)

, log(2d/ǫ), B2
i , all with sufficiently large constants. Note

that this is achievable by setting Ci = Ωd

(

ǫ−7id
)

, mi = Ωd

(

ǫ−3·7id
)

. Let

k = dmaximi. Note k can be as small as Od(ǫ
−4d·7d). Using these parameters,

define ni, hi, Pi,j , f, f̃ , F̃ as described above. Note that since ni = Od

(

∏i−1
j=1 mi

)

that Ci = Ωd(n
2
iB

i−1
i ǫ−2d) and mi = Ωd(niC

2
i ). Therefore, for Y a family of

independent standard Gaussians and X a family of k-independent standard
Gaussians, Propositions 6 and 14 imply that

E[F (Y )] ≈ǫ E[F̃ (Y )] ≈ǫ E[F̃ (X)].

We note that the M in Lemma 12 is Od(ǫ
2d) with sufficiently small constant.

Therefore, by Lemma 12 |E[F (X)]− E[F̃ (X)]| is at most

O(ǫ) + 2Pr(|p(X)| < Od(ǫ
d)) + Pr(∃i, j : |Pi,j(X)| > Bi).

We note that by looking at the log(dni/ǫ) moments of the Pi,j that the last
probability is O(ǫ). Therefore, combining this with the above we get that

E[F (X)] ≥ E[F (Y )] +O(ǫ) − 2Pr(0 < p(X) < Od(ǫ
d)),

and
E[F (X)] ≤ E[F (Y )] +O(ǫ) + 2Pr(−Od(ǫ

d) < p(X) < 0).

But this implies that

E[sgn(p(X)−Od(ǫ
d))] ≤ E[F (Y )] +O(ǫ),

and
E[sgn(p(X) +Od(ǫ

d))] ≥ E[F (Y )] +O(ǫ).

On the other hand, applying to above to the polynomials p±Od(ǫ
d),

E[sgn(p(Y )−Od(ǫ
d))] +O(ǫ) ≤ E[F (X)]

≤ E[sgn(p(Y ) +Od(ǫ
d))] +O(ǫ).

But we have that

E[sgn(p(Y )−Od(ǫ
d))] ≤ E[F (Y )] ≤ E[sgn(p(Y ) +Od(ǫ

d))].

Furthermore, sgn(p(Y ) − Od(ǫ
d)) and sgn(p(Y ) + Od(ǫ

d)) differ by at most 2,
and only when |p(Y )| = Od(ǫ

d). By Theorem 13, this happens with probability
Od(ǫ). Therefore, we have that all of the expectations above are within Od(ǫ)
of E[F (Y )], and hence E[F (X)] = E[F (Y )] + Od(ǫ). Decreasing the value of ǫ
by a factor depending only on d (and increasing k by a corresponding factor)
yields our result.
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8 General Polynomials

We have proved our Theorem for multilinear polynomials, but would like to
extend it to general polynomials. Our basic idea will be to show that a gen-
eral polynomial is approximated by a multilinear polynomial in perhaps more
variables.

Lemma 15. Let p be a degree d polynomial and δ > 0. Then there exists a mul-
tilinear degree d polynomial pδ (in perhaps a greater number of variables) so that
for every k-independent family of random Gaussians X, there is a (correlated)
k-independent family of random Gaussians X̃ so that

Pr(|p(X)− pδ(X̃)| > δ) < δ.

Proof. We will pick some large integer N (how large we will say later). If
X = (X1, . . . , Xn), we let X̃ = (Xi,j), 1 ≤ i ≤ n, 1 ≤ j ≤ N . For fixed i we let
the collection ofXi,j be the standard collection ofN standard Gaussians subject

to the condition that Xi =
1√
N

∑N
j=1 Xi,j . Equivalently, Xi,j = 1√

N
Xi + Yi,j

where the Yi,j are Gaussians with variance 1− 1/N and covariance −1/N with
each other.

X̃ is k-independent because given any i1, . . . , ik, j1, . . . , jk we can obtain
the Xiℓ,jℓ by first picking the Xiℓ randomly and independently, and picking the
Yiℓ,jℓ independently of those. But we note that this yields the same distribution
we would get by setting all of the Xiℓ,k to be random independent Gaussians,

and letting Xi =
1√
N

∑N
j=1 Xi,j .

We now need to construct pδ with the appropriate property. The idea will be
to replace each term Xk

i in each monomial in p with some degree k polynomial
in the Xi,j. This will yield a multilinear degree d polynomial in X̃. We will
want this new polynomial to be within δ′ of Xk

i with probability 1 − δ′ for δ′

some small positive number depending on p and δ. This will be enough since
if δ′ < δ/(2dn) the approximation will hold for all i, k with probability at least
1− δ/2. Furthermore with probability 1− δ/2, each of the |Xi| will be at most
O(log(n/δ)). Therefore if this holds and each of the replacement polynomials
is off by at most δ′, then the value of the full polynomial will be off by at most
O(logd(n/δ)δ′) times the sum of the coefficients of p. Hence if we can achieve
this for δ′ small enough we are done.

Hence, we have reduced our problem to the case of p(X) = p(X1) = Xd
1 .

For simplicity of notation, we use X instead of X1 and Xj instead of X1,j . We
note that

Xd = N−d/2

(

N
∑

i=1

Xi

)d

.

Unfortunately, this is not a multilinear polynomial in the Xi. Fortunately,
it almost is. Expanding it out and grouping terms based on the multiset of
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exponents occurring in them we find that

Xd = N−d/2
∑

a1≤...≤ak∑
ai=d

(

d

a1, a2, . . . , ak

)

∑

S

k
∏

j=1

X
aj

ij
.

Where S is the set of i1, . . . , ik ∈ {1, . . . , N} distinct so that ij < ij+1 if aj =
aj+1. Letting bℓ be the number of ai that are equal to ℓ we find that this is

N−d/2
∑

a1≤...≤ak∑
ai=d

(

d

a1, a2, . . . , ak

)

∏

ℓ

1

bℓ!

∑

i1,...,ik∈[N ]
ij distinct

k
∏

j=1

X
aj

ij
.

Or rewriting slightly, this is

∑

a1≤...≤ak∑
ai=d

(

d

a1, a2, . . . , ak

)

∏

ℓ

1

bℓ!

∑

i1,...,ik∈[N ]
ij distinct

k
∏

j=1

(

Xij√
N

)aj

.

Now, with probability 1− δ,
∣

∣

∣

∑

i
Xi√
N

∣

∣

∣ = O(log(1/δ)). Furthermore with proba-

bility tending to 1 as N goes to infinity,

(

∑

i

(

Xi√
N

)2
)

= 1 + O(δ/ logd(1/δ)),

and
(

∑

i

(

Xi√
N

)a)

= O(δ/ logd(1/δ)) for each 3 ≤ a ≤ d. If all of these events

hold, then each term in the above with some aj > 2 will be O(δ), and any terms
with some aj = 2 will be within O(δ) of

∑

i1,...,i
′

k∈{1,...,N}
ij distinct

k′

∏

j=1

Xij√
N

where k′ is the largest j so that aj = 1. This gives a multilinear polynomial,
that with probability 1 − δ is within Od(δ) of p(X). Perhaps decreasing δ to
deal with the constant in the Od yields our result.

We can now prove Theorem 1.

Proof of Theorem 1. Let p be a normalized degree d polynomial. Let k be as
required by Proposition 2. Let Y be a family of independent standard Gaussians
and X a k-independent family of standard Gaussians. Fix δ = (ǫ/d)d. Let
pδ, X̃, Ỹ be as given by Lemma 15. We need to show that Pr(p(X) > 0) =
Pr(p(Y ) > 0) +O(ǫ). By construction of pδ,

Pr(p(X) > 0) ≥ Pr(pδ(X̃) > δ)− δ.

Applying Proposition 2 to the multilinear polynomial pδ − δ, this is at least

Pr(pδ(Ỹ ) > δ) +O(ǫ).
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Since Ỹ is ℓ-independent for all ℓ (since Y is), it is actually an independent family
of Gaussians. Therefore by Theorem 13, Pr(|p(Y )| < δ) = O(dδ1/d) = O(ǫ).
Hence

Pr(p(X) > 0) ≥ Pr(pδ(Ỹ ) > −δ) +O(ǫ).

Noting that with probability 1− δ that pδ(Ỹ ) is at most δ less than p(Y ), this
is at least

Pr(p(Y ) > 0) + O(ǫ).

So
Pr(p(X) > 0) ≥ Pr(p(Y ) > 0) +O(ǫ).

Similarly,
Pr(p(X) < 0) ≥ Pr(p(Y ) < 0) +O(ǫ).

Combining these we clearly have

Pr(p(X) > 0) = Pr(p(Y ) > 0) +O(ǫ)

as desired.

9 Fooling PTFs of Bernoulli Random Variables

Theorem 1 should also hold when X is a k-independent family of Bernoulli
random variables and Y is a fully independent family of Bernoulli random vari-
ables. The proof is essentially the same as in the Gaussian case with a few
minor changes that need to be made. In particular, the following steps do not
carry over immediately:

1. The reduction from the case of a general polynomial to that of a multilinear
polynomial

2. Theorem 13 does not hold for Bernoulli random variables

3. Theorem 3 is not stated for the Bernoulli case

The first of these problems is even easier to deal with in the Bernoulli case
than in the Gaussian case. This is because any degree-d polynomial is equal to
some degree-d multilinear polynomial on the hypercube.

The second of these problems can be dealt with by fairly standard means.
In particular, the Invariance Principle of [7] implies that for sufficiently regular
polynomials, p, that p(X) is anticoncentrated even for X a Bernoulli random
variable. We are still left with the problem of reducing ourselves to the case of
a regular polynomial. This would be done using a regularity Lemma similar to
that proven in [5], showing that an arbitrary polynomial threshold function can
be written as a decision tree on a small number of coordinates such that most of
the leaves are approximated by regular polynomial threshold functions. Given
a slight modification of this result telling us that these “approximations” hold
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even on k-independent inputs would allow us to reduce to the case of a regular
polynomial after determining the values of Od(ǫ

−O(d)) coordinates.
The last of these concerns is apparently more significant, but can be dealt

with by proving that Theorem 3 does hold for polynomials of Bernoullis. In
particular, one can show that a higher moment of a polynomial with respect to
the Bernoulli distribution can be bounded in terms of the corresponding moment
with respect to the Gaussian distribution. In particular, we show that:

Lemma 16. Let p be a homogeneous degree-d multilinear polynomial and k ≥ 1.
Let X be a Bernoulli random variable and Y a Gaussian random variable. Then

E[|p(X)|k] = O(1)dkE[|p(Y )|k].

Proof (Thanks to Jelani Nelson). Let σ = (σ1, . . . , σn) be an n-dimensional
Bernoulli random variable and G = (g1, . . . , gn) an n-dimensional Gaussian ran-
dom variable independent of of σ. Note that σi|gi| is distributed as a Gaussian.
Therefore we have that

E[|p(G)|k] = E[|p(σ1|g1|, . . . , σn|gn|)|k] = EG[Eσ[|p(σ1|g1|, . . . , σn|gn|)|k]].

By the convexity of the Lk norm this is at least

Eσ

[

|EG[p(σ1|g1|, . . . , σn|gn|)]|k
]

.

On the other hand, we have that

EG[p(σ1|g1|, . . . , σn|gn|)] =
√

2

π

d

p(σ).

Therefore we have that

E[|p(G)|k] ≥
√

2

π

dk

Eσ[|p(σ)|k].

As desired.

10 Conclusion

The bounds on k presented in this paper are far from tight. At the very least
the argument in Lemma 12 could be strengthened by considering a larger range
of cases of |p(x)| rather than just whether or not it is larger than

√
M . At

very least, this would give us bounds on k of the form Od(ǫ
−xd

) for some x less
than 7. I suspect that the correct value of k is actually O(d2ǫ−2), and in fact

such large k will actually be required for p(x) =
∏d

i=1(
∑k

j=1 xi,j). On the other
hand, this bound is at the moment somewhat beyond our means. It would be
nice at least to see if a bound of the form k = Od(ǫ

−poly(d)) can be proven.
The main contribution of this work is prove that there is some sufficient k that
depends on only d and ǫ.
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